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Abstract
The ability to obtain complete genome sequences from bacteria in environmental samples,

such as soil samples from the rhizosphere, has highlighted the microbial diversity and com-

plexity of environmental communities. However, new algorithms to analyze genome

sequence information in the context of community structure are needed to enhance our

understanding of the specific ecological roles of these organisms in soil environments. We

present a machine learning approach using sequenced Pseudomonad genomes coupled

with outputs of metabolic and transportomic computational models for identifying the most

predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhi-

zosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computa-

tional predictions of ecological niche were highly accurate overall with models trained on

transportomic model output being the most accurate (Leave One Out Validation F-scores

between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizo-

sphere ecological niche overlap with many previously reported analyses of Pseudomonad

interactions in the rhizosphere, suggesting that this approach successfully informs a sys-

tem-scale level understanding of how Pseudomonads sense and interact with their environ-

ments. The observation that an organism’s transportome is highly predictive of its

ecological niche is a novel discovery and may have implications in our understanding micro-

bial ecology. The framework developed here can be generalized to the analysis of any bac-

teria across a wide range of environments and ecological niches making this approach a

powerful tool for providing insights into functional predictions from bacterial genomic data.

Introduction
Terrestrial plants rarely exist simply as solitary organisms. Rather they encompass complex
interacting communities of soil fungi, subsurface bacteria, and animals whose combined func-
tions are crucial to above and below ground plant biomass [1, 2]. Some of these subsurface
communities are correspondingly dependent upon their plant host. Around 20% to 40% of
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photosynthetically-derived sugars from plants are consumed directly by the subsurface com-
munity [3, 4], making the root-associated ecosystem an important part of the terrestrial carbon
cycle. These communities reside and interact in the narrow region in the soil directly influ-
enced by plant root exudates called the rhizosphere, and within the rhizosphere, soil bacteria
fill multiple ecological niches. A niche is defined here the set of specific roles by which organ-
isms interact with the abiotic environment, the plant roots, and other microbes as they compete
for available nutrients.

Efforts to understand the compositions and interrelationships of bacteria in the rhizosphere
community [1, 5–7] are limited by the inability to culture these organisms in the laboratory
[8]. As such, much of the information about these organisms can only be learned indirectly
(i.e. inferred from genomic sequences assembled from metagenomic data sets). In this context,
ecological functions of uncharacterized but genomically sequenced bacteria are frequently
inferred from genomic sequence homology to characterized species [9, 10]. This approach is
not without limitations, however, since high levels of sequence homology between bacteria can
occur between organisms of different ecological functions [9, 11–13]. Other approaches focus
on the presence of key genes linked to ecological function, such as those for the fixation of
nitrogen [14–16] or for injecting toxins into a host cell [17–20]. While a few important ecologi-
cal characteristics can be inferred in this fashion, many ecological functions cannot be reliably
linked to small sets of specific genes. More sophisticated approaches use computational
approaches such as flux balance analysis (FBA) modeling of predicted bacterial metabolomes
to infer a bacterium’s ecological niche [21, 22]. Although, FBA can infer a bacterium’s nutri-
tional requirements, the approach is often not predictive for a bacterium’s role it its
community.

To circumvent these limitations, we evaluated the utility of machine learning computational
tools to infer a bacterium’s ecological role from genomic data. Support Vector Machine (SVM)
models were used to predict rhizosphere ecological niches using outputs from system-scale
computational models for genomic, metabolomic, and transportomic features. Given a set of
training examples, each marked as belonging to one of two categories, such as membership to
an ecological niche, an SVM training algorithm builds a model that assigns new examples into
one category or the other. SVMs are particularly powerful in their ability to avoid over-fitting.
To evaluate the utility of this computational framework, we selected Pseudomonads, a genus of
bacteria commonly found in the rhizosphere community and of particular interest to terrestrial
carbon cycling. Pseudomonads are widely distributed and sequence data from representative
organisms indicate their genomes encode a diverse spectrum transporters, enzymes and sec-
ondary metabolic activities [23]. This functional and metabolic diversity makes these bacteria
highly relevant to computational modeling of metabolic and transportomic capacities.

