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Direct interaction between centralspindlin
and PRC1 reinforces mechanical resilience of the
central spindle
Kian-Yong Lee1,2,w, Behrooz Esmaeili2, Ben Zealley1,w & Masanori Mishima2

During animal cell division, the central spindle, an anti-parallel microtubule bundle structure

formed between segregating chromosomes during anaphase, cooperates with astral

microtubules to position the cleavage furrow. Because the central spindle is the only structure

linking the two halves of the mitotic spindle, it is under mechanical tension from

dynein-generated cortical pulling forces, which determine spindle positioning and drive

chromosome segregation through spindle elongation. The central spindle should be flexible

enough for efficient chromosome segregation while maintaining its structural integrity for

reliable cytokinesis. How the cell balances these potentially conflicting requirements is poorly

understood. Here, we demonstrate that the central spindle in C. elegans embryos has a

resilient mechanism for recovery from perturbations by excess tension derived from cortical

pulling forces. This mechanism involves the direct interaction of two different types of

conserved microtubule bundlers that are crucial for central spindle formation, PRC1 and

centralspindlin.
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M
icrotubule bundle structures play crucial roles in animal
cell cytokinesis. During anaphase, the central spindle is
formed between segregating chromosomes, and, in

cooperation with astral microtubules, it determines the position
of the cleavage furrow by forming a zone of active Rho GTPase, a
master regulator of contractile ring formation1. It also serves as a
precursor to the midbody, which recruits factors crucial for the
final separation of two daughter cells by membrane abscission2,3.
Dynein at the cell cortex generates ‘cortical pulling force’,
a mechanical force that pulls astral microtubules towards the
cell cortex4,5. As a consequence, the spindle poles are pulled
outwards. This force determines spindle positioning and drives
chromosome segregation through elongation of the pole-to-pole
distance (anaphase B)4,6–10. After anaphase onset, when sister
chromatid cohesion has dissolved, the central spindle becomes
the only structure that links the two halves of the mitotic spindle.
Thus, it is under mechanical tension from the cortical pulling
force. How the central spindle maintains its structural integrity
under tension while allowing anaphase B pole-to-pole elongation
to occur is not well understood.

Molecules important for the formation and function of the
central spindle form a protein–protein interaction network
that includes two different microtubule-bundling factors, central-
spindlin and PRC1 (refs 11,12). Centralspindlin is a 2:2
heterotetramer of a kinesin-6 subunit MKLP1 (MKLP1/KIF23 in
mammals and ZEN-4 in Caenorhabditis elegans) and a non-motor
subunit CYK4 containing a GTPase-activating protein (GAP)
domain for Rho-family GTPases (MgcRacGAP/RACGAP1 in
mammals and CYK-4 in C. elegans)13,14. PRC1 is the metazoan
orthologue of yeast Ase1 and plant MAP65 (refs 15,16). Both
centralspindlin and PRC1 show microtubule-bundling activities
in vitro and are required for proper formation of the central
spindle in vivo. They co-localize to the centre of the central spindle
and midbody, where the plus ends of microtubules are bundled in
an interdigitating manner17. As important hubs of the protein–
protein interaction network, both of these proteins recruit various
other factors to the centre of the central spindle and midbody. For
example, KIF4 kinesin, a suppressor of microtubule polymerization
dynamics, is recruited to the central spindle via interaction with
PRC1 and limits the length of the anti-parallel overlap18–21. ECT2,
a major activator of Rho during cytokinesis, accumulates at the
spindle midzone through interaction with CYK4 (refs 22–27) and
forms an equatorial zone of active Rho28. Interestingly, a direct
interaction between PRC1 and CYK4 has been reported in
mammalian cells29. However, the role of the interaction between
the two different types of microtubule bundling proteins in central
spindle formation remains unclear. Here, we study the response of
the central spindle to mechanical perturbation and find that the
interaction between centralspindlin and PRC1 plays an important
role in the mechanical robustness of this microtubule bundle
structure that is critical for cytokinesis.

