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Abstract
CHO cell culture high productivity relies on optimized culture medium management under

fed-batch or perfused chemostat strategies enabling high cell densities. In this work, a

dynamic metabolic model for CHO cells was further developed, calibrated and challenged

using datasets obtained under four different culture conditions, including two batch and two

fed-batch cultures comparing two different culture media. The recombinant CHO-DXB11

cell line producing the EG2-hFc monoclonal antibody was studied. Quantification of extra-

cellular substrates and metabolites concentration, viable cell density, monoclonal antibody

concentration and intracellular concentration of metabolite intermediates of glycolysis,

pentose-phosphate and TCA cycle, as well as of energetic nucleotides, were obtained for

model calibration. Results suggest that a single model structure with a single set of kinetic

parameter values is efficient at simulating viable cell behavior in all cases under study, esti-

mating the time course of measured and non-measured intracellular and extracellular

metabolites. Model simulations also allowed performing dynamic metabolic flux analysis,

showing that the culture media and the fed-batch strategies tested had little impact on flux

distribution. This work thus paves the way to an in silico platform allowing to assess the per-

formance of different culture media and fed-batch strategies.

Introduction
Monoclonal antibody (mAb) production at industrial level has reached, over the last decades,
a 100-fold increase of the titers with up to 10 g L-1 [1]. This significant improvement can be
explained by the ability to maintain very high cell concentrations (>107 cells mL-1) at high via-
bility for an extended period of time (i.e. weeks), a level of achievement resulting from cell engi-
neering works, and the optimization of culture media composition coupled with efficient fed-
batch strategies [2]. Serum-free media are complex to elaborate, because of a high number of
essential and non-essential nutrients, as well as growth factors cocktail stimulating cell growth,
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viability and productivity in a recombinant product. Statistical methods, within a design of
experiment approach, have been widely used to ameliorate culture media composition, both
for screening active factors [3,4] and for optimizing components concentration [5,6]. The
integration of the knowledge acquired over the past decades on optimal media composition
allowed to extend culture duration in time-based fed-batch strategies overcoming culture
media limitations. Efficient fed-batch strategies are thus designed to maximize growth and/or
cell viability, while limiting the production of metabolic wastes, such as lactate and ammonia,
which inhibit cell growth and affect the mAb product production and quality [7]. Indeed, vari-
ous fed-batch approaches have been proposed such as from the stoichiometric feeding of nutri-
ents with their consumption by the cells [8], medium feeding determined from a statistical
design [9] or from the online control of glucose and glutamine at low levels to favour a more
efficient metabolism [10,11]. Those approaches require a large number of data sets and thus
rely mostly on time-consuming experimentation schedules that are determined either intui-
tively or randomly. An approach based on comprehensive mechanistic relationships could,
however, help understanding how cells interact with their culture medium.

Metabolic flux analysis (MFA) and flux balance analysis (FBA) studies have been conducted
on CHO cells [12,13,14,15]. Such works, performed under steady-state conditions, can provide
a snapshot image of intracellular flux distribution and are helpful to analyze and compare spe-
cific culture phases. The active fluxes during growth and non-growth phases have been identi-
fied [16] as well as during the production phase [17]. Moreover, MFA and FBA approaches are
particularly useful to elucidate a metabolic network structure, such as the lactate and glutamine
metabolisms, by the use of labelled substrates [15,16,18,19]. However, these MFA and FBA
approaches are not predictive neither they can explain metabolic shifts or time-course of a cul-
ture behaviour; dynamic approaches being more appropriate for developing an in silico plat-
form [20,21,22].