Pseudomonads occupy a wide variety of habitats including soil and marine environments
and can be plant or animal pathogens [24, 25]. For the present analysis, the selections of envi-
ronmental niche labels are based upon those previously reported by Silby et al [25] as well as
other investigators (Identified in Table 1). Classes of ecological niches are non-exclusionary
and a single Pseudomonad species may be associated with any number of niches. For the pres-
ent analysis, we considered four ecological niches from the rhizosphere: biocontrol, biofilm for-
mation, plant growth promotion, and plant pathogen. Biocontrol is an ecological niche
associated with Pseudomonads in the rhizosphere in which the bacteria protect the plant’s
roots from detrimental fungi, bacteria, or other pathogens [26–28]. Biofilm formation is the
ability to form biofilms in any environment, but can include soils or bacteria which reside
internal to the host organism [29–31]. Plant pathogenicity is the ability to cause disease in
plant roots or leaves [32, 33]. Plant growth promotion is the ability to form beneficial relation-
ships with plant roots that result in increased plant biomass [34]. For associating these
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ecological niches with molecular mechanisms, four modeling output types were considered:
enzyme function profiles, metabolic models, secondary metabolism models, and transporter
profile (transportomic) models. Enzyme function profiles are generated using the number and
distribution of the genome encoded set of specific enzyme activities as identified by assignment
of an Enzyme Commission (EC) annotation number. Similarly, transportomic models are gen-
erated using the transporter functions encoded in a set of bacterial genomes. Enzyme function
abundances and a set of all possible metabolic transformations performed by those functions
were used to derive the metabolic models predicting the relative rates of metabolic turnover for
specific metabolites, and the transportomic models, predicting the relative capacity of bacteria
to transport specific ligands across cell membranes. Secondary metabolism models were
derived using subset of enzymes involved in the generation of secondary metabolites (organic
compounds that are not directly involved in the normal growth, development, or reproduction
of an organism).

Materials and Methods

Pseudomonad Genomes
There were 43 fully sequenced and annotated Pseudomonad strains available from the NCBI
(ftp://ftp.ncbi.nih.gov/genomes/) that are confidently associated with specific rhizosphere eco-
logical niche classes at the time this analysis originated. The files for predicted protein
sequences (.faa files in NCBI genomic sequence database) were used for all analysis strains.
Pseudomonad rhizosphere ecological niche was defined as a function of Pseudomonad species
and assigned based on published manuscripts (Table 1). The complete list of strains and
accompanying references is available in S1 Data.

Metabolomic and Transportomic Modeling
SVMs were trained on the outputs of four different computational models which are generated
using annotation data derived from sequenced and annotated genomic information: enzyme
function profiles, metabolomic, secondary metabolism, and transportomic. The generation of
each type is described below and the relationships between data types are pictured in Fig 1.

Table 1. Assigned Ecological Niche Classifications of Pseudomonad Species.

Species # Genomes Biocontrol Biofilm Plant Pathogen Plant Growth Reference

Aeruginoa 9 N Y Y Y (Silby, Winstanley et al. 2011)

Brassicacearum 1 Y N N N (Ortet, Barakat et al. 2011)

Denitrificans 1 Y N N N (Ainala, Somasundar et al. 2013)

Entomophila 1 Y N N N (Vodovar, Vallenet et al. 2006)

Flourescens 4 Y Y Y Y (Silby, Winstanley et al. 2011)

Fulva 1 N N N N (Renault, Deniel et al. 2007)

Mendocina 2 Y Y N N (Silby, Winstanley et al. 2011)

ND 1 N N Y N (Li, Zhao et al. 2013)

Poae 1 Y Y N Y (Muller, Zachow et al. 2013)

Protogens 2 Y Y Y Y (Jousset, Schuldes et al. 2014)

Putida 11 Y Y N Y (Silby, Winstanley et al. 2011)

Stutzeri 6 N N N Y (Silby, Winstanley et al. 2011)

Syringae 3 Y Y Y N (Silby, Winstanley et al. 2011)

doi:10.1371/journal.pone.0132837.t001
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Enzyme Function Profiles
All Pseudomonad predicted gene models from the published genomic sequence were re-anno-
tated for protein functions. This approach ensured that all functional assignments for the pre-
dicted proteins from genomic sequence data use uniform annotation criteria and a consistent
ontology for enzyme functions and ligands.

