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Summary

The immune system can be modulated and regulated not only by foreign

antigens but also by other humoral factors and metabolic products, which

are able to affect several quantitative and qualitative aspects of immunity.

Among these, endocannabinoids are a group of bioactive lipids that might

serve as secondary modulators, which when mobilized coincident with or

shortly after first-line immune modulators, increase or decrease many

immune functions. Most immune cells express these bioactive lipids,

together with their set of receptors and of enzymes regulating their syn-

thesis and degradation. In this review, a synopsis of the manifold immu-

nomodulatory effects of endocannabinoids and their signalling in the

different cell populations of innate and adaptive immunity is appointed,

with a particular distinction between mice and human immune system

compartments.
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The endocannabinoid system

Although D9-tetrahydrocannabinol was isolated exactly

50 years ago, it was only at the beginning of the 1990s

that cannabinoid receptors were described and cloned in

the brain, so explaining why our body reacts to cannabis

extracts and representing the first evidence for the pres-

ence of the so-called ‘endocannabinoid system’ (ECS).

The discovery of cannabinoid receptors initiated a quest

for their endogenous ligands, which progressively led to

the identification and isolation of a new family of N- or

O-derivatives of polyunsaturated fatty acids able to act as

cannabinoid receptor agonists and collectively termed

endocannabinoids (eCBs).1,2

The endocannabinoids and their metabolism

Endocannabinoids include a group of lipid mediators, of

which the best characterized members are N-arachidonoy-

lethanolamine (anandamide, AEA) and 2-arachidonoyl-

glycerol (2-AG).3,4 Some other compounds have been

proposed to belong to the eCB family, including 2-AG-

ether (noladin ether) and O-arachidonoylethanolamine

(virodhamine).2 Among these ‘eCB-like’ compounds, two

additional N-acylethanolamines, namely N-palmitoyletha-

nolamine (PEA) and N-oleoylethanolamine, have been

extensively investigated because of their anti-inflamma-

tory and analgesic properties,5–7 and anorexic effects,

respectively.8 Endocannabinoids are synthesized and

released ‘on demand’ (if and when needed) from mem-

brane phospholipids in response to physiological or path-

ological stimuli. However, this ‘dogma’ has been lately

reconsidered because of the discovery of intracellular

transporters and storage organelles/pools that might serve

as potential platforms for eCB trafficking and accumula-

tion. This novel concept adds more complexity to eCB

homeostasis and certainly makes them more available

both for receptor activation and for distinct metabolic

pathways, away from the site and time of their biosynthe-

sis.9–12 Biosynthesis of AEA and of its congeners includes

two steps: N-arachidonoyl-phosphatidylethanolamine is

formed from phosphatidylethanolamine by calcium-

dependent N-acyl-transferase, and is then converted

through at least five distinct metabolic pathways into AEA

or other N-acylethanolamines.13 The most studied route

for such a conversion involves the N-acyl-phosphatidyleth-

anolamine-hydrolysing phospholipase D,14 but other alter-

native yet relevant pathways engage phospholipase A and
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lyso-phospholipase D,15 a/b-hydrolase 4 and glycer-

