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Abstract
Behçet’s disease (BD), a multi-organ inflammatory disorder, is associated with the presence

of the human leukocyte antigen (HLA) HLA-B*51 allele in many ethnic groups. The possible

antigen involvement of the major histocompatibility complex class I chain related gene A

transmembrane (MICA-TM) nonapeptide (AAAAAIFVI) has been reported in BD symptomatic

patients. This peptide has also been detected in HLA-A*26:01 positive patients. To investi-

gate the link of BD with these two specific HLA alleles, molecular dynamics (MD) simulations

were applied on the MICA-TM nonapeptide binding to the two BD-associated HLA alleles in

comparison with the two non-BD-associated HLA alleles (B*35:01 and A*11:01). TheMD

simulations were applied on the four HLA/MICA-TM peptide complexes in aqueous solution.

As a result, stabilization for the incoming MICA-TMwas found to be predominantly contrib-

uted from van der Waals interactions. The P2/P3 residue close to the N-terminal and the P9

residue at the C-terminal of the MICA-TM nonapeptide served as the anchor for the peptide

accommodated at the binding groove of the BD associated HLAs. The MM/PBSA free energy

calculation predicted a stronger binding of the HLA/peptide complexes for the BD-associated

HLA alleles than for the non-BD-associated ones, with a ranked binding strength of B*51:01
>B*35:01 and A*26:01 >A*11:01. Thus, the HLAs associated with BD pathogenesis expose

the binding efficiency with the MICA-TM nonapeptide tighter than the non-associated HLA

alleles. In addition, the residues 70, 73, 99, 146, 147 and 159 of the two BD-associated HLAs

provided the conserved interaction for the MICA-TM peptide binding.
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Introduction
Behçet’s disease (BD) has caused recurrent inflammation of symptom complex in genital and
oral ulceration, inflammatory lesion of central nervous systems, gastrointestinal tract and eyes
leading to blindness [1]. This disease is usually reported in adults aged between 18 to 40 year-
olds and presents a higher mortality risk in males than females [2]. A high epidemiology of BD
is commonly found in Japan, Turkey, China and the Middle East and the Mediterranean coun-
tries [3]. The systemic inflammatory disease is characterized by recurrent exacerbations and
spontaneous remissions with varying healing times among patients, and the disease course
usually becomes several years or more. On the ocular disease, recurrent and often bilateral epi-
sodes of acute exacerbations of intraocular inflammation (ocular attacks) in the anterior cham-
ber (iridocyclitis) normally occur with or without posterior involvement (retinal vasculitis,
hemorrhages, exudates, retinal vein occlusion and optic neuritis). Recurrent ocular attacks of
posterior involvement lead to poor visual prognosis [4]. Intestinal and neurological diseases
are serious complications of BD and can severely deteriorate the patients’ psychosomatic sta-
tus. Because BD can induce severe damage in the eyes and other organs, it is important to clar-
ify the pathogenesis of this disease and to develop a novel treatment based on the pathogenesis.

The exact etiology of this disease has not been clarified yet, but it is probably mediated by a
combination of excessive immune reactions, genetics factors [5], immune reactions against
infectious agents [6], heat shock proteins [7], oxidative stress [8] and environmental factors.
Indeed, several inflammatory cytokines involved in acute inflammatory reactions, such as
interleukin (IL)-6, tumor necrosis factor-α and IL-8 might play a role in the pathogenesis of
this disease [9]. In addition, genetic factors, including the human leukocyte antigen (HLA)-
B51 alleles and especially the HLA-B�51:01 allele is strongly associated with BD across different
susceptible ethnic groups [10, 11]. Recently, a meta-analysis of 78 studies involving 4,800 cases
of BD and 16,289 controls reported the pooled odds ratio (OR) of HLA B51/B5 carriers to
develop BD compared to non-carriers (OR = 5.78 95%, CI = 5.00–6.67) [12].

The notion of an environmental trigger of BD in patients with genetic susceptibilities has
long been advocated. Several infectious agents have been investigated, especially bacteria
(Streptococcus,Mycoplasma and Helicobacter pylori) and viruses (Herpes simplex virus 1 and
2, Hepatitis virus and Parvovirus B19) [13]. The autoimmunity against bacterial and human
heat-shock proteins (HSP) was also speculated as a trigger for BD, because autoantibodies
against HSP65 and HSP60 have been reported in BD patients [14].