The database of the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used as the
source of annotated protein sequences of metabolic enzymes and transmembrane transporter
activities [35, 36]. For enzyme function annotations, Enzyme Commission (EC) annotation
numbers [37] were used. A database of bacterial enzymes annotated with EC numbers and
associated with specific reactions in KEGG metabolic pathways (downloaded May 16, 2011)
was used for this analysis. The set of 754,066 protein sequences is annotated with 2,605 unique
EC number enzyme function descriptions and the complete collection of annotated enzymes is
available, in FASTA-format in S2 Data. For transmembrane transporter function KEGG
Orthology (KO) annotations were used [38]. The complete list of transmembrane transporter
KO annotations used can be found in S3 Data. There are 164,321 protein sequences, annotated
with 891 unique transporter/sensor functions, and are associated with the transport of 272
unique ligands in the set of annotated transmembrane transporters and the complete FASTA-
formatted set of annotated transporter proteins is available in S4 Data. It is possible for a single
protein sequence to be present in both the set of enzymes and the set of transmembrane trans-
porters. Protein annotations were assigned to single best BLAST-P hit with e-values< 1x10-10

(NCBI-Blast 2.2.23+). Enzyme function profiles for Pseudomonads were generated as lists of
all possible enzyme or transmembrane transporter annotations and the number of genes in
each Pseudomonad for the assigned function.

Metabolomic and Secondary Metabolism Models
Predicted Relative Metabolic Turnover (PRMT) uses enzyme function profiles for quantifying
the relative metabolic turnover between two metabolomes and has been described in detail
elsewhere [39]. The necessary tools for performing PRMT, instructions, and demonstration
data can be downloaded from www.bio.anl.gov/PRMT.html and the computational approach
is briefly summarized below.

Fig 1. Metabolomic and Transportomic Modeling. In (A), a simplified metabolomic/transportomic network
is featured. Triangles are extracellular compounds, circles are intracellular compounds, and double-line is
cellular membrane. Dashed edges t1-t3 are transmembrane transport interactions. Solid arrows e1-e4 are
directed metabolic transformations. Each enzyme or transporter annotation can be associated with one or
more compounds. (B-C) represents the network in (A) transformed in matrices for use in PRMT and PRTT
calculations. In (B), matrix does not consider enzymatic flux or mass balanced reactions. In (C), the
transportome matrix is constructed such that a ‘0’ indicates that a ligand is not transported and a ‘1’ indicates
that a ligand is transported by a transporter of a given annotation. For example, in the cartoon above, ligands
A and B are transported by a transporter annotated with function ‘t1’.

doi:10.1371/journal.pone.0132837.g001
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Required input for PRMT is a set of relative unique enzyme function abundances and a set
of all possible metabolic transformations performed by those functions (Fig 1A). EC annota-
tions and KEGG metabolic pathways are used for this purpose. Enzyme function abundances
are provided as vectors of the log2-transformed number of enzyme function representation in
genomes of length ec, where ec is the number of enzyme function annotations in the metabolic
model. The network of possible enzyme-mediated metabolic transformations is provided by a
matrixM of sizem by ec, wherem is the total number of metabolites present in the metabolic
network (Fig 1B). This matrix is the Enzyme Interaction Network (EIN) described in [39] and
is generated using the PRMT script “GenerateEIN_fromECList.pl” (www.bio.anl.gov/PRMT.
html).

The PRMT vector between metabolomes encoded by genomes x, and y is given by:

PRMT
����! ¼ Mðex!� ey

!Þ ð1Þ

The resulting vector of PRMT-scores of lengthm contains the comparison of predicted rela-
tive metabolic turnover of each metabolite inM for metabolome encoded by genome x relative
to genome y. A positive PRMT score indicates an increased relative capacity for the synthesis
of a compound in the metabolome encoded by genome x relative to genome y. A negative
PRMT score indicates an increased relative capacity for the consumption of a compound in the
metabolome encoded by genome x relative to genome y. PRMT scores do not indicate rates of
reaction or predict quantities or concentrations of compounds in a metabolome. PRMT scores
are generated using the script “CalculatePRMT_AllCols.pl” (www.bio.anl.gov/PRMT.html).