Results
Resilience of central spindle under mechanical perturbation.
To examine the response of the central spindle to increased
pulling forces (Fig. 1a), we generated transgenic C. elegans strains
expressing mCherry-tagged tubulin and green fluorescent
protein (GFP)-tagged CYK-4. During the first mitotic division of
control embryos, the bipolar spindle formed promptly following
nuclear envelope breakdown (NEBD, time¼ 0). NEBD was
monitored by the loss of exclusion of the tubulin signal from
pronuclei (Fig. 1b and Supplementary Fig. 1 for grayscale images
covering the whole embryos). Approximately 120–150 s following
NEBD, the distance between the two spindle poles (Fig. 1c)
started to increase, indicating the onset of anaphase, as previously

reported30 (Fig. 1d). At the same time, CYK-4 began to
accumulate at the spindle midzone (Fig. 1b, control), where the
plus ends of the two sets of interpolar microtubules from the
two spindle poles form an interdigitating overlap, as confirmed
by an accelerated increase in the peak intensity (Fig. 1d, control
and Supplementary Fig. 2a for examples of the line profiling of
CYK-4::GFP intensity). Within the next 30–60 s, the central
spindle was established, with CYK-4 enriching rapidly in the
central overlap zone and remaining there for B300 s until the
cleavage furrow fully ingressed and the central spindle was
compacted to form the midbody.

EFA-6 is a negative regulator of the dynein-based cortical
pulling force31. In embryos depleted of EFA-6, pole-to-pole
elongation was accelerated (from 80 nm s� 1 in control embryos
to 120 nm s� 1; Fig. 1d, efa-6(RNAi)), as expected. In these
embryos, CYK-4 accumulated normally until 180 s after NEBD
(Fig. 1b,d, efa-6(RNAi)), when the peak corresponding to its
accumulation suddenly broadened (Fig. 1b,d, arrowheads).
Thereafter, the total amount of CYK-4 detected between the
two poles continued to increase, and the tight localization of
CYK-4 fluorescence at the midzone was gradually restored
(Fig. 1d, black arrows in the ‘CYK-4 peak width’ panels).
A similar pattern of CYK-4 accumulation was observed in the
embryos depleted of the kinesin-5 BMK-1, which has been
reported to function as a brake during spindle elongation
in C. elegans embryos32 and other cell types33,34 (Fig. 1b,d,
bmk-1(RNAi)). These data indicate that the central spindle has a
resilient recovery mechanism that acts against perturbations that
cause excessive pole-to-pole separation.

In contrast, in embryos depleted of SPD-1, the C. elegans
orthologue of PRC1, the spindle was broken into two halves, and
the accumulation of CYK-4 at the midzone dropped drastically
(Fig. 1b,d, arrow in spd-1(RNAi) and Supplementary Fig. 2b
and c)35. Once it was lost from the spindle midzone, CYK-4 could
not re-accumulate there, although much later, it localized to the
midbody via the cortical/astral route independent of the central
spindle (Fig. 1b,d, double-headed arrows in spd-1(RNAi)
panels)35,36. Reciprocally, the dependency of SPD-1 midzone
localization on centralspindlin has also been reported35, implying
that the cooperative interaction between the two different types of
microtubule bundling proteins might be important for the
mechanical resilience of the central spindle.

Direct interaction between PRC1 and centralspindlin. A direct
interaction between human orthologues of SPD-1 and CYK-4 has
been reported29, and a physical interaction between Ase1, a yeast
PRC1 homologue, and Klp9, a kinesin that is distantly related to
ZEN-4/MKLP1 (although more closely to MKLP2), has also been
shown37. We therefore examined whether SPD-1 and CYK-4
physically interact by in vitro pull-down and yeast two-hybrid
assays. In vitro translated full-length CYK-4 was pulled down by
beads coated with bacterially expressed full-length SPD-1 (Fig. 2a
and Supplementary Fig. 3a). Inversely, SPD-1 was bound to beads
coated with CYK-4 as well as the CYK-4/ZEN-4 centralspindlin
holocomplex (Fig. 2b and Supplementary Fig. 3b). This interaction
was also observed in yeast two-hybrid assays between CYK-4 and
the N-terminal fragment of SPD-1 and was drastically weakened
by deletion of the C-terminal tail of CYK-4 (Fig. 2c,d CYK-4
DTail), which is dispensable for both centralspindlin complex
assembly and microtubule bundling13,38. In contrast, the CYK-4
C-terminal tail fragment alone showed an interaction with SPD-1
that was enhanced by dimerization by adding back the coiled coil
(Fig. 2c and d, CYK-4 Tail and CCþTail). A similar requirement
of the C-terminal tail of CYK-4 was also observed in pull-down
assays (Fig. 2e and Supplementary Fig. 4). SPD-1 1–228 was
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robustly pulled down by CYK-4 fragments containing the
C-terminal tail region (FL, 34–681, 121–681 and CCþTail)
but much more weakly by fragments lacking the C-terminal tail
(34-618 and CC). These data indicate that the SPD-1–CYK-4
interaction is mediated mainly by the N-terminal region of SPD-1
and the C-terminal tail of CYK-4.