On the other hand, the genetic association of the major histocompatibility complex (MHC)
class I chain related to gene A (MICA) with BD has been reported in various ethnic groups [15,
16], and a strong association of the polymorphism in the transmembrane region of MICA
(MICA�009) with BD was observed [17, 18]. The self nonapeptide of AAAAAIFVI located on
the MICA transmembrane region (MICA-TM), induced autoreactive CD8+ cytotoxic T lym-
phocytes in BD patients with HLA-B�51 [19]. Accordingly, the MICA-TM peptide is one of
the candidate bechetogenic epitopes [17, 19], where the self-antigen AAAAAIFVI could func-
tion as the antigen that triggers the T-cell receptor and develops to an autoimmune reaction
[19–21]. The MICA is usually expressed in fibroblasts, monocytes, epithelial cells and endothe-
lial cells in a stress-dependent manner, and plays a key role in initiating the antibody-depen-
dent rejection of organ-transplants [22–24].

The HLA molecules are human equivalents of the MHC found in most vertebrates [25].
They are controlled by genes located at the terminal region at band p21.3 on the chromosome
6. Normally, the HLA molecules play a key role as a guard to protect cells in immune recogni-
tion. The HLAs are categorized into three different classes (I, II and II), with HLA class I fur-
ther divided into three main genes(HLA-A,-B and-C) [26]. The HLA alleles associated with
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BD involve the HLA class I genes HLA-A and HLA-B that importantly function to bind and
send short foreign antigens from within the cell to the T-cell receptor (TCR) of CD8+ glycopro-
tein cells (cytotoxic or killer T-cells) [27]. A digested antigen peptide consisting of 8–13 amino
acid residues in length (most commonly 9 to 10 residues) is specifically bound within the pep-
tide-binding groove located on the HLA surface [28, 29]. The binding groove is constructed
from the eight ß-strands and α1 and α2 helixes, while α3 and ß2-microglobulin (ß2m) are the
floor and non-covalent supported units, respectively, as shown in Fig 1 [28]. The different
diversity of residues present in the binding-cleft markedly affects the specific binding to the
antigen peptide and pathogenesis. The residues at or close to the two ends of the peptide, P2/
P3 and P9 residues for the MICA-TM nonapeptide, generally interact with the binding groove
of HLA class I and serve as an anchor, whilst the central peptide oozes up out of the groove for
direct interaction with the TCR [30, 31]. However, peptides longer than nine residues and up
to 13 residues can be recognized by the HLA class I genes through “the middle-out loop shape
form” [30], where the residues at or close to the peptide terminals are well occupied in their
sub-sites [29].

The association of BD with the HLA-B�51:01 allele in various ethnic groups in Japan and
Korea has been frequently observed [3], while the HLA-A�26:01 allele was detected in BD
patients in Greece, Japan and Taiwan [32–34]. Some possible candidate genes for BD have
been studied in various HLA-A and-B alleles [35]. Recently, in Japanese uveitis patients, BD
was associated with the HLA-A�26:01 allele at a 37.5% phenotype frequency more than the
controls, and so HLA-A�26:01 is a possible marker as a susceptible allele for ophthalmic BD in
Japanese ethnics [36]. By meta-analysis and positive pathergy tests of the Japanese data, the BD
clinical manifestations of uveitis, skin lesions and arthritis, and genital ulcers were found to be
significantly associated with the HLA-A�26:01, A�02:07 and A�30:04 alleles, respectively [37].
Currently there is no treatment (e.g. vaccine) against BD based upon the HLA recognition anti-
gens despite the apparent restricted association with specific alleles, since the individual risk
factors with HLA are unknown. Therefore, we aimed to investigate the link between BD and
two specific HLA alleles associated with BD (HLA-A�26:01 and HLA-B�51:01) in terms of
their binding affinity to the MICA-TM peptide using MD simulations, in comparison with two

Fig 1. Structural basis of HLA class I. (A) Schematic model of HLA buried in the transmembrane. (B) HLA
(pink) contains the α1 and α2 subdomains that contribute to the peptide binding groove, while α3 is the C-
terminal domain in complex with ß2-microgluobulin (ß2m) as a noncovalently supported protein (cyan). (C)
Ribbon and (D) van der Waals surface representations of the MICA-TM nonapeptide (green stick model)
occupied in the peptide binding sub-sites (S1–S9, shaded by different colors) of HLA-B*51:01.

doi:10.1371/journal.pone.0135575.g001
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HLA alleles not associated with BD (HLA-A�11:01 and HLA-B�35:01). The molecular under-
standing of the specific binding of the MICA-TM peptide with the HLA alleles associated with
the disease may be useful for therapeutic vaccine design.