Two sets of PRMT models were generated. The first used the complete set of enzyme func-
tions identified in the set of the 43 Pseudomonad genomes to generate the metabolomic mod-
els. For generation of secondary metabolism models, the set was restricted to the subset of
enzyme activities that is present in the KEGG Biosynthesis of Secondary Metabolites pathway
(KEGGmap 01110). Both sets were calculated using the average enzyme function count across
all Pseudomonads. In this analysis, the reference genome y is always calculated as the average
unique enzyme function counts of all Pseudomonad genomes, as has been similarly done for
normalization in previous applications of PRMT (e.g. [39–42]). Average unique enzyme func-
tion counts are calculated:

EFCx
AVE ¼

Pmax t
t¼1 ECFx

t

T
; ð2Þ

where EFCx
AVE is the average enzyme function count for enzyme activity x, and EFCx

t is the
enzyme function count for activity x in taxa t of a total of T taxa.

Transportomic Models
Predicted Relative Transmembrane Transport (PRTT) is a system-scale metric that quantifies
relative ability of organism to transport specific metabolites across the cellular membrane and
is introduced here for the first time. PRTT-scores are calculated as a special case of PRMT-
scores, using the same tools as PRMT, but using the pre-calculated matrix of transporter anno-
tations and transported ligands as the EIN matrix. The transportomic matrix is available as S5
Data and for download from the PRMT website at www.bio.anl.gov/PRMT.html.

Required input for PRTT is the set of transporter function abundances and a matrix of
transporter annotations and transported ligands. A selected subset of KO annotations was used
for transporter annotations. Log2-transformed representations of transmembrane transport
function annotations in genomes are provided as vectors of length ko, where ko is the number
transporter function annotations in the transportomic model. Also required is a transporter
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ligand specificity matrix T of size l by ko, where l is the total number of ligands present in the
transporter ligand specificity matrix (Fig 1C).

The PRMT score vector between transportomes encoded by genomes x, and y is given by:

PRTT
���! ¼ Tðkx!� ky

!Þ ð3Þ

The resulting vector of PRTT-scores is of length l for the comparison of predicted relative
transmembrane transport of each ligand in T for transportome encoded by genome x relative
to genome y. A positive PRTT score indicates an increased relative capacity for transmembrane
transport of a specific ligand in the transportome in genome x relative to genome y. A negative
PRTT score indicates a decreased relative capacity of transmembrane transport of a ligand.
PRTT scores do not indicate absolute rates or directionality of transmembrane transport activ-
ity. As with PRMT scores, all PRTT scores were calculated using reference genome y calculated
as the average transmembrane transport function counts for all Pseudomonad genomes.

SVMs and Training Procedure
SVMs to predict Pseudomonad ecological niche were trained using subsets of calculated
enzyme profiles, metabolic and secondary metabolomic model outputs, and transportomic
model outputs. Enzyme function profiles (S6 Data), PRMT scores (S7 Data), secondary
metabolism PRMT scores (S8 Data), or PRTT (S9 Data) scores used as features in training
SVMs were non-zero in more than half of the genomes and had a standard deviation greater
than 0.2 indicating features were present in most Pseudomonas genomes and there is variation
in feature values.

SVMs were generated using a One Versus Rest (OVR) strategy, implemented as a set of four
independent binary classifiers, and validated using a Leave One Out Validation (LOOV)
scheme (Fig 2). In the OVR SVM binary classification approach, separate SVMs were gener-
ated for each ecological niche class (Biocontrol, Biofilm, Plant Pathogen, and Plant Growth
Promotor), that is, Biocontrol vs non-Biocontrol, Biofilm vs. non-Biofilm, Plant Pathogen vs.