ophosphodiesterase 1,16 or phospholipase C and protein

tyrosine phosphatase type-22.17 The biosynthesis of 2-AG

starts from sn-1-acyl-2-arachidonoylglycerols (DAGs),

that can be directly converted into 2-AG through the

action of two Ca2+-sensitive sn-2-selective DAG lipases,

i.e. DAGL-a and DAGL-b.18 A less-characterized pathway

for 2-AG biosynthesis involves the generation of 2-AG-3-

phosphate, which is a lysophosphatidic acid.19 All eCBs

are then inactivated by a two-step process: cellular uptake

through a purported ‘endocannabinoid membrane trans-

porter’, whose molecular identity has yet to be identified,

and intracellular hydrolysis. AEA is principally cleaved by

fatty acid amide hydrolase (FAAH) into arachidonic acid

and ethanolamine,20 but also by another enzyme, N-acy-

lethanolamine-hydrolysing acid amidase, which is mainly

involved in the hydrolysis of PEA and whose physiologi-

cal implications are still unclear.13 2-AG can be cleaved

into glycerol and arachidonic acid by FAAH, though its

main hydrolase is a monoacylglycerol lipase, responsible

for ~ 85% of 2-AG hydrolysis in the mouse brain.21,22 In

addition, 2-AG can also be cleaved by two integral mem-

brane proteins, a/b-hydrolase domain-containing proteins

6 and 12.21,22 Furthermore, AEA and 2-AG are substrates

of cyclooxygenase-2 (COX-2), different lipoxygenase iso-

zymes and cytochrome P450, leading to oxidized com-

pounds like prostaglandin-ethanolamides and -glyceryl

esters, hydroxy-anandamides and hydroxyeicosatetrae-

noyl-glycerols, respectively, all endowed with distinct bio-

logical activities.22 The main elements of the ECS are

schematically depicted in Fig. 1.

Molecular targets and signalling pathways

Once synthesized, eCBs bind to and functionally activate

their target receptors, triggering various signalling path-

ways and causing several biological effects on different tis-

sues (Fig. 1). The main receptor targets for eCBs are

type-1 (CB1) and type-2 (CB2) G protein-coupled can-

nabinoid receptors.23 CB1 is widely expressed in the ner-

vous system, mainly at the terminal ends of central and

peripheral neurons, and its presence has also been widely

documented in many different extraneural sites. Once

activated, CB1 is involved in the inhibition of excitatory

and inhibitory neurotransmission and can modulate cog-

nitive, memory and motor functions, as well as analgesia.

CB2 is mainly expressed by cells of the immune system

where it is commonly associated with the regulation of

different immune functions.24 The identification of CB2
in brainstem neurons and its presence in activated mi-

croglial cells and astrocytes, or in certain subsets of neu-

rons upon insult,25,26 has led to an ‘identity crisis’ of this

receptor.27 Indeed, the up-regulation of CB2 is associated

with chronic inflammation of the nervous system, as well

as with several cardiovascular and bone disorders.28,29

CB1 and CB2 are metabotropic receptors that usually cou-

ple to heterotrimeric Gi alpha subunit proteins, and so

trigger the canonical signalling pathway of inhibition of

adenylyl cyclase activity and reduction of cAMP levels,

which lead to the inactivation of protein kinase A. CB1
and CB2 also activate various effector protein kinase cas-

cades involved in cell proliferation and survival; these

include the phosphatidylinositol 3-kinase/protein kinase

B, the mitogen-activated protein kinase p38, the extracel-

lular-signalling regulated protein kinase-mitogen-activated

protein kinase, as well as the focal adhesion kinase.29

Other signalling pathways include coupling to ion chan-

nels (N- and P/Q-type Ca2+ channels and voltage-gated

K+ channels), activation of phospholipase-Cb, and cera-

mide biosynthesis.29 In addition to CB1 and CB2, it is

now clearly established that eCBs can engage other non-

CB targets.23 The best known is the transient receptor

potential vanilloid 1 channel, activated intracellularly by

AEA and 2-AG,30,31 which is expressed in sensory neu-

rons and in epithelial, endothelial and immune cells.32

Also peroxisome proliferator-activated receptor (PPAR) a
and c,33 which belong to a family of nuclear receptors

able to alter lipid turnover and metabolism, as well as the

orphan G protein-coupled receptor GPR55,34 are acti-

vated by eCBs. Probably these additional targets call for

reconsideration of the name ‘cannabinoid receptor’,

which might be readapted to take into consideration all

the molecular targets identified so far for eCBs.

Role of ECS in the regulation of immune
responses

Over the last 20 years, the ECS has been thoroughly stud-

ied in most cell types and tissues. Its role in the regulation

of the immune system is probably the most flourishing

and promising, mostly due to the increasing recognition of

the eCBs signalling in several chronic inflammatory dis-

eases. Also the fact that essentially all immune cells secrete

eCBs, are capable of regulating their synthesis and degra-

dation and possess cannabinoid receptors supports this

view.35–38 It is now generally accepted that the immuno-

suppressive effects of eCBs on immune cells are primarily

mediated through CB2, whose expression is usually higher

than that of CB1.
28,39 Unlike eCBs and their metabolizing

enzymes, the presence and distribution of cannabinoid

receptors within immune cells strongly vary and have been

mainly investigated in human immune cell popula-

tions.40,41 Very few studies have addressed the differential

expression of cannabinoid receptors on mouse immune

cell subsets.42 Recently, a detailed analysis of CB2 protein

levels expressed by the various blood immune cells from

healthy human donors revealed that natural killer (NK)

cells, B lymphocytes and monocytes express a higher level

of CB2 than CD4+ or CD8+ T lymphocytes or neutrophils.