The spd-1 gene was originally isolated in a forward genetic
screen for temperature-sensitive cell division defects39.
Interestingly, the oj5 allele isolated in this screen as the cause of
central spindle defects has been shown to be an R83W
mutation35, which lies within the CYK-4-binding region of
SPD-1 defined above. We tested whether this mutation affected
the SPD-1–CYK-4 interaction and found that it was drastically
weakened in both yeast two-hybrid (Fig. 2d) and in vitro pull-
down assays (Fig. 2e and Supplementary Fig. 4). Importantly,
however, this mutation did not affect other known properties of
PRC1, such as dimerization/oligomerization40,41 and microtubule
bundling. In yeast two-hybrid assays, the interaction between
SPD-1 expressed as bait and SPD-1 as prey was not affected by
the R83W mutation (Fig. 2d, bottom row). Consistently, this
mutation did not affect the mobility of full-length recombinant
SPD-1 in size exclusion chromatography (Fig. 2f). In addition,
SPD-1 with the R83W mutation could bind microtubules
(Fig. 2g) and bundle microtubules (Fig. 2h) in solution as
efficiently as its wild-type counterpart. These data indicate that
the R83W mutation specifically affects the interaction between
SPD-1 and CYK-4, although we cannot formally exclude possible
influences on as-yet-unknown functions of SPD-1/PRC1.
These findings strongly suggest that the central spindle defects

observed in spd-1(oj5) mutants are caused by the defective
binding between PRC1 and centralspindlin, the two major
microtubule crosslinking/bundling proteins of the central spindle.

Figure 1 | Resilience of central spindle against excess tension. The central

spindle in C. elegans can recover from near disruption during the first

embryonic division. (a) Schematic of an animal cell in anaphase. The central

spindle is under mechanical tension from cortical pulling forces.

(b) Spinning disk confocal time-lapse images of embryos expressing

mCherry::tubulin (magenta) and a major organizer of the central spindle,

CYK-4::GFP (green), after the depletion of EFA-6, BMK-1 and SPD-1 by

RNAi. The arrowheads indicate the sudden broadening of CYK-4 midzone

accumulation associated with the mid-anaphase acceleration of pole-to-

pole elongation caused by the depletion of these molecules. The central

spindle was not completely broken in efa-6(RNAi) (enhanced outward

pulling force) or in bmk-1(RNAi) (less drag against the pulling force)

embryos, and CYK-4 accumulation was later restored. This recovery did not

occur in embryos depleted of SPD-1/PRC1, another major central spindle

organizer. The midzone accumulation of CYK-4 was largely lost (arrow),

although weak accumulation via the furrow-dependent pathway35 was

observed later (double-headed arrow). Scale bar, 10 mm. (c, d) Quantitative

analysis of morphological changes in the mitotic spindle. The positions of

the spindle poles were determined as the peak mCherry::tubulin signals,

and the distance between them (pole-to-pole distance) is plotted in

magenta. The intensity of CYK-4::GFP in individual embryos was

standardized using a uniform cytoplasmic signal during the pre-mitotic

stage. Line profiles of 4.4mm in width between the two poles were

measured for each time point, and the width at half-maximum (CYK-4 peak

width), height (CYK-4 peak intensity) and area (total CYK-4 on spindle) of

the peak were measured and are plotted in green. The dotted lines on the

graphs of CYK-4 peak width indicate the pole-to-pole distance during

metaphase. In the efa-6(RNAi), bmk-1(RNAi) and spd-1(RNAi) panels, the

values for the control are also plotted in grey. Recovery after near disruption

in efa-6(RNAi) and bmk-1(RNAi) embryos was detected as gradual

tightening of the CYK-4 peak width (arrows) after sudden widening

(arrowheads). The grey arrows indicate the loss of CYK-4 accumulation in

spd-1(RNAi) embryos and the central spindle-independent late recruitment.