Fig 2. Clustering Pseudomonad genomes using enzyme function counts. The “Primer 6” core package and enzyme function profile data were used to
generate hierarchical clusters. No obvious pattern by species or by ecological function is apparent using only enzyme function count and hierarchical
clustering. Suggesting additional data and/or alternate methods are required to deduce Pseudomonad environmental niche using sequenced and annotated
genomes.

doi:10.1371/journal.pone.0132837.g002
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non-Plant Pathogen, and Plant Growth Promoter vs. non-Plant Growth Promotor. A LOOV
scheme is a special case of a K-fold cross validation. It is most appropriate for the data in this
study as the number of Pseudomonas is small relative to the number of possible model features
and some Pseudomonads are represented by a very small number of examples that would go
un-represented in the training sets of a K-fold cross validation. In the LOOV experimental
design, a single genome is used as a validation set and the model is trained on the remaining
genomes with a 10-fold cross-validation procedure and linear kernels. The selection of valida-
tion sample and training SVM is repeated until each of the 43 Pseudomonas genomes was used
as the validation sample once. For generation of SVM, package ‘e1071’ v1.6–1 in R-project
(August 29, 2013, http://cran.r-project.org/web/packages/e1071/index.html) was used. The
outputs collected included class predictions, decision values for all training and validation sam-
ples and SVM files. A total of 16 SVMmodels, each with 43 LOOV, were generated: Four fea-
ture types based on computational model output types (enzyme function profiles,
metabolomic model, secondary metabolism model, and transportomic model) were used to
train for the prediction for each of the four ecological niche classes (biofilm formation, biocon-
trol agent, plant pathogen, and plant growth promoter).

A prediction confidence measurement was assigned to class predictions of validation sam-
ples. Using the SVMmodel for the positive examples in SVM training sets, the averages and
standard deviations of distances from the hyperplane of SVM classifier were calculated. The
statistical significance of the prediction of validation sample was calculated using its SVM dis-
tance x from the SVM classifier hyperplane and the standard normal distribution:

Confidence of prediction ¼ 1�
Z x

0

1ffiffiffiffiffiffi
2p

p e
ð� z2

2
Þ ð4Þ

where z, the normalized distance for the validation sample, is calculated as x divided by the
standard deviation of the absolute values of training set positive decision value distances. A
confidence of greater than or equal to 95% was considered a significant assignment of valida-
tion sample to ecological niche class. The complete set of confidence values for all validation
predictions can be found in S1 Data.

To quantitate the predictive power of SVMs, F-score was used. F-score is a metric that com-
bines precision and recall of predictions and is calculated as follows:

F ¼ 2 � Precision� Recall
Precisionþ Recall

ð5Þ

where,

Precision ¼ tp
tpþ fp

; Recall ¼ tp
tpþ fn

ð6; 7Þ

In Precision and Recall, tp is the number of true positives, fp is the number of false positives,
and fn is the number of false negatives in predictions.

Results

Computational Model Overview
Enzyme function profiles were generated from the re-annotated Pseudomonad genomes.
These profiles identified 1092 unique enzyme activities and 195 transmembrane transport
annotations that were present in at least one genome. 606 of the enzyme functions were present
and showed variation across Pseudomonads in over half of the re-annotated genomes and were

Predicting Ecological Roles in the Rhizosphere

PLOS ONE | DOI:10.1371/journal.pone.0132837 September 2, 2015 7 / 17

http://cran.r-project.org/web/packages/e1071/index.html


used to train Enzyme Function Profile SVMs. Metabolic (PRMT-scores) and transportomic
(PRTT-scores) models for Pseudomonads were calculated using the complete enzyme function
profiles. The complete metabolomic model is comprised of 6642 enzymatic transformation
interactions between 3688 metabolites, of which 2143 were present and showed variation
across Pseudomonads in over half of the re-annotated genomes and were used to train metabo-
lomic SVMs. The secondary metabolism model is comprised of 1649 enzymatic transformation
interactions between 1494 metabolites, of which 714 are variable across Pseudomonads and
were used to train secondary metabolism SVMs. The transportomic model is predicted to
transport 271 metabolites, of which 169 are predicted to be variably transported and were used
to train transportomic SVMs.

Clustering by Enzyme Function Profiles Does Not Distinguish Between
Ecological Niches
To determine if genomic data alone are sufficient to predict ecological niches, enzyme function
profile data was used to generate hierarchical clusters using ‘Primer 6’ v6.1.10 (Primer-E Ltd.,
Lutton, UK). Hierarchical clustering of genomic representation of enzyme functions (Fig 2)
shows that Pseudomonads do not group by species or by ecological niche annotation. This
inability to cluster genomes into species ecological activity groups by hierarchical clustering
with these data indicates that other computational approaches are required to predict ecotype
from genomic information.