However, NK cells have the greatest variation in CB2
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expression levels, whereas for each of the other cell types

CB2 levels are relatively similar between subjects.43 The

low abundance of CB2 on resting T lymphocytes signifi-

cantly increases on activated CD4+ and CD8+ human T

cells. The current view is that eCBs, rather than just exert-

ing either immunosuppressive or stimulatory effects on

the immune system, are more likely to be part of a homeo-

static immunoregulatory scheme. The majority of scientific

studies on the immunoregulatory role of eCBs concen-

trated on whole immune cells, either on peripheral blood

mononuclear cells or on mouse splenocytes, where AEA

and PEA are mostly anti-inflammatory,44–46 and 2-AG

exerts both pro-inflammatory and anti-inflammatory

effects.47–50 Therefore, in this section we will address the

immunoregulatory functions of the main eCBs and their

signalling on the different immune cell populations of

both innate and adaptive immunity, devoting special

attention to whether they stem from peripheral human or

murine immune cells, be they immortalized cell lines or

primary cells. Indeed, mice are the most frequently used
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Figure 1. Metabolism of the main immunoregulatory endocannabinoids (eCBs). N-Arachidonoylethanolamine (AEA) or N-palmitoylethanol-

amine (PEA) and 2-arachidonoylglycerol (2-AG) are usually released on demand from membrane lipids, through the activity of N-acyl-phospha-

tidylethanolamine-hydrolysing phospholipase D (NAPE-PLD) and sn-1-acyl-2-arachidonoylglycerol lipase (DAGL), respectively and move across

the plasma membrane via a purported endocannabinoid membrane transporter (EMT). Targets of AEA and 2-AG are CB1 and CB2, which show

an extracellular binding site. AEA also binds to transient receptor potential vanilloid 1 (TRPV1), which bears an intracellular binding site. PEA

binds and activates peroxisome proliferator-activated receptors (PPARs) and G protein-coupled receptor 55 (GPR55). Dashed lines represent

low-affinity bindings. Once eCBs bind to their target receptors, different signalling pathways can be activated depending on the cellular environ-

ment (see text for detail). After their actions, eCBs are taken up by EMT for inactivation; AEA is hydrolysed by fatty acid amide hydrolase

(FAAH) to ethanolamine and arachidonic acid, 2-AG is hydrolysed by monoacylglycerol lipase (MAGL) and to a minor extent by FAAH, releas-

ing glycerol and arachidonic acid and PEA is hydrolysed by N-acylethanolamine-hydrolysing acid amidase (NAAA) into ethanolamine and pal-

mitic acid.
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animal and the experimental tool of choice for the major-

ity of immunologists. Study of their immune responses

has yielded tremendous insight into the workings of the

human immune system.51 However, a thorough demarca-

tion is sought, not only because relevant differences exist

between the immune system of humans and mice, but also

because immortalized cell lines often respond differently

from primary cells.