The mean and standard error were determined from 33, 7, 6 and 6 embryos

for the control, efa-6(RNAi), bmk-1(RNAi) and spd-1(RNAi), respectively.
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Rupture of central spindle caused by CYK-4 tail mutations. To
further assess the physiological importance of the interaction
between SPD-1 and CYK-4, we introduced point mutations in
CYK-4 that affected its interaction with SPD-1. Sequence com-
parison of the C-terminal tails of CYK-4 orthologues revealed the
presence of two motifs, SILGPVTT and K/R-X-K/R, which have
been widely conserved throughout metazoan evolution (Fig. 3a
and Supplementary Fig. 5). Mutations in these motifs weakened

the SPD-1–CYK-4 interaction, either moderately (IL to NN, IL to
AA and SIL to AAA) or more severely (RAR to EAE; Fig. 3b).
Similar effects were also observed in an in vitro pull-down assay
(Fig. 3c). We generated transgenic animals carrying these muta-
tions (AA and EAE) as well as a deletion of the tail domain
(DTail) in a cyk-4::gfp transgene and expressed the transgenes in a
strain in which endogenous cyk-4 had been deleted. Although the
wild-type transgene efficiently suppressed the embryonic lethality
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Figure 2 | Physical interaction between SPD-1 and CYK-4 sensitive to SPD-1 R83W mutation. (a) In vitro translated full-length CYK-4 was pulled down

by full-length SPD-1 immobilized on chitin beads via a chitin-binding domain (CBD) tag. (b) In vitro translated full-length SPD-1 was pulled down by

full-length CYK-4 or the centralspindlin holocomplex (CYK-4/ZEN-4) immobilized on glutathione-Sepharose beads via a glutathione-S-transferase (GST)

tag. (c) Schematic drawings of SPD-1 and CYK-4. R83W indicates the mutation found in the spd-1(oj5) mutant exhibiting central spindle defects. (d) Yeast

2-hybrid assay of the indicated combinations of bait and prey. Growth on histidine-deficient medium containing 3-amino-1,2,4-triazole (–Hisþ 3AT)

indicates a positive interaction between the bait and prey. (e) SPD-1 1-228 fragment with or without the R83W mutation (WT: wild type) was pulled down

by CYK-4 constructs expressed as fusion proteins with maltose-binding protein (MBP) and detected with an anti-SPD-1 antibody. The CYK-4 tail region is

necessary and, if dimerized, sufficient for efficient binding. (f) The R83W mutation does not affect the mobility of the SPD-1 full-length protein in Superdex

200 size-exclusion chromatography (blue: wild type; red: R83W). The elution profile of a mixture of standard proteins (Thy, thyroglobulin; IgG, gamma

globulin; Ova, ovalbumin; MyG, myoglobin; VB12, vitamin B12) is shown in grey. (g, h) The R83W mutation does not affect the interaction of SPD-1 with

microtubules. (g) Wild-type and R83W SPD-1 were incubated with microtubules or control buffer and sedimented by ultracentrifugation. P, pellet; S,

supernatant; T, total. Increased recovery in the pellet in the presence of microtubules indicates the co-precipitation of SPD-1 with the microtubules. (h)

Microtubules were incubated with SPD-1 with or without the R83W mutation and visualized by immunofluorescence following fixation. Scale bar, 20 mm.
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Figure 3 | Mutations in the C-terminal tail of CYK-4 affect the SPD-1–CYK-4 interaction and cause mid-anaphase spindle rupture. (a) An alignment of

the CYK-4 C-terminal tail region, which corresponds to amino acids 644–675 of the C. elegans protein. The conserved motifs with the mutations assessed

are highlighted. Ce, C. elegans; Cb, C. briggsae (nematode); Nv, N. vectensis (sea anemone); Hv, H. vulgaris (hydra); Ct, C. teleta (annelid);

Cg, C. gigas (oyster); Sp, S. purpuratus (sea urchin); Dr, D. rerio (zebrafish); Xl, X. laevis (frog); Cl, C. livia (bird) and Hs, H. sapiens. (b) Yeast two-hybrid assay

assessing the effects of mutations within the above conserved motifs. (c) An SPD-1 1-228 fragment was evaluated for in vitro binding with wild-type or

mutant (AA and EAE) CYK-4 constructs immobilized on beads via a maltose-binding protein (MBP) tag (bottom panel, Coomassie staining) and detected

with an anti-SPD-1 antibody (top panel). (d) Rescue of the embryonic lethality of cyk-4 null embryos by the indicated cyk-4::gfp transgenes. For each strain
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caused by the deletion of endogenous cyk-4, embryos expressing
the mutant transgenes showed different levels of lethality,
according to the severity of the SPD-1-binding defect (Fig. 3d).
Although the mild AA mutation caused mild lethality, the more
severe EAE mutation caused much higher lethality. The DTail
mutation resulted in the most severe phenotype (490% lethality).
This close correlation between the in vitro and in vivo phenotypes
clearly shows that the SPD-1–CYK-4 interaction plays a crucial
role in early C. elegans development.

