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Maxwell’s demon in biochemical signal
transduction with feedback loop
Sosuke Ito1,w & Takahiro Sagawa2,w

Signal transduction in living cells is vital to maintain life itself, where information transfer in

noisy environment plays a significant role. In a rather different context, the recent intensive

research on ‘Maxwell’s demon’—a feedback controller that utilizes information of individual

molecules—have led to a unified theory of information and thermodynamics. Here we

combine these two streams of research, and show that the second law of thermodynamics

with information reveals the fundamental limit of the robustness of signal transduction

against environmental fluctuations. Especially, we find that the degree of robustness is

quantitatively characterized by an informational quantity called transfer entropy. Our

information-thermodynamic approach is applicable to biological communication inside cells,

in which there is no explicit channel coding in contrast to artificial communication. Our result

could open up a novel biophysical approach to understand information processing in living

systems on the basis of the fundamental information–thermodynamics link.
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A
crucial feature of biological signal transduction lies in the

fact that it works in noisy environment1–3. To understand
its mechanism, signal transduction has been modelled as

noisy information processing4–11. For example, signal
transduction of bacterial chemotaxis of Escherichia coli (E. coli)
has been investigated as a simple model organism for sensory
adaptation12–16. A crucial ingredient of E. coli chemotaxis is a
feedback loop, which enhances the robustness of the signal
transduction against environmental noise.

The information transmission inside the feedback loop can be
quantified by the transfer entropy, which was originally
introduced in the context of time series analysis17, and has
been studied in electrophysiological systems18, chemical
processes19 and artificial sensorimotors20. The transfer entropy
is the conditional mutual information representing the directed
information flow, and gives an upper bound of the redundancy of
the channel coding in an artificial communication channel with a
feedback loop21; this is a fundamental consequence of Shannon’s
second theorem22,23. However, as there is not any explicit channel
coding inside living cells, the role of the transfer entropy in
biological communication has not been fully understood.

The transfer entropy also plays a significant role in thermo-
dynamics24. Historically, the connection between thermodynamics
and information was first discussed in the thought experiment of
‘Maxwell’s demon’ in the nineteenth century25–27, where the
demon is regarded as a feedback controller. In the recent
progress on this problem in light of modern non-equilibrium
statistical physics28,29, a universal and quantitative theory of
thermodynamics feedback control has been developed, leading to
the field of information thermodynamics24,30–48. Information
thermodynamics reveals a generalization of the second law of
thermodynamics, which implies that the entropy production of a
target system is bounded by the transfer entropy from the target
system to the outside world24.

In this article, we apply the generalized second law to establish
the quantitative relationship between the transfer entropy and the
robustness of adaptive signal transduction against noise. We show
that the transfer entropy gives the fundamental upper bound of
the robustness, elucidating an analogy between information
thermodynamics and the Shannon’s information theory22,23. We
numerically studied the information-thermodynamics efficiency
of the signal transduction of E. coli chemotaxis, and found that
the signal transduction of E. coli chemotaxis is efficient as an
information-thermodynamic device, even when it is highly
dissipative as a conventional heat engine.

Results
Model. The main components of E. coli chemotaxis are the ligand
density change l, the kinase activity a and the methylation level
m of the receptor (Fig. 1). A feedback loop exists between a and
m, which reduces the environmental noise in the signal
transduction pathway from l to a (ref. 49). Let lt, at and mt be the
values of these quantities at time t. They obey stochastic dynamics
due to the noise, and are described by the the following coupled
Langevin equations7,14,16:

_at ¼ � 1
ta ½at � �at mt ; ltð Þ� þ xa

t ;
_mt ¼ � 1

tm at þ xm
t ;

ð1Þ

where �at mt ; ltð Þ is the stationary value of the kinase activity under
the instantaneous values of the methylation level mt and the
ligand signal lt. In the case of E. coli chemotaxis, we can
approximate �at mt ; ltð Þ as amt� blt, by linearizing it around the
steady-state value7,14. xx

t (x ¼ a,m) is the white Gaussian noise
with hxx

t i ¼ 0 and hxx
t x

x0

t0 i ¼ 2Tx
t dxx0d t� t0ð Þ, where h?i

describes the ensemble average. Tx
t describes the intensity of

the environmental noise at time t, which is not necessarily
thermal inside cells. The noise intensity Ta

t characterizes the
ligand fluctuation. The time constants satisfy tm � ta40, which
implies that the relaxation of a to �at is much faster than that of m.