SVMs Accurately Predict Rhizosphere Ecological Niche from System-
Scale Model Outputs
Accuracy of SVM predictions, as quantitated by F-score, varies by type of model output used to
train SVMs and by niche type (Fig 3). The transportomic model was the most predictive (i.e.
highest F-score) for three out of four environmental niches: biocontrol, biofilm, and plant
growth. Secondary metabolism was most predictive for the plant pathogen ecological niche.
Enzyme function profile and complete metabolomic model were never the most predictive for
any environmental niche. Considering the average F-score by SVM classifier type, both second-
ary metabolism features (t-test p-value 0.009) and transportomic model features (p-value
0.0003) are significantly more predictive than enzyme function profiles. Average F-score for

Fig 3. F-score for SVM predictions of ecological niche by input data type. Predictive capacity of SVM
models is function of input type used to train model (enzyme profile, metabolomic, secondary metabolism or
transportomic) and ecological niche in the rhizosphere (biocontrol, biofilm, plant growth promoter, or plant
pathogen). Environmental niche classes were assigned at a confidence of > = 95%. F-scores are calculated
from Leave One Out Validation (LOOV).

doi:10.1371/journal.pone.0132837.g003
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SVM prediction using transportomic model features was significantly higher than average for
SVM trained with metabolomic model features (p-value 0.002).

To avoid consideration of redundancy between features in the secondary metabolism and
the less predictive complete metabolome feature types, only enzyme function profile, secondary
metabolism model, and transportomic model are considered in the subsequent analysis of
high-weight SVM features.

Highly Predictive SVM Features Provide Insights into Mechanisms of
Adaptations to Ecological Niches
In SVMs, features used for training are assigned weights, proportional to their predictive capa-
bilities with high-weight features more predictive than low weight features. We considered
high-weight as more than 2 standard deviations +/- average feature weight for each SVM input
type. The complete lists of high-weighted features are found in Tables A-D in S2 File. The bio-
logical relevance of many of these features is supported by prior published observations and
discussed in subsequent sections.

Highly predictive features for one ecological niche type are often present in the highly
predictive features of another niche (Fig 4). For all training model output types, plant
growth is the niche with the least overlap with other niches. Secondary metabolism has
the largest proportion of high-weight features in common with all rhizosphere ecological

Fig 4. Venn diagram for significant features identified by SVM for eachmodel feature type and for
each ecological niche. All values in diagram are presented as percent of features out of total number of
high-weight features for SVM feature type.

doi:10.1371/journal.pone.0132837.g004
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niches. The transportomic model has the least overlap of high-weight features between
niches with a small number of transported ligands common to all ecological niches.

Rhizosphere
High-weight features that are common to all rhizosphere ecological niches (Fig 4) are the
molecular signatures for Pseudomonads that occupy the rhizosphere ecosystem, relative to
those Pseudomonads that inhabit other environments (Tables A-D in S2 File). Secondary
metabolism and transportomic have the largest sets of rhizosphere-specific features and many
of the functions associated with these features are consistent with growth characteristics of
organisms in a soil environment. Transport activities that are identified as predictive for inhab-
iting the rhizosphere involve carbohydrate transporters (e.g. 2-O-alpha-manosyl-D-glycerate)
suggestive for osmoregulation in soils [43, 44] and 3-hydroxyphenylpropionic, one of many
lignin breakdown products, which are ubiquitous in soils. We also identified the general class
of cation transport as predictive for inhabiting the rhizosphere. This transporter class is possi-
bly associated with maintaining charge balance in negatively charged soils in Pseudomonads
and other soil bacteria [45, 46]. The ability of rhizosphere Pseudomonads to import lignin
breakdown products is particularly relevant for the known important saprophytic capacities of
Pseudomonads [47] which consume organic matter in soils. Another key metabolomic predic-
tor is the capacity for catecholamine biosynthesis (Table C in S2 File), which are regulatory
compounds found in many plants that are involved in growth and development and are regu-
lated by stress conditions [48].