Next, we examined the influences of the defective SPD-1–
CYK-4 interaction on cell division, especially on the robustness of
the central spindle. The fluorescence intensities of uniform
cytoplasmic CYK-4::GFP during the pre-mitotic stage confirmed
that the protein expression level was not affected by the EAE and
DTail mutations (Supplementary Fig. 6). Consistent with the
normal behaviour of CYK-4 in spd-1(RNAi) embryos up to mid-
anaphase (NEBD B180 s), in the EAE and DTail mutant
embryos, the bipolar spindle formed normally, and mutant
CYK-4 began to accumulate at the spindle midzone at the same
time as in wild-type embryos (Fig. 3e,f). However, once it formed,
the midzone microtubule bundle was disrupted within 30–60 s.
As a consequence, the anaphase spindle was split into two half-
spindles, and the poles moved rapidly apart. At the same time,
accumulated mutant CYK-4 was lost, detected as a rapid

broadening of the peak width and a gradual decrease in the peak
intensity (Fig. 3f) of CYK-4::GFP fluorescence, indicating that in
some embryos, mutant CYK-4 was retained near the tips of the
broken half-spindles for a while (Fig. 3e, arrows). These
observations clearly indicate that the SPD-1–CYK-4 interaction
is necessary for the robust maintenance of the central spindle
after its initial formation.

Suppression of spindle rupture by reduction of tension.
Because enhancement of the cortical pulling force by efa-6(RNAi)
caused pole separation to accelerate (Fig. 1), we hypothesized that
spindle breakage in the absence of the SPD-1–CYK-4 interaction
might be suppressed if cortical pulling forces were reduced by the
depletion of cortical activators of dynein5,42 (Fig. 4). As
previously reported, depletion of the GoLoco domain protein
GPR-1/2 or NuMA-related LIN-5 slowed pole-to-pole separation
to B40–50 nm s� 1 (Fig. 4a,b), indicating a reduction in the
cortical pulling force43–46. Under these conditions, an apparently
normal central spindle was formed in cyk-4 DTail mutant
embryos and was maintained thereafter much more stably than in
control embryos (Fig. 4a). The peak intensity of CYK-4 DTail at
late anaphase (240 s after NEBD) was restored to almost 100%
of the level of wild-type embryos without RNA interference
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(RNAi; Fig. 4b). The width of midzone accumulation also became
comparable to that of the control, although later, it was slightly
broadened (Fig. 4a,b). However, consistent with the role of the
G-protein pathway in the regulation of the cortical pulling force
in the aster-dependent pathway of cleavage furrow ingression47,
cytokinesis failure in cyk-4 DTail mutant embryos (13/23) was not
suppressed but was rather enhanced by the depletion of GPR-1/2
or LIN-5 (6/6 and 11/11, respectively). Similar restoration of the
stability of the central spindle following a reduction in cortical
pulling forces was also observed in CYK-4 EAE mutant embryos
(Supplementary Fig. 7).

To further examine whether the mechanical fragility of the
central spindle in the cyk-4 tail mutants was caused by the lack of
SPD-1–CYK-4 interaction or by possible defects in an as-yet-
unknown function of the CYK-4 tail, we tested the effect of the
reduction of the cortical pulling force in spd-1(oj5) embryos
(Fig. 5a,b). As previously reported35, the central spindle was
disrupted in spd-1(oj5) embryos, accompanied by the dispersion
of transiently accumulated wild-type CYK-4::GFP. In contrast,
LIN-5 depletion suppressed the sudden rupture of the central
spindle and prolonged the accumulation of CYK-4. These data
further indicate that the SPD-1–CYK-4 interaction through the
CYK-4 C-terminal tail plays an important role in maintaining the
mechanical integrity of the central spindle under tension. This
interaction is dispensable for lateral microtubule bundling per se
and for the tight localization of CYK-4 to the spindle midzone but
becomes crucial when the whole spindle is under mechanical
tension equivalent to that experienced during the normal
asymmetric first cell division.