The mechanism of adaptation in this model is as follows
(Fig. 2; refs 14,16). Suppose that the system is initially in a
stationary state with lt ¼ 0 and at ¼ �at mt; 0ð Þ ¼ 0 at time t o 0,
and lt suddenly changes from 0 to 1 at time t ¼ 0 as a step
function. Then, at rapidly equilibrates to �at mt ; 1ð Þ so that the
difference at � �at becomes small. The difference at � �at plays an
important role, which characterizes the level of adaptation. Next,
mt gradually changes to satisfy �at mt ; 1ð Þ ¼ 0, and thus at returns
to 0, where at � �at remains small.

Robustness against environmental noise. We introduce a key
quantity that characterizes the robustness of adaptation, which is
defined as the difference between the intensity of the ligand noise
Ta

t and the mean square error of the level of adaptation
at � �atð Þ2

� �
:

Ja
t :¼ 1

ta
Ta

t �
1
ta

at � �atð Þ2
� �� �

: ð2Þ

The larger Ja
t is, the more robust the signal transduction is against

the environmental noise. In the case of thermodynamics, Ja
t

corresponds to the heat absorption in a and characterizes the
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Figure 1 | Schematic of adaptive signal transduction of E. coli bacterial

chemotaxis. Kinase activity a (green) activates a flagellar motor to move

E. coli towards a direction of the higher ligand density l (red) by using the

information stored in methylation level m (blue). CheA is the histidine

kinase related to the flagellar motor, and the response regulator CheB,

activated by CheA, removes methyl groups from the receptor. The

methylation level m plays a similar role to the memory of Maxwell’s

demon 8,24, which reduces the effect of the environmental noise on the

target system a; the negative feedback loop (purple arrows) counteracts

the influence of ligand binding.
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Figure 2 | Typical dynamics of adaptation with the ensemble average.

Suppose that lt changes as a step function (red solid line). Then, at suddenly

responds (green solid line), followed by the gradual response of mt (blue

solid line). The adaptation is achieved by the relaxation of at to �at (orange

dashed line). The methylation level mt gradually changes to �at mt; 1ð Þ ¼ 0

(blue dashed line).
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violation of the fluctuation–dissipation theorem28. Since the
environmental noise is not necessarily thermal in the present
situation, Ja

t is not exactly the same as the heat, but is a
biophysical quantity that characterizes the robustness of
adaptation against the environmental noise.

Information flow. We here discuss the quantitative definition of
the transfer entropy17. The transfer entropy from a to m at time t
is defined as the conditional mutual information between at and
mtþ dt under the condition of mt:

dItr
t :¼

Z
dmtþ dtdatdmtp mtþ dt ; at ;mt½ �ln p mtþ dt jat ;mt½ �

p mtþ dt jmt½ � ;

ð3Þ
where p[mtþ dt, at, mt] is the joint probability distribution of
(mtþ dt, at, mt), and p[mtþ dt|at, mt] is the probability distribution
of mtþ dt under the condition of (at, mt). The transfer entropy
characterizes the directed information flow from a to m during an
infinitesimal time interval dt (refs 17,50), which quantifies a
causal influence between them51,52. From the non-negativity of
the conditional mutual information23, that of the transfer entropy
follows: dItr

t � 0.

Second law of information thermodynamics. We now consider
the second law of information thermodynamics, which char-
acterizes the entropy change in a subsystem in terms of the
information flow (Fig. 3). In the case of equation (1), the gen-
eralized second law is given as follows (see also Methods section):

dItr
t þ dSa jm

t � Ja
t

Ta
t

dt: ð4Þ

Here, dSajm
t is the conditional Shannon entropy change

defined as dSa jm
t :¼ S atþ dt jmtþ dt½ � � S at jmt½ � with S at jmt½ � :¼

�
R

datdmtp at ;mt½ �ln p at jmt½ �, which vanishes in the stationary
state. The transfer entropy dIt

tr on the left-hand side of

equation (4) shows the significant role of the feedback loop,
implying that the robustness of adaptation can be enhanced
against the environmental noise by the feedback using informa-
tion. This is analogous to the central feature of Maxwell’s demon.