Materials and Methods

Structure preparation
The starting structures of three of the HLA class I alleles were taken from the Protein Data
Bank, being entries 1E27 [38] for B�51:01 with the HIV-1 epitope at 2.20 Å, 1X7Q [39] for
A�11:01 with the SARS nucleocapsid at 1.45 Å, and 1A9E [40] for B�35:01 with the EVB pep-
tide at 2.5 Å (S1 Table). That for A�26:01 was built from homology modeling using the above
A�11:01/SARS nucleocapsid structure as a template and the amino acid sequence of A�26:01
from GenBank (accession no. AAA03720) [41], which has 94.3 and 96.6% amino acid identity
and similarity to A�11:01, respectively. The HLA/MICA-TM complexes were constructed by
changing the original peptide within the X-ray structure to be consistent with the nine amino
acids of the antigenic MICA-TM peptide (AAAAAIFVI) using the align sequence profiles
module implemented in the Discovery studio 2.5 (Accelrys, Inc.).

MD simulation
The four studied HLA/MICA-TM complexes were investigated by molecular dynamics (MD)
simulations using the AMBER 10 software package [42] with the ff03 force field. The missing
atoms were added using the LEaP module [43]. The protonation state of all possible charged
residues (arginine, lysine, histidine, aspartate and glutamate) in HLA-allele complexes was
assigned at pH 7.0 by PROPKA server [44]. The total charges with negative value of the HLA/
MICA-TM complexes were randomly neutralized by Na+ counterions (2, 1, 1 and 2 ions for
the B�51:01, B�35:01, A�26:01 and A�11:01 systems, respectively). Afterwards, the individual
complex was solvated by TIP3P [45] water molecules leading to approximately 65,000 atoms in
total. The dimensions of the simulation box used for all the systems were 86 × 90 × 88 Å3. The
periodic boundary condition with the NPT ensemble and a simulation time step of 2 fs was
used. All energy minimizations and MD simulations were performed using the SANDER mod-
ule of AMBER 10. All bonds and angles concerned to hydrogen atoms were constrained by
algorithm of SHAKE [46]. The long-range electrostatic interactions were treated by particle
mesh Ewald method and the non-bonded interactions with a cutoff distance of 12 Å were con-
sidered [47]. All MD simulations were run with a 12 Å residue-based cutoff for non-bonded
interactions and the particle mesh Ewald method was applied for an adequate treatment of
long-range electrostatic interactions [48]. Each system was subjected to the four stages of the
restrained MD simulations at 298 K with force constants of 10, 7.5, 5 and 2.5 kcal�mol-1�Å2 for
500 ps in each stage accordingly. These subsequent steps could allow the peptide to adapt its
geometry and orientation from the initial model to fit better within the peptide binding groove.
Then, the constraints were completely removed and fully unrestrained MD simulations were
performed until 50 ns. The convergences of energies, temperature, and global root mean-
square displacement (RMSD) were used to verify the stability of the systems. The MD trajecto-
ries were collected every 0.2 ps from the production phase for further analysis.

Results and Discussion

Stability of the HLA/MICA-TM complexes
To study the structural stability of the four MD simulations, the RMSDs for all atoms of the
four HLA alleles (B�51:01, B�35:01, A�26:01 and A�11:01 alleles) complexed with the

Selective Binding of HLAs Associated with BD

PLOSONE | DOI:10.1371/journal.pone.0135575 September 2, 2015 4 / 14



MICA-TM peptide compared with those of the starting structures were monitored along 50 ns
of simulation time using the PTRAJ module implemented in AMBER10 package [49]. The
RMSD fluctuations of each complex and its structural components (binding groove and ß2-
microglobulin) and MICA-TM peptide, were plotted in S1 Fig. The RMSD values quickly
increased until ~5 ns and then reached a plateau except for the HLA-B�51:01/MICA-TM com-
plex where the RMSD value continuously increased over the first ~15 ns. The MICA-TM in
HLA-B�51:01 system had a low fluctuation around 1 Å, and suddenly at 23 ns, it jumped up to
2 Å until the end simulation. The RMSD increasing caused from the non-polar of MICA-TM
peptide change orientation to hydrophobic region within pocket. Although the whole HLA/
MICA-TM complex for the two BD-associated HLAs (B�51:01 and A�26:01) fluctuated a great
deal, their binding groove and the incoming MICA-TM peptide demonstrated a rather low
level of fluctuation. All systems seemed to reach equilibrium after 25 ns with ~1 Å of RMSD
fluctuation, and so the MD trajectories from 25 to 50 ns (the production phase) were used for
analysis.