Discussion
Here, we have revealed a molecular mechanism for the
mechanical resilience of the central spindle, which is key to
reconciling the conflicting requirements for efficient cytokinesis
versus spindle positioning and chromosome segregation. Inter-
estingly, this mechanism has been implemented into the core
machinery of central spindle formation via the direct interaction
of two conserved major microtubule bundlers, PRC1 and
centralspindlin. The motifs critical for SPD-1 binding in the
C-terminal tail of CYK-4 seem to have been widely conserved
throughout metazoan evolution48, with the exception of
arthropods and platyhelminthes (Supplementary Fig. 5).
Interestingly, arthropods carry out embryonic cleavage using a
unique strategy, and the contribution of the cortical pulling force
on anaphase B is limited in Drosophila embryos49. Because a
direct interaction between centralspindlin and PRC1 has been
demonstrated in humans and C. elegans, a pair of distantly
related species, it is reasonable to speculate that the binding
between them might also be widely conserved. The interaction
between centralspindlin and PRC1 in metazoans might be an
evolutionary adaptation to the coupled sliding and
polymerization mechanism50,51, which originally occurred to
drive spindle elongation in eukaryotic ancestors, functioning as
an ‘engine brake’ to counteract excess external forces.

External pulling force applied to the central spindle accelerates
the anti-parallel sliding of microtubule bundles, which would
cause constant ‘leakage’ of microtubule-bundling proteins from
the zone of anti-parallel microtubule overlap into the non-
bundled part of the microtubules, where binding of the bundling
proteins to them would be less stable (Fig. 6a). We speculate that
the interaction between different types of microtubule bundlers
might compensate for their limitations, such as the inability of
PRC1 to carry out active unidirectional transport52–55 and the
low processivity of centralspindlin as a motor, especially when it
is not clustered56, potentially helping them return to the anti-
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parallel microtubule overlap (Fig. 6b). In the absence of the
PRC1-centralspindlin interaction, slowing anti-parallel sliding
would reduce the leakage of bundling proteins from the overlap
zone but not completely prevent it. This notion is consistent with
the gradual loss of CYK-4 signals observed at the later time points
(Figs 4 and 5, B300 s after NEBD). This model also predicts that
even when the interaction between PRC1 and centralspindlin is
intact, if the cortical pulling force is too strong, the central spindle
will still be broken. This situation might have occurred in the case
of the midzone rupture reported following KLP-7/CeMCAK
depletion4,46. Direct testing of this model would require precise
measurement of the distribution of microtubule plus ends and the
lengths of anti-parallel overlap as well as the localizations of
centralspindlin and PRC1 at higher temporal resolution. In future
studies, it will be important to examine how other known
protein–protein interactions at the central spindle, such as that
between KIF4 chromokinesin and PRC1, which is promoted by
Aurora B phosphorylation and suppresses the plus-end dynamics
of microtubules18,41,53,57,58, contribute to the mechanical
resilience of the central spindle in cooperation with the PRC1–
centralspindlin interaction investigated here.

Methods
C. elegans strains and culture. The C. elegans strains used in this study are listed
in Supplementary Table 1 and were maintained at 20 �C, except for strains con-
taining temperature-sensitive spd-1(oj5) allele, which were maintained at 15 �C. To
generate the cyk-4::gfp strains by Mos1-mediated single-copy insertion (MosSCI)59,
a 4.5-kb cyk-4 genomic fragment was amplified with a primer pair, 50-AATCAG
GGCCCTCACAAACACAGCACTCGGTC-30 and 50-ACTATCCCGGGTACT
CACCGGAAACGGAGTC-30 and cloned into the PspOMI/XmaI site of the
pBluescript vector. Following insertion of the gfp sequence between the coding
region and the stop codon, the BsiWI/XmaI fragment (from 990 bp upstream of the
start codon to 1,072 bp downstream of the stop codon) was subcloned into a
MosSCI targeting vector, pCFJ178. The point mutations and deletion were
introduced with primer pairs, 50-GCTCTCTGTGATCGTAGCGCTGCTGGA
CCAGTTACAACATCACC-30 and 50-GGTGATGTTGTAACTGGTCCAGCA
GCGCTACGATCACAGAGAGC-30 (‘AA’), 50-GTCGGCCAACGCGACTGAA

GCAGAAGGTGCTCATCTGC-30 and 50-GCAGATGAGCACCTTCTGCTTCA
GTCGCGTTGGCCGAC-30 (‘EAE’), and 50-TGCAGATGTCCCTAGGAATC
GTTGCCAATATAC-30 and 50-CATCTGCTGGGGTCGATGTTCCACGAT-30

(‘DTail’). The engineered transgenes were confirmed by sequencing and injected
into the EG5003 strain for insertion into chromosome IV. Transgene integration
was verified by sequencing. mCherry::tubulin strain (JA1559) was a gift from
J. Ahringer (Gurdon Institute, UK).