Endocannabinoid signalling in innate immunity

Monocytes/macrophages

Macrophages (and their precursors, monocytes) play an

important role in innate immunity, because they not only

clear apoptotic cells and pathogens, but also instruct

other immune cells. Monocytes/macrophages are highly

plastic (they can change their functional phenotype

depending on environmental cues) and reside in every

tissue of the body, where they bear different names (i.e.,

Kupffer cells in the liver or microglia in the central ner-

vous system).52 CB1 and CB2 receptors are highly

expressed in both murine and human monocytes/macro-

phages and microglial cells, regardless of cellular mod-

els.41,42,53–57 Similarly, all eCB metabolic enzymes are

often modulated in response to inflammatory stimuli, so

regulating eCBs tone in vivo.58–61 Interestingly, a recent

study reported the existence of bidirectional eCB trans-

port across cell membranes of a monocytic cell line, com-

bining both radioligand assays and quantification of

intracellular and extracellular levels of AEA and 2-AG

upon differential pharmacological blockage of their

uptake, breakdown and interaction with binding pro-

teins.62 These data extend a previous report on the in and

out transport of AEA across human umbilical vein endo-

thelial cells.63 The first evidence of an immunoregulatory

role of eCBs on monocytes/macrophages came from a

study on mouse alveolar macrophages, where AEA inhib-

ited macrophage-mediated killing of tumour necrosis fac-

tor-sensitive cells.64 Later evidence supported the anti-

inflammatory nature of AEA, according to which this

endogenous lipid inhibited the expression of pro-inflam-

matory mediators such as nitric oxide and interleukins

IL-6, IL-12 and IL-23, and enhanced anti-inflammatory

mediators like IL-10 and CD200R. Nonetheless, these

overt immunosuppressive effects were only seen in mouse

macrophage cell lines and microglia60,65–69 and in most

cases were mediated by CB2 signalling, whose involve-

ment was also directly implicated in dectin-1-mediated

phagocytosis.70 Also, PEA exerts anti-inflammatory

properties on murine microglia, mainly by stimulating

phagocytosis and clearance of pathogens, and by

increasing resistance to infection and microglial cell

motility.71–74 Conversely, there are scarce and contradic-

tory data on the role of 2-AG in the modulation of

mouse macrophage/microglia responses: on the one hand,

2-AG inhibits tumour necrosis factor-a (TNF-a) and IL-6

production and promotes alternatively activated and anti-

inflammatory M2 macrophages;60,75,76 on the other hand,

it increases inducible nitric oxide synthase-dependent

nitric oxide production.60 Likewise, also in humans, 2-AG

shows opposite effects. Indeed, it enhances the production

of chemokines,76 migration and adhesion of macrophage-

like differentiated human HL-60, U937 and THP-1 cell

lines, as well as peripheral blood monocytes in a CB2-

phosphatidylinositol 3-kinase-dependent pathway.77–79

Yet, 2-AG was also reported to enhance the phagocytosis

of opsonized zymosan in the same cell lines,80 and to

induce human monocytes to produce decreased levels of

cytokines and adhesion molecules, thereby exhibiting an

immunosuppressive response.47 In some cases, it was not

entirely clear whether the effects of 2-AG were actually

mediated via CB2 receptors. Incidentally, it has been sug-

gested that discrepancies on the effects of 2-AG, and to a

certain extent of AEA, could be due to their conversion

into bioactive COX-2 metabolites.81 A summary of the

main effects on mouse and human monocytes/macro-

phages is shown in Fig. 2.

Dendritic cells

Dendritic cells (DCs) are the most professional antigen-

presenting cells, crucial in the development of antigen-

specific T-cell responses. They are present in those tissues

that are in contact with the external environment, such as

the skin (i.e. Langerhans cells), and the inner lining of

several organs; they can also be found in peripheral blood

(i.e. myeloid and plasmacytoid DCs).82 Despite their role

in shaping the type and quality of immune responses,

due to their position at the crossroads between innate

and adaptive immunity, very few studies have investigated

endocannabinoid signalling in these cells, especially in

humans (Fig. 3). A pioneering study came from Di Mar-

zo and coworkers, who demonstrated for the first time

the presence of the ECS (AEA, 2-AG, PEA, CB1, CB2 and

FAAH) in human blood monocyte-derived DCs, and its

regulation upon cell activation. In particular, although

the expression of CB1 and CB2 remained unmodified fol-

lowing cell maturation induced by lipopolysaccharide or

by the allergen Der p I, the levels of 2-AG (but not those

of AEA or PEA) were significantly increased.83 Following

this first evidence, so far only one other study attempted

to investigate the role of 2-AG in DCs, showing that it

acts as a chemoattractant for both immature and mature

bone marrow-derived mouse DCs. Additionally, 2-AG in

vivo shifts the memory response towards the T helper

type 1 (Th1) type.84 At the same time it was found that

high (micromolar) doses of AEA induce apoptosis in

murine bone marrow-derived DCs, through both CB1
and CB2 receptors, providing a potential mechanism for
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eCB-mediated immunosuppression of immune cells.85