To further clarify the meaning of inequality (equation (4)), we
focus on the case of the stationary state. If there was no feedback
loop between m and a, then the second law reduces to

at � �atð Þ2
� �

� taTa
t , which, as naturally expected, implies that

the fluctuation of the signal transduction is bounded by the
intensity of the environmental noise. In contrast, in the presence
of a feedback loop, at � �atð Þ2

� �
can be smaller than taTa

t owing to
the transfer entropy dItr

t in the feedback loop:

at � �atð Þ2
� �

� taTa
t 1� dItr

t

dt
ta

� �
: ð5Þ

This inequality clarifies the role of the transfer entropy in
biochemical signal transduction; the transfer entropy
characterizes an upper bound of the robustness of the signal
transduction in the biochemical network. The equality in
equation (5) is achieved in the limit of a - 0 and ta/tm - 0
for the linear case with �at mt ; ltð Þ ¼ amt �blt (Supplementary
Note 1). The latter limit means that a relaxes infinitely fast and the
process is quasi-static (that is, reversible) in terms of a. This is
analogous to the fact that Maxwell’s demon can achieve the
maximum thermodynamics gain in reversible processes35.
In general, the information-thermodynamic bound becomes tight
if a and tm/ta are both small. The realistic parameters of the
bacterial chemotaxis are given by a ’ 3 and ta=tm ’ 0:1 (refs
7,14,16), and therefore the real adaptation process is accompanied
by a finite amount of information-thermodynamics dissipation.

Our model of chemotaxis has the same mathematical structure
as the feedback cooling of a colloidal particle by Maxwell’s
demon36,38,42,47, where the feedback cooling is analogous to the
noise filtering in the sensory adaptation49. This analogy is a
central idea of our study; the information-thermodynamic
inequalities (equation (5) in our case) characterize the
robustness of adaptation as well as the performance of feedback
cooling.

Numerical result. We consider the second law (equation (4)) in
non-stationary dynamics, and numerically demonstrate the
power of this inequality. Figure 4 shows Ja

t dt=Ta
t and

�info
t :¼ dItr

t þ dSajm
t ð6Þ

in six different types of dynamics of adaptation, where the ligand
signal is given by a step function (Fig. 4a), a sinusoidal function
(Fig. 4b), a linear function (Fig. 4c), an exponential decay
(Fig. 4d), a square wave (Fig. 4e) and a triangle wave (Fig. 4f).
These results confirm that �info

t gives a tight bound of
Ja

t , implying that the transfer entropy characterizes the robustness
well. In Fig. 4b,f, the robustness Ja

t dt=Ta
t is nearly equal to

the information-thermodynamics bound �info
t when the

signal and noise are decreasing or increasing rapidly (for example,
t ’ 0:008 and t ¼ 0.012 in Fig. 4f).

Conventional second law of thermodynamics. For the purpose
of comparison, we next consider another upper bound of the
robustness, which is given by the conventional second law of
thermodynamics without information. We define the heat
absorption by m as Jm

t :¼ � a2
t

� �
= tmð Þ2, and the Shannon entropy

change in the total system as dSam
t :¼ S atþ dt ;mtþ dt½ � � S at ;mt½ �

with S at;mt½ � :¼ �
R

datdmtp at ;mt½ �ln p at;mt½ �, which vanishes

Conventional thermodynamics

Heat flowHeat flow

Information thermodynamics

Information flow

Heat flow

dSt
a|m

dIt
tr dSt

am

Tt
a

Tt
a

–Jt
a –Jt

a
–Jt

m

Tt
m

Figure 3 | Schematics of information thermodynamics and conventional

thermodynamics. A green (blue) circle indicates subsystem a (m) and a

grey polygonal line indicates their interaction. (a) The second law of

information thermodynamics characterizes the entropy change in a

subsystem in terms of the information flow between the subsystem and the

outside world (that is, �info
t :¼ dItr

t þ dS
a jm
t � � Ja

t dt=Ta
t ). The information-

thermodynamics picture concerns the entropy change inside the dashed

square that only includes subsystem a. (b) the conventional second law of

thermodynamics states that the entropy change in a subsystem is

compensated for by the entropy change in the outside world (that is,

�SL
t :¼ � Jm

t dt=Tm
t þ dSam

t � Ja
t dt=Ta

t ). The conventional thermodynamics

picture concerns the entropy change inside the dashed square, which

includes the entire systems a and m. As explicitly shown in this paper,

information thermodynamics gives a tighter bound of the robustness Ja
t in

the biochemical signal transduction of E. coli chemotaxis.
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in the stationary state. We can then show that