Embryonic lethality assay. To score the rescue efficiency of cyk-4 null embryonic
lethality by the cyk-4::gfp transgenes, the cyk-4::gfp MosSCI strains were crossed
into the cyk-4(ok1034) deletion strain (VC859) to obtain worms homozygous for
both cyk-4(ok1034) and cyk-4::gfp, which were verified by PCR using a pair of
primers, 50-TTATGGACGGTTGTGT-30 and 50-GAGACTGTCACCAGGTTG-30 ,
and a combination of three primers, 50-GCCGCACACCTTCTCTTTTGATG-30 ,
50-GCAGTACAGAATAATAAAGTGTG-30 and 50-GCACGATTTTTGCCATA
CTACTG-30 , respectively. In the absence of a cyk-4 transgene, homozygous cyk-4
deletion (ok1034) causes 100% embryonic lethality. The hatching rates of the
embryos laid during the first 36 h from late L4 stage by the cyk-4(ok1034); cyk-4::gfp
homozygous worms were scored 24 h later.

RNAi. RNAi depletion was performed by feeding L4 hermaphrodites with
HT115(DE3) Escherichia coli clones expressing double-stranded RNA from L4440
plasmid containing a DNA fragment specific for the target gene60. All RNAi clones
used in this study (except for that for spd-1, which was made by a primer pair,
50-GCGGATCCATGGCCCGAAGGCACAG-30 and 50-CCCAAGCTTTCACA
AAAACTGATTTCGTCTCG-30) were kindly given by J. Ahringer (Gurdon
Institute, UK). Control RNAi was conducted using the HT115(DE3) transformed
with the empty L4440 vector. Worms were fed on the RNAi plates for 36 h at 20 �C
before imaging. For RNAi in temperature-sensitive strains, L4 hermaphrodites
were fed for 72 h at 16 �C before imaging.

Live imaging and quantitative analysis. For live imaging, two or three gravid
hermaphrodites were dissected in 2 ml egg salt buffer on a 18� 18 mm2 coverslip to
release embryos, inverted onto 2% (w/v )agarose (in 0.5� egg salt buffer) pad on a
slide glass and sealed with petroleum jelly. The slide was taped onto a modified
Linkam PE100-ZAL cooling stage connected to a Linkam sPE94 temperature
controller set at 22 �C. Newly fertilized embryos were filmed using an Olympus
IX81 inverted microscope, with an UPlanSApo 60� /1.35 objective and a Yoko-
gawa CSU22 spinning disk scanner unit. Every 30 s, a z-series of 21 planes at 1-mm
intervals excited at 491 nm (for CYK-4::GFP), followed by another z-series of 21
planes at 1-mm intervals excited at 561 nm (for mCherry::tubulin), were captured
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with an iXon EMCCD DV885KCS-VP camera (Andor) at 100 ms exposure with no
binning, controlled using Metamorph software (Molecular Devices). For the
experiments shown in Fig. 5, the embryos were mounted on an agarose pad on the
FCS2 cooling device (Bioptechs) connected to a Nano-Therm System (Bioptechs)
set at 18 �C and filmed with a Revolution XD system (Andor) equipped with an
iXon Ultra 897 EMCCD camera (Andor).

Time-lapse images were analysed using ImageJ (Rasband, W.S., ImageJ, US
National Institutes of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij/,
1997–2011) and R (http://www.r-project.org) software. Equal expression of the
wild-type and mutant cyk-4::gfp transgenes was confirmed by measuring the
intensities of the GFP signals (Supplementary Fig. 6). For the mCherry::tubulin
channel, the z-slice with the best focus of the two spindle poles was identified for
each time frame, and using this slice and the three slices above and below it, an
average z-projection was produced. For the CYK-4::GFP channel, the z-slice with a
peak signal within a minimum oval defined by the two spindle poles was identified,
and a z-projection was produced as described above. To remove the variability
between embryos, the fluorescence intensities were standardized according to the
total signal levels for each embryo during the pre-mitotic stage. Images for
presentation were produced by applying the same colour look-up tables to the
standardized images. To quantify the accumulation of CYK-4 at the spindle
midzone, a line profile along a spline curve that passed these three points (4.4-mm
width, 6-mm z-depth) was obtained and the peak height, the peak width at half
maximum and the peak area of the line profile were measured.