Interestingly, the efficacy of AEA depended on its rapid

hydrolysis by FAAH, because pharmacological inhibition

of the latter led to a reduced resistance to apoptosis. The

involvement of CB1 and CB2 in determining DC

responses was clearly elucidated by analysing the pheno-

typic and functional profile of murine bone marrow-

derived DCs from CB1
–/– CB2

–/– mice. Indeed, deletion of

both cannabinoid receptors exacerbated DC function by

increasing their activation markers (MHC-I/II, CD80,

CD86) leading to a more mature phenotype, as well as by

eliciting a more robust T-cell response.86 In contrast, it

was reported that nanomolar and low micromolar doses

of AEA before sensitization increased both the expression

of murine DC co-stimulatory molecules (CD80/CD86)

and IL-12/IL-23 production ex vivo.87 Yet, identification

of these DC was somehow imprecise, because their

immunophenotypic profile was carried out in total

splenocytes stained only with CD11c, a marker shared

also by other cell types. The only additional evidence on

human DCs was obtained by our group on circulating

peripheral blood myeloid and plasmacytoid DCs. Notably,

we found that low micromolar doses of AEA significantly

inhibited TNF-a, IL-12p40 and IL-6, as well as TNF-a
and interferon-a, from activated myeloid and plasmacy-

toid DCs via CB2 respectively.88 Furthermore, such an

AEA-mediated immunosuppression of both DC subsets

was also paralleled by a reduced ability of myeloid and

plasmacytoid DCs to polarize naive CD4 T cells into Th1

and Th17 lineages.88

Neutrophils and NK cells

Neutrophils and NK cells are crucial cells of innate

immunity, and are both involved in host defence against

cancer and anti-microbial responses. Neutrophils are the

first inflammatory cells to be recruited at the site of

inflammation/injury and are the hallmark of acute

inflammation, whereas NK cells are a type of cytotoxic

lymphocyte that provide rapid responses against virally

infected cells and cancer cells.89,90 Surprisingly, although

NK cells have been shown to express both CB1 and CB2
and to release high levels of AEA and 2-AG,54 knowledge

of eCB signalling in NK cells is almost null and is sum-

marized in Fig. 4. Indeed, only two reports addressed the

role of 2-AG in inducing the migration of the NK-differ-

entiated human HL-60 cell line through CB2 receptor.
91,92

This lack of evidence is probably a result of the difficulty

in documenting cannabinoid receptors in NK cells, that

show the greatest variation of expression of these recep-

tors. However, our group has recently reported evidence

that human peripheral blood NK cells express high levels

of putative ‘CB3’ receptor, whose activation enhances NK

cell functions in terms of TNF-a and interferon-c produc-

tion, and of CD107a-mediated cell killing.93 Instead, a

great deal of information has been accumulated on the
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Figure 2. Schematic representation of endocannabinoid (eCB) signalling in murine and human monocytes/macrophages or migroglia. M/,
macrophages.
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role of both AEA and 2-AG signalling on neutrophils in

humans (Fig. 4). Perhaps because of their abundance in

peripheral blood, many studies have been performed on

neutrophils. Although AEA has been shown to inhibit

neutrophil migration94 and its levels positively correlated

with their phagocytic capabilities,92 many studies consis-

tently reported the failure of AEA to effectively inhibit

superoxide and hydrogen peroxide production, so being

almost inefficient in altering the microbicidal neutrophil

burst reaction.95–97 At any rate, these effects seem to be

independent of cannabinoid receptors. However, CB2
activation has been recently shown to reduce the release

of metalloproteases from neutrophils, so potentially

reducing vulnerability in atherosclerotic plaques.98 Con-

versely, 2-AG seems to be an activator of human neu-

trophils, by stimulating myeloperoxidase release,

leukotriene B4 biosynthesis, kinase activation and calcium

mobilization.99 It also induces increased levels of anti-

microbial effectors, thereby being a potent regulator of

host defence in vivo.100 As expected, these effects on neu-

trophil activation were not mediated by CB2, because of

the very low levels of its expression in these cells, but

were rather the result of its hydrolysis and subsequent

metabolism into leukotriene B4, with activation of

Leukotriene B4 receptors 1. Additional data supported a

role for 2-AG in controlling RhoA activation, thereby

suppressing neutrophil migration.101 Figure 4 summarizes

the main pathways of eCB signalling in neutrophils and

NK cells.