Biocontrol
Biocontrol is most predictive by its transportome (Table D in S2 File), specifically by transport
of cobamide coenzyme (biochemically active forms of vitamin B12) and monosaccharides.
Cobamide coenzyme is part of a vitamin biosynthesis pathway that induces resistance against
pathogens and synthesis of growth factors in plant roots. Monosaccharide transport is a part of
a sensor system associated with wound response and pathogen detection [49, 50]. Metabolo-
mics (Table C in S2 File) predicts that metabolism of acetyl-D-glucosamine, a sugar that does
not occur in plants or prokaryotes but is a structural polymer of fungi, is an indicator of bio-
control activity, specifically against fungal infection [51]. Additionally, intermediates in the
pathway of isoniazid metabolism, which is an antimicrobial compound [52], is also identified
as important to Pseudomonas biocontrol activities.

Biofilm
The most predictive metabolic activities for biofilm formation (Table C in S2 File) is the
metabolism of anti-biofilm compounds protoporphyrin [53, 54] and methyglyoxal [55, 56],
suggesting that a metabolic feature of these organisms involves a defense against biofilm inhibi-
tion synthesized by other competitors in the rhizosphere. Additional pathways previously
implicated in biofilm formation include antranilate degradation pathways implicated in bio-
film formation in P. aeruginosa [57] and the shikimate pathway [58, 59], which was identified
as predictive for biofilm formation. Important transport functions predictive for biofilm for-
mation (Table D in S2 File) are growth required environmental nutrients, specifically phos-
phorus and nitrogen. Limiting availability of both of these nutrients is an inducer of biofilm
formation [60–62].
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Plant Pathogen
Fatty acid biosynthesis pathways were identified as features predictive for plant pathogenicity
in Pseudomonads. This computational prediction corresponds to the recently reported biologi-
cal observation that lipid signaling is important for plant resistance to pathogens [63, 64].
Transport of plant sugars, such as arabinose [65, 66], and polyamines [67] are both important
signals in plant stresses and defense against pathogens, and are also predictive of Pseudomo-
nads’ pathogenicity.

Plant Growth
Metabolomic input type (Table C in S2 File) predicts that synthesis of a number of plant sig-
naling compounds is predictive of plant growth promotion by Pseudomonads including indole
[68] and flavones eriodictyol, neringenin [69–71]. A number of transport functions were also
identified (Table D in S2 File). C4-dicarboxylate is indicative of increased organic acid metab-
olism in the rhizosphere. Calcium transport is important in plant-root symbiote signaling [72,
73]. Glutathione transport is also predictive of plant growth promotion, and bacterially synthe-
sized glutathione is previously reported as detected in the rhizosphere. Transport of a number
of simple sugars (i.e. malonate, mannose, sucrose, galactose, and hexose) was found to be pre-
dictive of plant growth promotion by Pseudomonads and is suggestive of an ecological niche
that is able to take advantage of exuded photosynthetic sugars present in the rhizosphere.

Discussion
Our analysis indicated that SVMs trained on outputs from enzyme function profiles, metabolic
models, and transportomic models can be used to accurately predict the ecological niche of bio-
films, biocontrol, plant growth promotion, or plant pathogen for a group of Pseudomonad
organisms. A simple hierarchical clustering based on enzyme function profiles failed to distin-
guish Pseudomonads at the level of species or by rhizosphere ecological niche, suggesting a
need for alternate approaches. The accuracy of SVM prediction was dependent upon model
feature types used to train the SVM, with enzyme function profiles being the least predictive
(F-scores between 0.44 and 0.60) and transportomic models the most predictive (F-scores
between 0.82 and 0.89). Of intermediate predictive power is metabolic modeling, with second-
ary metabolome model features being more predictive of ecological niche than those of the
complete metabolome. These results suggest that the most characteristic capability of an organ-
ism to fit into an ecological niche is not the set of enzyme functions available to it, but the sys-
tem-scale mechanisms by which the bacterium senses and interacts with its environment. The
most predictive model feature type for biofilm formation, plant growth promotion, and bio-
control in Pseudomonas was identified at its transportome. Our analysis revealed a novel
aspect that the capability of an organism to occupy an ecological niche is most indicated by its
ability to sense and manipulate its environment via its transmembrane transport capacity. The
ability to model and quantitate bacterial transportomes using PRTT may provide new insights
into microbial ecology and evolution of function.