�SL
t :¼ � Jm

t

Tm
t

dtþ dSam
t ð7Þ

is an upper bound of Ja
t dt=Ta

t , as a straightforward consequence of
the conventional second law of thermodynamics of the total sys-
tem of a and m (refs 28,29). The conventional second law implies
that the dissipation in m should compensate for that in a (Fig. 3).
Figure 4 shows Ja

t dt=Ta
t along with �info

t and �SL
t . Remarkably,

information-thermodynamic bound �info
t gives a tighter bound of

Ja
t than the conventional thermodynamics bound �SL

t such that

�SL
t � �info

t � Ja
t

Ta
t

dt; ð8Þ

for every non-stationary dynamics shown in Fig. 4. Moreover, we
can analytically show inequalities (equation (8)) in the stationary
state (Supplementary Note 4).

To compare the information-thermodynamic bound and the
conventional thermodynamics one more quantitatively, we
introduce an information-thermodynamic figure of merit based

on the inequalities (equation (8)):

w :¼ 1� �info
t � Ja

t dt=Ta
t

�SL
t � Ja

t dt=Ta
t
; ð9Þ

where the second term on the right-hand side is given
by the ratio between the information-thermodynamic
dissipation �info

t � Ja
t dt=Ta

t and the entire thermodynamic
dissipation �SL

t � Ja
t dt=Ta

t . This quantity satisfies 0 r w r 1,
and w ’ 1 (w ’ 0) means that information-thermodynamic
bound is much tighter (a little tighter) compared with the
conventional thermodynamic bound. We numerically calculated
w in the aforementioned six types of dynamics of adaptation
(Supplementary Figs 1–6). In the case of a linear function
(Supplementary Fig. 3), we found that w increases in time t and
approaches to w ’ 1. In this case, the signal transduction of
E. coli chemotaxis is highly dissipative as a thermodynamic
engine, but efficient as an information transmission device.

Comparison with Shannon’s theory. We here discuss the simi-
larity and the difference between our result and the Shannon’s
information theory (refs 22,23; Fig. 5). The Shannon’s second
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Figure 4 | Numerical results of the information-thermodynamics bound on the robustness. We compare the robustness Ja
t (red line), the information-

thermodynamic bound �info
t (green line) and the conventional thermodynamic bound �SL

t (blue line). The initial condition is the stationary state with

�at ¼ amt�blt , fixed ligand signal blt ¼ 0, and noise intensity Ta ¼ 0.005. We numerically confirmed that �SL
t � �info

t � Ja
t dt=Ta

t holds for the six transition

processes. These results imply that, for the signal transduction model, the information-thermodynamic bound is tighter than the conventional

thermodynamic bound. The parameters are chosen as ta ¼ 0.02, tm ¼ 0.2, a ¼ 2.7 and Tm
t ¼ 0:005 to be consistent with the real parameters of E. coli

bacterial chemotaxis 7,14,16. We discuss the six different types of input signals blt (red solid line) and noises Ta
t (green dashed line). (a) Step function:

blt ¼ 0.01 and Ta
t ¼ 0:5 for t 4 0. (b) Sinusoidal function: blt ¼ 0.01 sin(400t) and Ta

t ¼ 0:5 j sinð400tÞ j þ0:005 for t 4 0. (c) Linear function:

blt ¼ 10t and Ta
t ¼ 100tþ0:005 for t 4 0. (d) Exponential decay: bLt ¼ 0.01[1� exp(� 200t)] and Ta

t ¼ 0:5½1� expð� 200tÞ�þ0:005 for t 4 0.

(e) Square wave: blt ¼ 0:01 1þbsinð200tÞc½ � and Ta
t ¼ 0:05 1þbsinð200tÞc½ � þ0:005 for t 4 0, where b . . . c denotes the floor function. (f) Triangle wave:

blt ¼ 0:01 2 100t�b100tþ0:5cð Þj j and Ta
t ¼ 0:5 2 100t�b100tþ0:5cð Þj j þ0:005 for t 4 0.
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theorem (that is, the noisy-channel coding theorem) states that an
upper bound of achievable information rate R is given by the
channel capacity C such that C Z R. The channel capacity C is
defined as the maximum value of the mutual information with
finite power, where the mutual information can be replaced by
the transfer entropy dItr