Regional flexibility
The backbone flexibility of the HLA-B�51:01, B�35:01, A�26:01 and A�11:01 complexes with
MICA-TM were investigated by B-factor calculation over the last 25 ns trajectories (Fig 2).
Note that high flexibility of protein was displayed in red and vice versa in blue. Among the four
systems, the HLA-A�11:01 allele showed the highest degree of protein flexibility in the region
of peptide binding groove and in particular at the S7–S9 sub-sites (defined in Fig 1D), whereas
the other HLA alleles were likely to have similar degree of flexibility. This might be due to the

Fig 2. Structural flexibilities of the HLA alleles bound with the MICA-TM peptide. Structural flexibilities
were evaluated by B-factor. The ribbon color changes from blue (rigid) to red (flexible) to represent a low to
high protein flexibility. Note that for clarity only the binding groove structure and the MICA-TM peptide are
shown.

doi:10.1371/journal.pone.0135575.g002
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strong intramolecular interactions of either the α1 or α2 domains and the intermolecular
hydrogen bonds (H-bonds) between the C-terminal of the MICA-TM peptide and the binding
residues of the three HLAs (B�51:01, B�35:01 and A�26:01 alleles), which is discussed in a later
section.

Per-residue decomposition (DC) energy
The decomposition (DC) energies were calculated and used to scan for potentially important
residues for binding [50]. In order to seek the fingerprint of the HLA/MICA-TM interactions,
the interaction energy between each HLA residue and the MICA-TM peptide and vice versa
was calculated over 100 snapshots of the production phase. The obtained DC energies of the
HLA and MICA-peptide residues are plotted in Figs 3 and 4, respectively. The HLA/MICA-
TM interactions mostly occurred on the α1 and α2 helixes with additionally some residues of
β-strands (Fig 3). Using the criterion of a total DC energy< -0.5 kcal/mol as an important resi-
due, then 22, 18, 16 and 14 potentially important residues of the HLA-B�51:01, B�35:01,
A�26:01 and A�11:01 alleles (S2 Table), respectively.

Van der Waal (vdW) interactions were found to play an important role in the complex,
where the magnitude of the MICA-TM peptide binding with the BD-associated HLA alleles
(B�51:01 and A�26:01) was greater than that for the corresponding matched non-BD-associ-
ated HLA alleles (B�35:01 and A�11:01). For the nonapeptide, as expected the non-polar resi-
dues interacted with HLA through vdW interactions (Fig 4). Based on the definition of a total
DC energy of< -3 kcal/mol for strong binding, there were four peptide residues that firmly
bound to HLA-B�51:01 (P3, P5, P8 and P9) and A�26:01 (P2 and P7–P9), while only two and

Fig 3. Decomposition energy per HLA residue fingerprint plots. The HLA contribution to the MICA-TM binding is shown in terms of the electrostatic (ele)
and van der Waals (vdW) interactions.

doi:10.1371/journal.pone.0135575.g003
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three residues were found in B�35:01 (P7 and P8) and A�11:01 (P2, P7 and P8), respectively.
Note that the P9 and P2 or its adjacent residue are known as the anchor for the peptide accom-
modation at the binding groove of HLA class I [30, 31]. Loss of the P9 contribution may lead
to an unbinding recognition of the non-BD-associated HLAs towards the MICA-TM peptide.
More details of the interaction and orientation of this peptide at the binding groove of the four
HLA alleles investigated are discussed in the hydrogen bond pattern section.