Eosinophils, basophils and mast cells

These rare cell populations share similar appearance and

function and are involved in allergy and anaphylaxis as

well as in wound healing and in defence against patho-

gens. However, they differ in that they arise from differ-

ent cell lines and in that eosinophils and basophils are

found in the blood whereas mast cells are tissue resident

(i.e. connective and mucosal tissue, nervous sys-

tem).102,103 Furthermore, eosinophils play a major role in

dealing with elimination of large parasites.103 As yet, no

evidence has been reported on eCB signalling for either

murine or human basophils. Very few reports have

addressed eosinophil response to eCBs, and to 2-AG in

particular (Fig. 5). The latter compound was found to

induce the migration of human eosinophils in a CB2-

dependent manner and consistently this receptor was par-

ticularly expressed in these cells.104 The same authors, by

an ether-linked non-hydrolysable analogue of 2-AG, dem-

onstrated that its migratory effect was attributable to che-

motaxis and not to chemokinesis. Yet 2-AG potency was

significantly lower than that of well-known and strong

eosinophil chemoattractants, such as platelet-activating

factor, RANTES and eotaxin.105 These studies suggest that

CB2 and its endogenous ligand 2-AG may be potentially

involved in allergic inflammation, accompanied by eosin-

ophil infiltration, and this was indeed demonstrated in a

mouse model of contact dermatitis.106 A recent paper

investigated the mechanisms of 2-AG-induced migration

Mouse Human 

Dendritic cells AEA CB1/CB2-dependent apoptosis [85]

AEA CD80, CD86 prior sensitization [87]

AEA IL-12, IL-23 prior sensitization [87]

2-AG Chemotaxis [84]

2-AG Th1 responses [84]

CB1/2
–/– 

CB1/2
–/– 

MHC-II, CD80, CD86 [86]

T-cell responses [86]

AEA TNF- , IL-6, IL-12, IFN-  production
through CB2 [88]

AEA Th1/Th17 responses [88]

2-AG levels in mature DCs [83]

α α

Figure 3. Schematic representation of endocannabinoid (eCB) signalling in murine and human dendritic cells.
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of human eosinophils, confirming that this eCB in com-

bination with IL-5 has the ability to activate and modu-

late eosinophil functional responses, and that the 15-

lipoxygenase pathway is very probably involved in the

regulation of these activities.107 Of note, the most studied

eCB in allergy is PEA. Indeed, this substance has been

extensively investigated in mast cells (especially in wild-

type rats) that produce high levels of PEA and express

both CB1 and CB2.
108–110 On murine mast cells, PEA is a

strong inhibitor of mast cell degranulation and activa-

tion,111 also contributing to reduce the severity of spinal

cord trauma.112 Interestingly, a recent work hypothesized

that the anti-nociceptive role of PEA in inducing relief in

neuropathic pain correlates with its modulation of these

non-neuronal cells.113 Also AEA has been shown to inhi-

bit mast cell degranulation in a human mast cell line,

where this lipid was effectively degraded through a nitric

oxide-sensitive endocannabinoid membrane transporter

and FAAH.114 This was confirmed 10 years later, demon-

strating that AEA limits excessive mast cell maturation

and activation in a CB1-dependent mechanism in a

human hair follicle organ culture model, suggesting that

normal skin mast cells are indeed modulated by the

ECS.115 The involvement of AEA and CB1 in modulating

human mast cell functions was further confirmed by the

observation that in human airway mucosal mast cells,

maturation and excessive activation were inhibited by the

endocannabinoid tone through CB1 stimulation.116 A very

recent and interesting work further unravelled the biolog-

ical implication of AEA-CB1-mediated mast cell modula-

tion in mast cell-deficient mice, showing that AEA

activation of CB1 in mast cells induced monocyte chemo-

tactic protein-1-mediated recruitment of monocytic and

anti-inflammatory myeloid-derived suppressor cells.117

The main effects of PEA and AEA on murine and human

mast cells are summarized in Fig. 5.

Endocannabinoid signalling in adaptive immunity

T lymphocytes

T lymphocytes (or T cells) play a central role in cell-med-

iated immunity, and comprise several subsets, each with a

distinct function, including CD4+ T helper cells, CD8+

cytotoxic T cells, memory T cells, regulatory T cells and

mucosal-associated invariant T cells.118 The first evidence

for an immunosuppressive role of eCBs on T cells came

as early as 2 years after the isolation and purification of

AEA, demonstrating its dose-dependent anti-proliferative

effects on human T cells. Indeed, micromolar doses of

AEA rapidly inhibited mitogen-induced DNA synthesis,

and this was associated with induction of apoptotic cell

death.119 Since then, interest was primarily focused on

phytocannabinoids and synthetic agonists/antagonists

selective for CB1 or CB2. Only after more than 10 years

did study of the immunomodulatory properties of eCBs

on T cells begin to flourish – especially for AEA, which is

the most studied eCB compared with 2-AG or PEA,
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Neutrophils 