Provost and Bastin [23] and Gao et al. [24] have proposed metabolic models for mammalian
cells, linking extracellular fluxes to extracellular concentrations and intracellular fluxes. The
model proposed by Provost and Bastin separated the CHO cell culture in growth, transition
and death phases, while the model proposed by Gao et al. was able to simulate the exponential
and post-exponential phases by dividing the culture in two distinct phases. A similar model by
Naderi et al. [25], accounting for dead cells, was able to simulate the decline phase in addition
to the growth and plateau phases for several batch and fed-batch cultures after calibration on a
batch culture. This kind of models, however, only allows limited predictive capacity since the
culture still has to be divided into different growth phases to cope with changes occurring with
intracellular fluxes distribution. Nolan and Lee [26] have proposed a dynamic model to simu-
late external and cytosolic flux kinetics, based on extracellular concentrations and redox state
for both batch and fed-batch CHO cell cultures. However, by making the pseudo steady-state
assumption on intracellular fluxes, this kind of model can hardly predict intracellular metabo-
lites concentration with time. Based on previous works on plant cells [27,28], a kinetic model
describing intracellular and extracellular metabolites concentration, as well as metabolic fluxes
variation with time, was transposed to various CHO cell lines [29,30] as well as brain cells [31].
The model successfully described CHO cell batch cultures for recombinant proteins produc-
tion, such as t-PA [30] and a mAb [29], characterizing the differences between high and low
producer clones through model parameters identification and simulations of metabolic flux
and flux ratios with culture time. In the present work, the dynamic model was further studied
and developed being challenged with different culture media and fed-batch strategies, in other
words it was tested against different sets of extracellular conditions. CHO cells have been culti-
vated under four different experimental conditions, batch and fed-batch cultures using two dif-
ferent culture media, and the metabolomic data sets were used to perform model parameters
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calibration. Results show that a unique set of model parameter values allows the dynamic meta-
bolic model to describe the different culture conditions tested for the exponential and early pla-
teau phases.

Materials and Methods

Cultures
Four different CHO cell cultures were performed to calibrate the model. The CHO-DXB11 cell
line, producing a chimeric heavy chain monoclonal antibody (EG2-hFc) [32], has been pro-
vided by Dr. Yves Durocher of the NRC (Montreal, Quebec, Canada). Each culture was inocu-
lated at 2x105 cells mL-1 in a 2-L Labfors 4 bioreactor (Infors Ag, Bottmingen, Switzerland).
Cultures were performed at 37°C and. dissolved oxygen was maintained at 50% of air satura-
tion by surface aeration. pH control at pH 7 was performed by feeding CO2 in surface aeration
and NaOH (1 M) addition was used when CO2 reached a concentration lower than 0.5% of the
gas feed. Agitation (pitched-blade impeller) speed was set at 60 RPM at inoculation and was
then gradually increased up to 120 RPM to follow the cells oxygen demand, from reaching a
maximal O2 concentration of the total gas flow rate of 100%. Cultures were performed until
cell viability decreased below 50%. Samples were taken daily for cell counting and cell viability
determination, as well as for glucose concentration in the media. In fed-batch cultures, nutri-
ents addition was performed daily to avoid limitations, based on the extracellular glucose con-
centration, maintaining the concentration above 10 mM. The remaining sample was then
centrifuged at 100 g and the supernatant was frozen (-80°C) and kept for further analysis of
media composition. Cell extractions, for the quantification of intracellular metabolites, were
performed as described in Ghorbaniadgdam et al. [29]. Briefly, 3x106 cells were collected and
washed 2 times with cold PBS, and then extracted in three steps with cold methanol, while vor-
texed with 0.2 g of sand (Sigma, Oakville, Canada, cat. # 274739), sonicated in ice bath for 5
min and then centrifuged at 21000 g between each steps. Respiration assays were performed
daily from 48 h, by closing the bioreactor inlet gas flow rate and decreasing the agitation speed
(30 RPM), which allows to minimize the O2 transfer while maintaining an homogeneous cell
suspension, until the dissolved oxygen level reach 35% of air saturation.

Two different culture media were tested, the Biogro-CHO (Biogro Technologies, Winnipeg,
Canada) without glucose and glutamine (see below for concentrations) and the PowerCHO-2
(Sartorius AG, Goettingen, Germany, cat. # WPW-088D) without glutamine (see below for
concentration). The Biogro-CHO medium was supplemented with 25 mM and 10 mM glucose
(Sigma, Oakville, Canada, cat. # G7021), and with 4 mM and 2.4 mM glutamine (Sigma, Oak-
ville, Canada, cat. # G7513), for batch and fed-batch cultures respectively. The PowerCHO-2
medium was supplemented with 6.5 mM glutamine and 1 mL Anti-Clumping Agent per liter
of culture medium (Life Technologies Inc., Burlington, Canada, cat. # 01-0057AE). S3 Table,
which allows comparing the different initial conditions for the model, can be used to further
compare the known (as determined in this work) composition differences between the two
media, especially for the amino acids. The choice of two media was to obtain two different sets
of initial conditions to challenge the model behaviour.