Protein–protein interaction and other biochemical assays. SPD-1 N-terminally
tagged with a chitin-binding domain (CBD) was expressed from pCBD-TEV vector
in bacteria and purified with chitin beads (New England Biolabs). CYK-4 N-
terminally tagged with glutathione S-transferase was expressed from pGEX-TEV
vector in bacteria and purified with glutathione Sepharose 4B (GE Healthcare). The
complex of glutathione S-transferase-CYK-4 and CBD-ZEN-4 was expressed from
a bicistronic pGEX-6rbs vector in bacteria and purified by sequential binding to
chitin beads, elution by TEV protease cleavage of the CBD tag, and binding to
glutathione Sepharose 4B. For experiments with radioactive probes, 35S-labelled
proteins were produced by TNT T7 Coupled Reticulocyte Lysate System
(Promega). A volume of 10 ml of the lysates were mixed with 5 ml of beads with
immobilized bacterially expressed proteins in 170 ml cold TGMN butter (20 mM
Tris-HCl (pH 8.0), 20% (v/v) glycerol, 5 mM MgCl2, 150 mM NaCl, 0.1% (v/v)
NP-40, 1 mM dithiothreitol, 10mg ml� 1 leupeptin, 10mg ml� 1 pepstatin and
0.2 mM phenylmethanesulfonylfluoride). For experiments without radioactive
probe, purified SPD-1 1–228 fragments were incubated with amylose beads
immobilized with fusion proteins of maltose-binding protein and CYK-4 frag-
ments, and detected by western blotting with an anti-SPD-1 antibody
(0.1mg ml� 1), which was produced in rabbit with bacterially expressed full-length
recombinant SPD-1 as an immunogen (Eurogentec) and affinity-purified against
SPD-1 191-529.

Yeast two-hybrid assay was performed using the ProQuest Two-hybrid System
(Invitrogen) according to the manufacturer’s instructions. Size exclusion
chromatography of SPD-1 full-length proteins was performed on an Äkta system
(GE Healthcare) using a Superdex 200 HR 10/30 column (GE Healthcare) in
SD150 buffer (150 mM NaCl, 10 mM HEPES (pH 7.7), 1 mM EGTA, 1 mM MgCl2,
0.2 mM dithiothreitol).

For microtubule binding, 20ml of the recombinant full-length SPD-1 purified by
Superdex chromatography (0.5 mg ml� 1 in SD150 buffer) was incubated with 5ml of
taxol-stabilized microtubules (5 mg ml� 1) and 25ml of 2� BRB80 (160 mM PIPES
(pH 6.8), 4 mM MgCl2, 2 mM EGTA, 2 mM GTP, 2 mM dithiothreitol and 40mM
taxol) supplemented with 40% (v/v) glycerol. Microtubules and bound proteins were
collected by ultracentrifugation at 131,000g for 20 min using a TLA-100 rotor
(Beckman) through a cushion of 1� BRB80 supplemented with 30% (v/v) glycerol
at 25 �C and analysed by SDS–polyacrylamide gel electrophoresis.

Microtubule bundling was assessed by incubating 8 ml of the Superdex-purified
SPD-1 (62.5 mg ml� 1 in SD150 buffer) with 2 ml of taxol-stabilized microtubules
(2.5 mg ml� 1) and 10 ml of 2� BRB80 supplemented with 40% (v/v) glycerol for
10 min at 25 �C. After fixation with 20 ml of 2% (w/v) glutaraldehyde diluted in
1� BRB80 supplemented with 20% (v/v) glycerol, the microtubules were sedimented
onto a coverglass by ultracentrifugation through layers of 5 ml BRB80 and 2 ml of
BRB80 supplemented with 10% glycerol using a SW40 rotor (Beckman) at 217,000g
for 60 min at 25 �C. The coverglass with sedimented microtubules was fixed with
pre-chilled 100% methanol for 10 min at –20 �C and stained for microtubules with
DM1a anti-tubulin antibody (Sigma T6199, 1:500 dilution) and Alexa Fluor
488-conjugated anti-mouse secondary antibody (Invitrogen, A11029, 1:2,000
dilution), and observed by an Olympus BX51 microscope equipped with a PlanApo
N 60� /1.42 objective and a CoolSNAP HQ2 CCD camera (Photometrics)38.
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