No evidence 2-AG Cell migration through CB2 [91,92]
GPR55 

AEA Cell migration [94]

AEA Microbial ingestion [95]

2-AG NO, LTB4, Ca2+ [99]

2-AG Anti-microbicidal effectors [100]

2-AG Rho-A-dependent migration [101]

CB2 Metalloproteases release [98]

No evidence 

TNF- , IFN- , cytolytic activity [93]γα

Figure 4. Schematic representation of endocannabinoid (eCB) signalling in murine and human natural killer cells and neutrophils.
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which received little investigation. It is now accepted that

AEA is a potent immunosuppressor of T-cell proliferation

and cytokine release, acting mainly through CB2 and

PPAR-c and most likely through nuclear factor-jB inhibi-

tion. This pathway has been largely investigated in mouse

T cells,87,120 in the human Jurkat T-cell line121,122 and in

human peripheral T lymphocytes.123,124 Our group was

the first to demonstrate the anti-proliferative effect of

AEA on both CD4 and CD8 T-cell subsets, without any

effect on cell viability.125 In addition, we disclosed its

inhibitory effect on interferon-c-producing Th1 and IL-

17-producing Th17. This effect of AEA on Th17 has been

recently reproduced in a mouse model of hypersensitivity,

where it was also shown to be mediated by IL-10 and

mitochondrial RNA induction.120 Interestingly, cytokines

have been shown to directly influence the ECS of T lym-

phocytes, inasmuch as the Th2 cytokines IL-4 or IL-10

had a stimulatory effect on FAAH, whereas the Th1 cyto-

kines IL-12 and interferon-c reduced FAAH activity and

protein expression,126 overall suggesting an eCB-triggered

self-sustaining anti-inflammatory loop. In disagreement

with these results, Lissoni et al. reported that AEA does

not inhibit human T-cell proliferation and cytokine pro-

duction, probably because of the presence of albumin in

their in vitro experiments, which is known to bind AEA

and so reduce its biological activity.127 The strong

involvement of CB2 in mediating AEA anti-inflammatory

effects is supported by a reduction of eCB immune mod-

ulation of T cells from a common CB2 polymorphism,128

and the evidence that formation of T cells requires this

receptor.129 The anti-inflammatory role of 2-AG on T

cells, instead, was shown to be independent of cannabi-

noid receptors, and its significant suppression of IL-2

expression in Jurkat T cells was mediated by a COX-2

metabolite of 2-AG, probably by activating the PPAR-

c.122,130

B lymphocytes

B lymphocytes (or B cells) are involved in the production

of antibodies against antigens (humoral immunity), but

they are also capable of acting as antigen-presenting

cells.131 Antibody-producing plasma cells are among the

immune cells that express the highest levels of CB2, with

human B cells expressing one transcript and mouse B

cells expressing three transcripts, specifically selected dur-

ing B-cell activation by lipopolysaccharide.132 However,

most of the research has focused only on the use of

Mouse Human 

Eosinophils 

Mast cells 

2-AG CB2-dependent chemotaxis [106]

2-AG 15-LOX-dependent cell activation [107]

AEA MDSCs recruitment [117]

PEA Degranulation & cell activation [111,112,113]

2-AG Chemotaxis through CB2 [104,105]

AEA Cell degranulation [114]

AEA Cell maturation & activation  
through CB1 [115,116]

Figure 5. Schematic representation of endocannabinoid (eCB) signalling in murine and human eosinophils and mast cells.
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phytocannabinoids and ‘syntho-cannabinoids’, rather than