Two fed-batch strategies were defined based on the two culture media specific composi-
tion. Previous work with the same cell line aiming at identifying limiting nutrients in both
Biogro-CHO and PowerCHO-2 media (data not shown) suggested that neither glucose nor
amino acids are the substrates limiting cell growth; the individual effects of each compound
were evaluated from a fractional experimental plan. Based on those results, with glucose and
glutamine being the fastest consumed substrates, medium feed for Biogro-CHO fed-batch cul-
tures was composed of regular medium at 13X glucose (130 mM) and 8X glutamine (25 mM)
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concentrations (i.e. below solubility limits). The fed-batch culture performed with the Power-
CHO-2 medium was fed with a 2.5X concentrated PowerCHO-2 medium (100 mM glucose
and 16 mM glutamine). That strategy allowed avoiding early nutritional limitation for the
measured components. For both culture media, a fed-batch with daily feeding and a control
batch culture were performed in parallel. Samples for all analysis were taken daily, except for
the batch culture with the Biogro-CHO, for which the samples were taken every 12 h to better
monitor the culture dynamics, since this culture duration showed being shorter than the
others.

Analytical methods
Viable cell concentration was determined by cell counting using a hemocytometer and trypan
blue (Sigma, Oakville, Canada, cat # TB154) exclusion method. Extracellular concentrations
for glucose, lactate, glutamine and glutamate were analyzed using a YSI 2700 SELECT Bio-
chemistry Analyzer (YSI, Yellow Springs, USA). Ammonia concentration was measured with
the Ammonia Assay Kit (Sigma, Oakville, Canada, cat. # A0100). Amino acids concentration
were determined using a Agilent 1290 HPLC system (Agilent Technologies, Montreal, Quebec,
Canada) as described in Ghorbaniadgdam et al. [29]. Isoleucine and leucine peaks were not dis-
tinct, so isoleucine concentration in this work was taken as the sum of isoleucine and leucine
concentration, for experimental data as well as in the model. The intracellular extracts were
analyzed for nucleotides, organic acids and sugar phosphates concentrations as described in
Ghorbaniadgdam et al. [29] using a UPLCMS/MS System (Agilent technologies, Montreal,
Quebec, Canada). It was impossible to obtain precise intracellular concentrations for alpha
ketoglutarate and NADH for the batch culture using Biogro-CHOmedium because these levels
were too low to be detected. The same phenomena occurred with pyruvate in the fed-batch cul-
ture using the Biogro-CHO medium.

Monoclonal antibody concentration was determined by enzyme-linked immunosorbent
assay (ELISA). A Costar 96-well plate (Corning Life Sciences Plastic, Corning, United States,
cat. # 3369) was first incubated overnight with Fc specific Anti-Human IgG (Sigma, Oakville,
Canada, cat. # I2136) diluted to 1/30000 in phosphate saline buffer (PBS). The wells were
washed with PBS solution containing 0.2% Tween 20 (Sigma, Oakville, Canada, cat. #P7949).
The remaining sites were then blocked using a solution of PBS containing 0.3 g L-1 of Bovine
Serum Albumin (BSA) (Sigma, Oakville, Canada, cat. # A7030) incubated for 1 h. The wells
were washed and filled with either standard or the sample diluted 1000 to 16000 times in a
PBS-BSA solution and incubated for 1 h. The wells were then washed and incubated 1 h with
peroxidase conjugated Anti-Human IgG (Sigma, Oakville, Canada, cat. # A0170). The reaction
was revealed with 3,3',5,5'-Tetramethylbenzidine (Sigma, Oakville, Canada, cat. # A0170),
stopped after 20 min using 2 M H2SO4 and the absorbance measured at 450 nm with a Victor
3V multilabel reader (PerkinElmer, Waltham, United States).