H-bond patterns between HLA and the MICA-TM nonapeptide
To investigate the intermolecular H-bond interactions between the HLA protein and the
incoming short MICA-TM nonapeptide, the number of H-bonds was evaluated using the
two acceptance criteria of (i) a distance between the proton donor (D) and acceptor (A) atoms
of D−A� 3.5 Å; and (ii) an angle of D−H. . .A> 120°, as previously reported [50, 51]. The
obtained results were compared between the two paired BD-associated and non-associated
HLA alleles in each locus (A or B), and are shown in Fig 5. The peptide binding sub-sites (S1–
S9) were classified by the peptide contact position in the binding groove of HLA, as seen in the

Fig 4. Averaged decomposition energy contributions in HLA binding to MICA-TM. Per-residue decomposition energies and the energy components in
terms of the electrostatic (ele) and van der Waals (vdW) interactions for the P1–P9 residues of MICA-TM.

doi:10.1371/journal.pone.0135575.g004
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HLA-B�51:01/peptide complex (Fig 1D). The last snapshot of each complex was used to repre-
sent the protein-protein H-bond formation detected from the MD simulations (see in S2 Fig).

As shown in Fig 1D, the peptide binding groove of HLA class I is constructed by at least five
sub-pockets with a large groove volume (S1 and S2 yellow; S3 magenta; S4–S6 dark blue; S7
orange; S8 and S9 light blue), and it is able to support a variety of incoming short peptides in
the binding step. Moreover, the binding groove of the HLA protein provides a hydrophobic
cavity to support the nine spanning residues (AAAAAIFVI) of the MICA-TM peptide. Due to
the nonpolar nature of this peptide, H-bond formation with the HLA protein was expected
through the peptide backbones. In Fig 5A and 5B, both HLA-B alleles similarly stabilized the
P9 residue of the MICA-TM peptide by the formation of three H-bonds which two of them are
the salt bridge interactions between the C-terminal carboxylate group and the ammonium
group of K146. The C-terminal residue (P9) could bind significantly stronger with the BD-
associated HLA allele than the non-associated allele (~60–90% H-bond occupation compared
to only ~50–70% in the non-associated allele), which could be due to the different residue 80
on the α1 helix (I80 in HLA-B�51:01 and N80 in HLA-B�35:01). Through the strong H-bond
(70% occupancy) with the amide group of N80 (Fig 5B), this polar residue at the S9 sub-site of
the peptide induced the C-terminal to change its orientation and move closer to the α1 helix of
the non-associated BD HLA-B�35:01 (S2 Fig) with the consequence of weakened H-bonds
with the α2 helix from the loss of interaction with T143 and a decreased interaction with K146.
With respect to the N-terminus of the MICA-TM peptide, the Y159 residue on the α2 helix of
the HLA-B�35:01 allele strongly interacted with the P1 residue (*90%), whilst this end of the

Fig 5. Hydrogen bond interactions. The percentage occupancy of H-bonds averaged over the last 25 ns of simulation time between the nine residues (P1–
P9) of the MICA-TM peptide and the HLA residues for the four complexes.

doi:10.1371/journal.pone.0135575.g005
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peptide had no interaction with any HLA-B�51:01 residues but instead the P3 residue was sta-
bilized by two α1-helix residues, Y9 and N70, with*90 and*50% H-bond occupations,
respectively (Fig 5A and S2 Fig). The rearrangement of the H-bonding network at the N-termi-
nal was previously observed in the octamer and nonamer peptides binding to HLA-B�51:01
[38]. In addition to the protein-protein interactions at the two peptide ends, a strong H-bond
was formed between the backbone of the P5 Ala residue and the side chain of the T73 residue
on α1 helix in the P4–P6 pocket in both HLA-B alleles (> 80%, Fig 5A and 5B). This is congru-
ent with the previous observation that the P5 residue of HIV epitopes (Ile, Val and Pro) was
found as an unexpected anchor deeply pointing into the sub-pocket of the binding groove of
HLA-B�51:01 [38]. In addition, these two HLA-B alleles had a strong H-bond between the P8
backbone of the MICA-TM nonapeptide and the W147 indole ring on the α2 helix.

In the case of the two HLA-A alleles (Fig 5C and 5D), the N- and C-terminal regions of the
MICA-TM peptide showed a firmly established interaction, P1 with the Y159 phenyl ring
(~100%) and P9 formed two H-bonds or salt bridge interactions with the K146 ammonium
group (~70–80% in the BD-associated HLA-A�26:01, but< 60% in the non-associated one),
respectively, at the α2 helix. Only HLA-A�26:01 (Fig 5C) contained a strong interaction at the
nearly C-terminal end (P8 residue) with the α2 helix residue W178 (~70%) and the anchor P5
residue weakly interacted with the α1 helix residue T73 (~40%). The Y99 residue on the β-
sheet of HLA-A�26:01 somewhat stabilized the P3 residue of MICA-TM (~40%), while the α1
helix residue N66 in HLA-A�11:01 supported the P2 and P3 residues (~40–50%). It is worthy
to note that the high protein flexibility of HLA-A�11:01 (Fig 2D) had consequently led to a low
binding of the incoming peptide, and in particular at the P5–P9 residues.