on eCBs, trying to understand the functional role of this

receptor in B cells. Indeed, CB2 was identified as a crucial

receptor for mouse B-cell differentiation at the end of the

1990s, as it was markedly expressed in mantle zones of

secondary follicles and less in germinal centres, and its

expression was down-regulated during B-cell differentia-

tion.133 Furthermore, CB2 was found to be essential also

for mouse B-cell subset formation,129 and for retention of

immature B cells in bone marrow sinusoids134 and in

splenic marginal zones.135 CB2 was also reported to medi-

ate immunoglobulin class switching from IgM to IgE,136

suggesting that this cannabinoid receptor could have a

crucial role in the generation of B-cell repertoire and the

regulation of Th2-type humoral responses. Only two

works investigated the role of eCBs, in particular of 2-

AG, in mouse B-cell functions, showing that this bioac-

tive lipid induced migration of B220+ CD19+ B cells,48

preferentially by attracting unstimulated naive B cells

rather than activated and/or class-switched germinal cen-

tre B cells in a CB2-dependent manner.137 Surprisingly,

no evidence of eCB signalling on human B cells has been

gathered. Furthermore, it is yet to be explored whether

the effects on mouse B cells are direct or are indirectly

induced through other immune cells (like T cells and

macrophages), required for B-cell activation. Figure 6

summarizes the principal effects on both T and B lym-

phocytes.

Concluding remarks

Research on the ECS on the immune system strongly sug-

gests that its lipid mediators and their receptors exert

pleiotropic and complex immunoregulatory effects. The

generally immunosuppressive role of classical eCBs (AEA

and 2-AG) on the different immune cell populations is

abundant compared with their congeners (PEA) and is

reasonably equivalent in both mice and humans, making

them ‘master regulators’ of the innate-adaptive immune

axis. Although some immune cells can respond to the dif-

ferent eCBs, it seems that their effects are strictly depen-

dent on cell type; for instance, T cells mainly respond to

Mouse Human 

B-cells 

T-cells 

AEA Proliferation [87]

AEA Th17 [120]

AEA IL-10, miRNA [120]

2-AG B-cell migration [48]

Naïve B-cell attraction [137]2-AG 

CB2 B-cell differentiation [133]

CB2 B-cell retention in bone-marrow [134]

CB2 B-cell retention in splenic marginal zone [135]

CB2 IgM IgE [136]

AEA Proliferation [119]

AEA Apoptosis [119]

AEA NF- B-induced TNF-  production through CB2 [121] 

AEA IL-2 secretion [122]

AEA Migration & activation [123,124]

AEA 

AEA Th1, Th17 responses through CB2 [125]

IL-2-dependent proliferation through CB2 [125]

2-AG IL-2 release through PPAR-  and COX-2 [122,130]

CB2 polymorphism Reduction of AEA/2-AG-induced 
Inhibition of T-cell proliferation [128]

No evidence 

α

γ

κ

Figure 6. Schematic representation of endocannabinoid (eCB) signalling in murine and human T and B lymphocytes.
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AEA, whereas eosinophils respond to 2-AG. Moreover,

not only have the effects of eCBs been reported for some

immune cells (NK cells, neutrophils and B cells) on

mouse or human cell populations, but also some immune

cells (regulatory T cells, cd T cells, or mucosal-associated

invariant T cells) have never been investigated and neither

have the subpopulations of each innate or immune cell

type. Although the immunomodulatory effects of eCBs

mainly result from either in vitro or ex vivo studies, their

corresponding functions in vivo require further confirma-

tion and need to be fully elucidated, along with their

underlying molecular mechanisms. Although these studies

support the proposition that the CB2 receptor may repre-

sent a novel pharmacological target for selective agonists

designed to suppress autoreactive immune responses

while avoiding CB1 receptor-dependent psychoactive

adverse effects, it seems that the modulation of the endoc-

annabinoid levels by specifically inhibiting their break-

down enzymes (such as FAAH) or by inducing their

production can provide a new avenue of research in the

regulation of immune responses. On this basis and also

considering the similar effects of eCBs in both mice and

humans, autoimmune models of disease represent a valu-

able setting in which to study the pharmacological modu-

lation of the ECS, especially in the light of the fact that the

vast majority of immunomodulatory/immunosuppressant

drugs available to clinicians for the treatment of several

autoimmune diseases carry as a side effect the occurrence

of infective diseases. In this context, as far as the eCB sig-

nalling is concerned, the risk of overlooking aspects of

human immunology that cannot be modelled in mice, so

precluding a translation into human clinical trials, seems

to be minimal, yet calls for caution. Hence improvements

in studies of the pathophysiological functions of eCB sig-

nalling and its modulation will help to translate this

knowledge into the clinical setting to develop new immu-

nomodulatory therapies or refine existing ones.
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