Model structure
The mathematical model presented in this work is based on a previous model developed for
other two CHO cell lines [29,30,33], as mentioned above. The metabolic network defining the
model structure (Fig 1) and the biochemical reactions stoichiometry (S1 Table) have been
adapted to the cell line cultured in this study as well as the recombinant mAb produced. The
model includes the major pathways such as glycolysis, TCA cycle and pentose phosphate
pathway, as well as the pathways for energy production (oxidative phosphorylation) and con-
sumption (ATPases, and anabolic reactions for cell division and mAb synthesis). The major
pathways for amino acids metabolism are also described, with glutaminolysis, aspartate and
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Fig 1. Metabolic network described by the model. Solid lines represent the biochemical reactions, dashed lines the inhibition mechanisms and dotted
lines the activation mechanisms.

doi:10.1371/journal.pone.0136815.g001
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alanine transaminase (VASTA and VAlaTA), serine conversion to pyruvate (VSDHH), as well as
amino acids conversion to alpha ketoglutarate and succinate in distinct reactions (VAAtoSUC

and VHISARGTA respectively). The biochemical reactions stoichiometry was preserved from the
previous model. Metabolite pool consumption for cell growth was that proposed in Sheik et al.
[34] for cell composition, as well as of an average molecular weight of 107.5 g mol-1 for the cell
proteins in biomass and of a conversion factor of 3.15�10−4 gDW 10−6 cells. For simplification
purposes, the assumption was made that all the lipids within the biomass were derived from
citrate, and the nucleotides precursors were issued from ribulose-5-phosphate and glycogen
from glucose-6-phosphate. Amino acids consumption for mAb synthesis was calculated from
the average IgG1 sequence proposed in Quek et al. [35]. ATP consumption for both cell growth
and mAb synthesis are as described in Nolan & Lee [26]. Also, a subset of the non-measured
metabolites, and associated enzymes, that were considered in the previous model (creatine,
phosphocreatine, coenzyme-A, phosphate and intracellular oxygen) were not considered here.

Mathematical description of the metabolic fluxes
Most of fluxes kinetics are as previously described [29,30,33] (S2 Table). All kinetic equations
in this work are based on mechanistic formulations known as biologically relevant, rather than
using empirical equations. Reactions rate are composed of multiplicative Michaelis-Menten
kinetics accounting for each substrates involved. In the case of energetic nucleotides, ratios
are used (AMP/ATP, ATP/ADP, NADH/NAD, NADP/NADPH, ADP/ATP, NAD/NADH,
NADPH/NADP). This approach was successful in another work on the modeling of the metab-
olism of skeletal muscle cells [36] as well as in our previous work on a similar modelling
approach applied to another CHO cell line [29, 30, 33]. The regulation of glycolysis is as previ-
ously described [33], with feedback inhibition phenomena of hexokinase (VHK), phosphoglu-
cose isomerase (VPGI) and reverse lactate dehydrogenase (VrLDH), by glucose-6-phosphate,
phosphoenolpyruvate and pyruvate, respectively. The AMP-to-ATP ratio activates phospho-
fructokinase (VPFK), lactate dehydrogenase (VLDH) and VHK, while fructose-6-phosphate acti-
vates pyruvate kinase (VPK). The reactions involving an inhibition mechanism were described
according to the mathematical formulation of a non-competitive inhibition (Eq 1). However,
the reaction mechanism used to describe activation phenomena is that for non-essential activa-
tion as proposed in [37] (Eq 2).

V ¼ Vmax½S�
½S� þ Kmð1þ ½I�=KIÞ

ð1Þ

V ¼ Vmax½S�ð1þ b½A�=aKAÞ
KSð1þ ½A�=KAÞ þ ½S�ð1þ ½A�=aKAÞ

ð2Þ

In the present work, VPFK is inhibited by intracellular citrate and extracellular lactate
[38,39], and VPK is inhibited by alanine [40,41]. The reverse reaction of alanine aminotransfer-
ase (VrAlaTA) is also inhibited by glutamine to account for the switch from alanine production
to alanine consumption when glutamine level is low, as observed in our experimental data.
Reverse reactions are also modeled for glutamine synthetase (VGlnT), glutamate dehydrogenase
(VGLDH), lactate dehydrogenase (VLDH), glutamate transport (VGluT) and adenylate kinase
(VAK), but not for VASTA because there was no evidence from our measurements of a net pro-
duction of extracellular aspartate, but only a net consumption.