Based on the formed H-bonds, the peptide binding recognition was better distinguished in
the HLA-A alleles. The lowered binding strength at the C-terminal P9 residue observed in
HLA-B�35:01 was suspected to be the most important reason for the low selective binding
affinity of this non-BD-associated HLA-B�35:01 allele. Thus, the relatively high protein flexi-
bility in the non-associated HLA-A�11:01 allele led to a decreased H-bond strength with the P9
residue and no stabilization for the P5 and P8 residues. All simulations fairly agreed with the
crystal structures of the HLA/peptide complexes in which this P6 residue outwardly located off
the binding groove [31].

HLA/peptide binding affinity
To determine the MICA-TM peptide binding strength towards the four studied HLA alleles,
the molecular mechanic/Poisson-Boltzmann surface area (MM/PBSA) approach was applied
on the same set of 100 snapshots taken from the production phase. The MM/PBSA approach
has been extensively used to predict the overall Gibbs free energy (ΔGbind) in biomolecular sys-
tems [52]. The ΔGbind of the HLA alleles with the peptide bound at the binding groove was cal-
culated from a summation of the total MM energy (ΔEMM), the solvation free energy (ΔGsol)
and the entropic term (TΔS). The last term was estimated from the normal mode analysis [53].
Although the ΔEMM components suggested that the short peptide was better stabilized by the
non-BD-associated HLAs in the gas phase, the large destabilization from the solvation effect
on the HLA/peptide complex led to a lower total ΔGbind. Rather, within each paired HLA-I
gene (HLA-A or HLA-B), the MICA-TM peptide interaction was stronger with the BD-associ-
ated allele, where B�51:01 (-56.10 kcal/mol)> B�35:01 (-48.88 kcal/mol) and A�26:01 (-42.97
kcal/mol)> A�11:01 (-31.14 kcal/mol) in Table 1. The obtained results from the present study
help to differentiate the HLA alleles and explain a source of BD.
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Conserved interaction of the BD associated HLAs
Based on MM/PBSA method, the alanine scanning mutagenesis commonly used to signify the
important function of residues was carried out on the two BD associated HLA residues within
the 5 Å sphere of the MICA-TM peptide. The results of the relative binding free energy
(ΔΔGbinding = ΔGwild-type− ΔGmutant) are given in Table 2. Note that the entropy term of the
complex is not significantly changed by only one residue substitution with alanine; therefore
the entropic calculation was neglected. By a mutation to alanine on the 40 residues, the HLA
residue numbers 70, 73, 99, 146, 147 and 159 contributing the ΔΔG value< -2 kcal/mol in
either HLA-B�51:01 or HLA-A�26:01 (Table 2) were considered as the important residues.
These six residues could provide the conserved interaction of both BD associated HLAs for
binding of the incoming MICA-TM.

Conclusions
BD is a multi-organ inflammatory disorder with vasculitis, in which the main cause and
mechanism of action are still not well understood. From clinical investigations, the HLA-
B�51:01 and HLA-A�26:01 with MICA�009 containing the nonamer peptide (AAAAAIFVI or
MICA-TM) are most frequently detected in BD patients. Herein, we aimed to search for the
selective correlation between the two BD-associated HLA alleles (HLA-A�26:01 and HLA-
B�51:01) and the MICA-TM peptide in comparison with two class matched non-BD-associated
HLA alleles (HLA-A�11:01 and HLA-B�35:01) by MD simulations. From the simulations,
more contact residues at the binding groove of the BD-associated HLA alleles stabilized the
incoming MICA-TM peptide than at the non-associated alleles of the same class (22 and 16
residues for B�51:01 and A�26:01; 18 and 14 residues for B�35:01 and A�11:01). The vdW force
was found to be the main protein-protein interaction, but in addition strong H-bonds (>70%
occupation) were likely formed with the backbone of the nonpolar peptide, and these were
stronger in the BD-associated HLA alleles. The P2/P3 and P9 residues (close to and at the
peptide ends, respectively) acted as the anchor for the peptide accommodation at the
binding groove of the BD-associated HLAs. The total binding free energy of the HLA/peptide
complex suggested a significantly stronger binding strength of the MICA-TM peptide with the

Table 1. The binding free energy and energy components (kcal/mol) for the four HLA/MICA-TM complexes predicted by the MM/PBSAmethod.