t in the presence of a feedback loop21. R
describes how long bit sequence is needed for a channel coding to
realize errorless communication through a noisy channel, where
errorless means the coincidence between the input and output
messages. Therefore, both of Ja

t and R characterize the robustness
information transmission against noise, and bounded by the
transfer entropy dItr

t . In this sense, there exists an analogy
between the second law of thermodynamics with information and
the Shannon’s second theorem. In the case of biochemical signal
transduction, the information-thermodynamic approach is more
relevant, because there is not any explicit channel coding inside
cells. Moreover, while Ja

t is an experimentally measurable quantity
as mentioned below 28,29, R cannot be properly defined in the
absence of any artificial channel coding 23. Therefore, Ja

t is an
intrinsic quantity to characterize the robustness of the
information transduction inside cells.

Discussion
Our result can be experimentally validated by measuring the
transfer entropy and thermodynamics quantities from the prob-
ability distribution of the amount of proteins in a biochemical
system5,6,9,10,46–49. In fact, the transfer entropy dItr and

thermodynamics quantities (that is, dSajm
t and Ja

t dt=Ta
t ) can be

obtained from the joint probability distribution of
(at,mt,atþ dt,mtþ dt). The measurement of such a joint distribution
would not be far from today’s experimental technique in
biophysics5,6,9,10,53–56. Experimental measurements of �info

t and
Ja

t dt=Ta
t would lead to a novel classification of signal transduction

in terms of the thermodynamics cost of information transmission.
We note that, in ref. 16, the authors discussed that the entropy

changes in two heat baths � Ja
t =Ta

t � Jm
t =Tm

t ’ � Jm
t =Tm

t ¼
a2

t

� �
= Tm

t tmð Þ2
� �

can be characterized by the accuracy of
adaptation. In our study, we derived a bound for Ja

t dt=Ta
t that

is regarded as the robustness of signal transduction against the
environmental noise. These two results capture complementary
aspects of adaptation processes: accuracy and robustness.

We also note that our theory of information thermodynamics24

can be generalized to a broad class of signal transduction
networks, including a feedback loop with time delay.

Methods
The outline of the derivation of inequality (4). We here show the outline of
the derivation of the information-thermodynamic inequality (equation (4);
see also Supplementary Note 2 for details). The heat dissipation Ja

t dt=Ta
t is

given by the ratio between forward and backward path probabilities as Ja
t dt=Ta

t ¼R
dat datþ dtdmt p at ; atþ dt ;mt½ �ln pB at jatþ dt ;mt½ �=p atþ dt jat ;mt½ �½ � (refs 24,28,29),

where the backward path probability pB at jatþ dt ;mt½ � :¼ G at ; atþ dt ; mtð Þ can be
calculated from the forward path probability p atþ dt jat ;mt½ � ¼: G atþ dt ; at ; mtð Þ.
Thus, the difference dItr

t þ dSa jm
t � Ja

t dt=Ta
t is given by the Kullback–Libler

divergence23. From its non-negativity23, we have dItr
t þ dSa jm

t � Ja
t dt=Ta

t . This
inequality can be derived from the general inequality of information
thermodynamics24 (see Supplementary Note 3 and Supplementary Fig. 7). As
discussed in Supplementary Note 3, this inequality gives a weaker bound of the
entropy production.

The analytical expression of the transfer entropy. In the case of E. coli che-
motaxis, we have �at ¼ amt �blt , and equation (1) become linear. In this situation,
if the initial distribution is Gaussian, we analytically obtain the transfer entropy up
to the order of dt (Supplementary Note 4): dItr

t ¼ ð2Þ
� 1ln 1þ dPt=Ntð Þ, where

Nt :¼ 2Tm
t describes the intensity of the environmental noise, and dPt :¼

½1�ðram
t Þ

2�Va
t dt= tmð Þ2 describes the intensity of the signal from a to m per unit

time with Vx
t :¼ x2

t

� �
� xth i2, and ram

t :¼ at mth i� ath i mth i½ �=ðVa
t Vm

t Þ
1=2. We

note that dItr for the Gaussian case is greater than that of the non-Gaussian case, if
Vx

t and ram
t are the same23. We also note that the above analytical expression of

dItr
t is the same form as the Shannon–Hartley theorem23.