Analysis of the most predictive features, i.e. those features with the highest SVM weights,
for each ecotype identifies considerable overlap with prior biological knowledge, suggesting
that not only are metabolomic and transportomic model features highly predictive for ecologi-
cal niche, but also return results that are biologically significant. The agreement between
computational predictions and previously published observations indicates that this analysis
framework yields a number of potential hypotheses suitable for the design of molecular biologi-
cal experiments. While transportomic feature data are found to be most predictive alone, it is
very possible that a model using mixed feature data types may prove to have higher overall
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predictive capabilities in future models. However, as optimizing predictive capacity, particu-
larly on this relatively small set of Pseudomonad genomes, was not the goal of this research
effort, we have elected not to present a mixed data-type SVMmodel here. In the context of a
more general tool for accurately predicting ecological niches of uncharacterized bacteria from
genomic data, such a mixed data-type SVM would be more appropriate and we are currently
pursuing this goal.

Examining the most predictive features that were derived from each type of computational
model data type provides a framework for a system-scale understanding of how specific molec-
ular mechanisms in Pseudomonads contribute to their capacity to fill their varied ecological
niche spaces in the rhizosphere. While Pseudomonads were considered here, the framework
presented can be generalized for mining metagenomics and genomics data for new insights to
bacterial functional determination and ecological niche prediction. As technology for sequenc-
ing and genome assembly continuously improves, the ability to generate completely sequenced
bacterial genomes from environmental [74], clinical [75], or even single cell isolates [76] is
expanding at an exponential rate. Of the 2749 completely sequenced and annotated genomes
since 1995 listed in KEGG Organisms (http://www.genome.jp/kegg/catalog/org_list.html),
over half have been generated since 2011. Many more thousands of draft bacterial genomes are
currently in the process of completion and annotation. Yet only a relative handful of these bac-
teria have been characterized in the laboratory and the totality of what is known about many of
these organisms is inferred from their genomic sequences. While the model generated in this
study is not likely applicable to other taxa, the proposed framework can be applied to many
other bacterial groupings and environmental niches. Computational approaches, such as the
one that we have demonstrated here will be increasingly important to analyze and understand
the role that bacteria play across all ecosystems.

Supporting Information
S1 Data. Compilation of Pseudomonas Species and Reference Data.
(XLSX)

S2 Data. FASTA-formatted file of 754,066 bacterial proteins annotated with EC enzyme
functions.
(7Z)

S3 Data. List of KEGG Orthology (KO) annotations
(TXT)

S4 Data. FASTA-formatted file of 164,321 bacteria proteins annotated with KO transporter
functions.
(ZIP)

S5 Data. Transporter-Ligand matrix.Matrix for use with PRMT scripts to generate PRTT-
scores from tabular formatted data of transporter annotation counts in Pseudomonad anno-
tated genomes.
(TXT)

S6 Data. All Enzyme function profiles for 43 re-annotated Pseudomonads. This file is com-
prised of two lists: EC enzyme annotation function counts and KO transporter function
counts.
(TXT)
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S7 Data. PRMT-scores for Pseudomonad metabolic models.
(TXT)

S8 Data. PRMT-scores for Pseudomonad secondary metabolic models.
(TXT)

S9 Data. PRTT-scores for Pseudomonads transportomic models.
(TXT)

S1 File. Ecological niche predictions for all Pseudomonads. There is one table in file for each
feature type: Table A–Enzyme function profile, Table B- Metabolome, Table C–Secondary
metabolome, and Table D–Transportome.
(XLSX)

S2 File. Lists if high-weight SVM features. Lists for each input model type and each rhizo-
sphere ecological niche are given on separate tables: Table A, Enzyme Function Profile–Bio-
control, Biofilm, Plant Pathogen, and Plant Growth; Table B, Metabolomic–Biocontrol,
Biofilm, Plant Pathogen, and Plant Growth; Table C, Secondary Metabolism–Biocontrol, Bio-
film, Plant Pathogen, and Plant Growth; Table D, Transportomic–Biocontrol, Biofilm, Plant
Pathogen, and Plant Growth. Each table is a model output feature type. Within each table,
rows are model output features and columns are model output type. A ‘1’ indicates that a
model output feature is high-weight by SVM, ‘0’ otherwise.
(XLSX)
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