HLA-B*51:01 a HLA-B*35:01 b HLA-A*26:01 a HLA-A*11:01 b

ΔEvdW -74.7 ± 4.2 -78.1 ± 4.7 -80.0 ± 4.8 -63.7 ± 4.2

ΔEelec -168.4 ± 16.4 -199.4 ± 17.1 -127.2 ± 20.8 -208.1 ± 25.3

ΔEMM -243.1 ± 16.1 -277.6 ± 16.4 -207.3 ± 21.6 -271.7 ± 25.0

ΔGpolar 199.1 ± 13.9 241.1 ± 14.8 177.3 ± 20.4 252.2 ± 23.6

ΔGnon-polar -12.1 ± 0.4 -12.5 ± 0.3 -13.0 ± 0.3 -11.6 ± 0.4

ΔGsol 187.0 ± 13.9 228.7 ± 14.8 164.3 ± 20.4 240.6 ± 23.4

-TΔS 9.7±25.8 12.7±24.1 21.5±28.6 15.4±21.4

ΔGbind -46.4 -36.2 -21.5 -15.7

HLA alleles are
a associated or
b not associated with Behçet’s disease (BD).

Data are shown as the mean ± SD, derived from independent simulations. Means within a paired row (HLA-A or HLA-B alleles that are associated with BD

versus that are not) followed by a different letter are significantly different.

ΔGbind is the binding energy with inclusion of entropic term.

doi:10.1371/journal.pone.0135575.t001
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BD-associated HLA alleles in the same class (B�51:01> B�35:01 and A�26:01> A�11:01). The
residues 70, 73, 99, 146, 147 and 159 provided the conserved interaction of the two BD-associ-
ated HLAs with the MICA-TM peptide. All the structural, dynamics and energetics informa-
tion somewhat explain the recognition and selective binding of the MICA-TM peptide towards
the specific HLAs related to the BD pathogenesis.

Supporting Information
S1 Fig. Stability of the HLA/MICA-TM complexes. Root-mean square displacements
(RMSDs) of all atoms relative to those of the initial structure for the HLA/MICA-TM complex,
peptide binding groove, ß2-microglobulin and MICA-TM peptide in the (A) B�51:01, (B)
B�35:01, (C) A�26:01 and (D) A�11:01 HLA alleles bound to the MICA-TM peptide.
(TIF)

S2 Fig. Hydrogen bond interactions (dashed line) in the HLA/MICA-TM complexes. The
MICA-TM peptide and HLA residues at the binding groove are shown in green and white
sticks.
(TIF)

Table 2. Relative binding free energy upon alaninemutation (ΔΔGbinding) for the HLA residues within 5
Å sphere of the MICA peptide. The residues with ΔΔGbinding of < -2 kcal/mol for both HLA classes are
shown in bold text.

ΔΔGbinding (kcal/mol)

residue HLA-B*51:01 HLA-A*26:01

Y7 -0.43 -2.40

Y9 -1.49 -0.06

I66/N66 -1.89 -1.90

N70/H70 -3.37 -2.57

T73 -2.42 -2.45

Y74/D74 -1.67 -0.94

N77 -1.68 -0.73

I80/T80 -1.31 -0.57

A81/L81 0 -0.93

Y84 -0.53 -1.14

Y85 -1.01 -0.11

W95/I95 -1.04 -0.16

T97/R97 -0.08 -3.42

Y99 -2.52 -2.22

Y116/D116 -0.99 -1.07

Y123 -1.65 -1.19

T143 -2.25 -1.44

K146 -3.68 -2.08

W147 -5.54 -4.64

E152 -1.76 -0.82

Q155 -0.15 -2.12

L156/W156 -1.04 -3.44

Y159 -3.63 -2.85

W167 -0.03 -1.82

doi:10.1371/journal.pone.0135575.t002
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S1 Table. Crystal structures used for simulation and number of reported BD patients in
association and non-association with HLAs.
(DOCX)

S2 Table. HLA residues with a total decomposition (DC) free energy (ΔGresidue) of less than
-0.5 kcal/mol.
(DOCX)
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