References
1. Phillips, R., Kondev, J. & Theriot, J. Physical Biology of the Cell (Garland

Science, 2009).
2. Korobkova, E., Emonet, T., Vilar, J. M., Shimizu, T. S. & Cluzel, P. From

molecular noise to behavioural variability in a single bacterium. Nature 428,
574–578 (2004).

3. Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression
of molecular fluctuations. Nature 467, 174–178 (2010).

4. Andrews, B. W. & Iglesias, P. A. An information-theoretic characterization of
the optimal gradient sensing response of cells. PLoS Comput. Biol. 3, e153
(2007).

5. Skerker, J. M. et al. Rewiring the specificity of two-component signal
transduction systems. Cell 133, 1043–1054 (2008).

6. Mehta, P., Goyal, S., Long, T., Bassler, B. L. & Wingreen, N. S. Information
processing and signal integration in bacterial quorum sensing. Mol. Syst. Biol. 5,
325 (2009).

7. Tostevin, F. & ten Wolde, P. R. Mutual information between input and output
trajectories of biochemical networks. Phys. Rev. Lett. 102, 218101 (2009).

8. Tu, Y. The nonequilibrium mechanism for ultrasensitivity in a biological
switch: Sensing by Maxwell’s demons. Proc. Natl Acad. Sci. USA 105,
11737–11741 (2008).

9. Cheong, R., Rhee, A., Wang, C. J., Nemenman, I. & Levchenko, A. Information
transduction capacity of noisy biochemical signaling networks. Science 334,
354–358 (2011).

10. Uda, S. et al. Robustness and compensation of information transmission of
signaling pathways. Science 341, 558–561 (2013).

11. Govern, C. C. & ten Wolde, P. R. Optimal resource allocation in cellular sensing
systems. Proc. Natl Acad. Sci. USA 111, 17486–17491 (2014).

12. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature
387, 913–917 (1997).

dIt
tr ≥

Tt
a dt

Jt
a

Encoder Decoder

Noise

Input Output

Transfer entropy dIt
tr

in the stationary state

mt +dt

mt +dt

mt

mt

at

at

C ≥ R

Robustness of signal transduction against noise Ja
t

Achievable information rate     
(Robustness of information transmission against noise) R

Channel capacity

C = max dIt
tr

Figure 5 | Analogy and difference between our approach and Shannon’s

information theory. (a) Information thermodynamics for biochemical signal

transduction. The robustness Ja
t is bounded by the transfer entropy dItr

t in

the stationary states, which is a consequence of the second law of

information thermodynamics. (b) Information theory for artificial

communication. The archivable information rate R, given by the redundancy

of the channel coding, is bounded by the channel capacity C ¼ max dItr
t ,

which is a consequence of the Shannon’s second theorem. If the noise is

Gaussian as is the case for the E. coli chemotaxis, both of the transfer

entropy and the channel capacity are given by the power-to-noise ratio

C ¼ dItr
t ¼ ð2Þ

� 1ln 1þ dPt=Ntð Þ, under the condition that the initial

distribution is Gaussian (see Methods section).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8498 ARTICLE

NATURE COMMUNICATIONS | 6:7498 | DOI: 10.1038/ncomms8498 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


13. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial
chemotaxis. Nature 397, 168–171 (1999).

14. Tu, Y., Shimizu, T. S. & Berg, H. C. Modeling the chemotactic response of
Escherichia coli to time-varying stimuli. Proc. Natl Acad. Sci. USA 105,
1485514860 (2008).

15. Shimizu, T. S., Tu, Y. & Berg, H. C. A modular gradient-sensing network for
chemotaxis in Escherichia coli revealed by responses to time-varying stimuli.
Mol. Syst. Biol. 6, 382 (2010).

16. Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy-speed-
accuracy trade-off in sensory adaptation. Nat. Phys. 8, 422–428 (2012).

17. Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 85, 461 (2000).
18. Vicente, R., Wibral, M., Lindner, M. & Pipa, G. Transfer entropy - a model-free

measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 30,
45–67 (2011).

19. Bauer, M., Cox, J. W., Caveness, M. H., Downs, J. J. & Thornhill, N. F. Finding
the direction of disturbance propagation in a chemical process using transfer
entropy. IEEE Trans. Control Syst. Technol. 15, 12–21 (2007).

20. Lungarella, M. & Sporns, O. Mapping information flow in sensorimotor
networks. PLoS Comput. Biol 2, e144 (2006).

21. Massey, J. L. Causality, feedback and directed information. Proc. Int. Symp. Inf.
Theory Appl. 303–305 (1990).

22. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27,
379 (1948).

23. Cover, T. M. & Thomas, J. A. Element of Information Theory (John Wiley and
Sons, 1991).

24. Ito, S. & Sagawa, T. Information thermodynamics on causal networks. Phys.
Rev. Lett. 111, 180603 (2013).

25. Maxwell, J. C. Theory of Heat (Appleton, 1871).
26. Szilard, L. On the decrease of entropy in a thermodynamic system by the

intervention of intelligent beings. Z. Phys. 53, 840–856 (1929).
27. Leff, H. S. & Rex, A. F. (eds) Maxwell’s Demon 2: Entropy, Classical and

Quantum Information, Computing (Princeton University Press, 2003).
28. Sekimoto, K. Stochastic Energetics (Springer, 2010).
29. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular

machines. Rep. Prog. Phys. 75, 126001 (2012).
30. Allahverdyan, A. E., Janzing, D. & Mahler, G. Thermodynamic efficiency of

information and heat flow. J. Stat. Mech. P09011 (2009).
31. Sagawa, T. & Ueda, M. Generalized Jarzynski equality under nonequilibrium

feedback control. Phys. Rev. Lett. 104, 090602 (2010).
32. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E. & Sano, M. Experimental

demonstration of information-to-energy conversion and validation of the
generalized Jarzynski equality. Nat. Phys. 6, 988–992 (2010).

33. Horowitz, J. M. & Vaikuntanathan, S. Nonequilibrium detailed fluctuation
theorem for repeated discrete feedback. Phys. Rev. E 82, 061120 (2010).

34. Fujitani, Y. & Suzuki, H. Jarzynski equality modified in the linear feedback
system. J. Phys. Soc. Jpn. 79, 104003–104007 (2010).

35. Horowitz, J. M. & Parrondo, J. M. Thermodynamic reversibility in feedback
processes. Euro. Phys. Lett. 95, 10005 (2011).

36. Ito, S. & Sano, M. Effects of error on fluctuations under feedback control. Phys.
Rev. E 84, 021123 (2011).

37. Sagawa, T. & Ueda, M. Fluctuation theorem with information exchange:
role of correlations in stochastic thermodynamics. Phys. Rev. Lett. 109, 180602
(2012).

38. Kundu, A. Nonequilibrium fluctuation theorem for systems under discrete and
continuous feedback control. Phys. Rev. E 86, 021107 (2012).

39. Mandal, D. & Jarzynski, C. Work and information processing in a solvable
model of Maxwell’s demon. Proc. Natl Acad. Sci. USA 109, 1164111645 (2012).

40. Bérut, A. et al. Experimental verification of Landauer’s principle linking
information and thermodynamics. Nature 483, 187189 (2012).

41. Hartich, D., Barato, A. C. & Seifert, U. Stochastic thermodynamics of bipartite
systems: transfer entropy inequalities and a Maxwell’s demon interpretation.
J. Stat. Mech. P02016 (2014).

42. Munakata, T. & Rosinberg, M. L. Entropy production and fluctuation theorems
for Langevin processes under continuous non-Markovian feedback control.
Phys. Rev. Lett. 112, 180601 (2014).

43. Horowitz, J. M. & Esposito, M. Thermodynamics with continuous information
flow. Phys. Rev. X 4, 031015 (2014).

44. Barato, A. C., Hartich, D. & Seifert, U. Efficiency of celluler information
processing. New J. Phys. 16, 103024 (2014).

45. Sartori, P., Granger, L., Lee, C. F. & Horowitz, J. M. Thermodynamic costs of
information processing in sensory adaption. PLoS Compt. Biol. 10, e1003974
(2014).

46. Lang, A. H., Fisher, C. K., Mora, T. & Mehta, P. Thermodynamics of statistical
inference by cells. Phys. Rev. Lett. 113, 148103 (2014).

47. Horowitz, J. M. & Sandberg, H. Second-law-like inequalities with information
and their interpretations. New. J. Phys. 16, 125007 (2014).

48. Shiraishi, N. & Sagawa, T. Fluctuation theorem for partially masked
nonequilibrium dynamics. Phys. Rev. E 91, 012130 (2015).

49. Sartori, P. & Tu, Y. Noise filtering strategies in adaptive biochemical signaling
networks. J. Stat. Phys. 142, 1206–1217 (2011).

50. Kaiser, A. & Schreiber, T. Information transfer in continuous processes. Physica
D 166, 43–62 (2002).

51. Hlavackova-Schindler, K., Palus, M., Vejmelka, M. & Bhattacharya, J. Causality
detection based on information-theoretic approaches in time series analysis.
Phys. Rep. 441, 1–46 (2007).

52. Barnett, L., Barrett, A. B. & Seth, A. K. Granger causality and transfer
entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 103, 238701
(2009).

53. Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of
RNA folding free energies. Nature 437, 231–234 (2005).

54. Ritort, F. Single-molecule experiments in biological physics: methods and
applications. J. Phys. Condens. Matter 18, R531 (2006).

55. Toyabe, S. et al. Nonequilibrium energetics of a single F1-ATPase molecule.
Phys. Rev. Lett. 104, 198103 (2010).

56. Hayashi, K., Ueno, H., Iino, R. & Noji, H. Fluctuation theorem applied to F 1-
ATPase. Phys. Rev. Lett. 104, 218103 (2010).

Acknowledgements
We are grateful to S.-I. Sasa, U. Seifert, M. L. Rosinberg, N. Shiraishi, K. Kawaguchi,
H. Tajima, A.C. Barato, D. Hartich and M. Sano for their valuable discussions. This work
was supported by the Grants-in-Aid for JSPS Fellows (grant no. 24 � 8593), by JSPS
KAKENHI grant numbers 25800217 and 22340114, by KAKENHI no. 25103003
‘Fluctuation & Structure’ and by Platform for Dynamic Approaches to Living System
from MEXT, Japan.

Author contributions
S.I. mainly constructed the theory, carried out the analytical and numerical calculations,
and wrote the paper. T.S. also constructed the theory and wrote the paper. Both authors
discussed the results at the all stages.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Ito, S. and Sagawa, T. Maxwell’s demon in biochemical signal
transduction with feedback loop. Nat. Commun. 6:7498 doi: 10.1038/ncomms8498
(2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8498

6 NATURE COMMUNICATIONS | 6:7498 | DOI: 10.1038/ncomms8498 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Model
	Robustness against environmental noise

	Figure™1Schematic of adaptive signal transduction of E. coli bacterial chemotaxis.Kinase activity a (green) activates a flagellar motor to move E. coli towards a direction of the higher ligand density l (red) by using the information stored in methylation
	Figure™2Typical dynamics of adaptation with the ensemble average.Suppose that lt changes as a step function (red solid line). Then, at suddenly responds (green solid line), followed by the gradual response of mt (blue solid line). The adaptation is achiev
	Information flow
	Second law of information thermodynamics
	Numerical result
	Conventional second law of thermodynamics

	Figure™3Schematics of information thermodynamics and conventional thermodynamics.A green (blue) circle indicates subsystem a (m) and a grey polygonal line indicates their interaction. (a) The second law of information thermodynamics characterizes the entr
	Comparison with ShannonCloseCurlyQuotes theory

	Figure™4Numerical results of the information-thermodynamics bound on the robustness.We compare the robustness Jt^a  (red line), the information-thermodynamic bound Xi t^ info  (green line) and the conventional thermodynamic bound Xi t^ SL  (blue line). Th
	Discussion
	Methods
	The outline of the derivation of inequality (4)
	The analytical expression of the transfer entropy

	PhillipsR.KondevJ.TheriotJ.Physical Biology of the CellGarland Science2009KorobkovaE.EmonetT.VilarJ. M.ShimizuT. S.CluzelP.From molecular noise to behavioural variability in a single bacteriumNature4285745782004LestasI.VinnicombeG.PaulssonJ.Fundamental li
	Figure™5Analogy and difference between our approach and ShannonCloseCurlyQuotes information theory.(a) Information thermodynamics for biochemical signal transduction. The robustness Jt^a  is bounded by the transfer entropy  dIt^ tr  in the stationary stat
	We are grateful to S.-I. Sasa, U. Seifert, M. L. Rosinberg, N. Shiraishi, K. Kawaguchi, H. Tajima, A.C. Barato, D. Hartich and M. Sano for their valuable discussions. This work was supported by the Grants-in-Aid for JSPS Fellows (grant no. 24middot8593), 
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