The cell specific growth rate is modeled as a multiplicative Michaelis-Menten mechanism
accounting for major precursors of cell building blocks, an approach that has been previously
successfully applied to plant [27] and mammalian cells [29,30,31]. All extracellular amino acids
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included in the model were considered, as well as the intracellular levels of glucose-6-phos-
phate, citrate and ribulose-5-phosphate, which act as the respective precursors for glycogen,
proteins and lipids, and nucleotides such as DNA and RNA. For each of those species, a differ-
ent affinity constant was determined, to represent the situation when one species, for instance
glutamine, is nearly depleted without significantly affecting the growth rate. A specific set of
affinity constants was also used to describe the mAb production rate. Finally, inhibitory effects
of lactate and ammonia on the growth rate were added to account for their accumulation in the
culture media. A non-competitive inhibition mechanism was applied [42], with a distinct affin-
ity constant for lactate regarding the growth (Equation 33 in S2 Table) and VPFK (Equation 3 in
S2 Table) reactions.

Sensitivity analysis
The model structure and flux kinetics formulation resulted in a large number of parameters
(139). Before proceeding with the calibration step of the model, the parameters were analysed
in order to identify and only optimize the value of the most sensitive ones. The Morris Screen-
ing method was used for determining the ranking of the global sensitivity of each parameters,
an approach previously applied to a similar dynamic model [43,44]. This technique allows to
cover efficiently a wide sample space returning the distribution of the elementary effect in that
space [45]. The absolute value of the mean indicates the sensitivity of the parameter and the
standard deviation gives an approximation of the linearity of the parameter. The elementary
effect of a parameter pi on the output of an objective function f can be defined as follow (Eq 3):

EEiðpÞ ¼ fðp1; p2; . . . ; pi�1; pi þ D; piþ1; . . . ; pkÞ=D ð3Þ

The elementary effect was calculated 35 times for each parameter using a step Δ of 2/3 and
the boundaries were set to ±25% of the initial guess. The outputs were the function evaluation
at the experimental sampling times for the selected 32 outputs chosen for optimization (the
ones represented in Figs 2–4 and S1–S3 Figs). The outputs were weighted using their standard
deviation, as it is the case in the parameter optimization routine. The mean of all the outputs in
absolute value at all the time points was used to determine a single sensitivity value for each
parameter. The parameters were then ranked according to their global sensitivity and the most
sensitive ones were identified. The use of the mean for all outputs was to allow the result to be a
single value that can be easily ranked, considering the large number of outputs involved.

Parameter estimation and confidence intervals
The initial guess for all parameters were those from previous work [29]. The Km’s of the specific
growth rate and the mAb production rate were first assumed to be lower than the Km’s of the
biochemical reactions. The first step consisted in manually changing the parameter values veri-
fying the reliability of simulations compared to experimental data, for the complete culture
duration. Then, the sensibility analysis was performed to identify the most sensitive parame-
ters. Finally, using the least square optimization function fromMATLAB
ToolBox (MathWorks), the optimization step was performed with the following objective func-
tion, the parameter vector p representing the 20 most sensitive parameters:

minðSN
n¼1S

T
t¼1

yexpn;t � yn;tðpÞ
sn;t

 !2

Þ ð4Þ

where yn,t(p) is the n
th model output evaluated at the tth experimental time, yexp is the experi-

mental data and σ is the standard deviation of the experimental measurement. Those three
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Fig 2. Experimental andmodel simulation results for cells andmajor extracellular components. Experimental (symbols) and model simulation (lines)
results for the batch (filled symbols) and the fed-batch (empty symbols) cultures using the Biogro-CHOmedium (squares) or the PowerCHO-2 medium
(triangles). Model simulated results for the batch cultures using Biogro-CHO (straight line—black) and PowerCHO-2 (dashed lines—green), and fed-batch
cultures using Biogro-CHO (doted line—red) and PowerCHO-2 (dashed and dotted lines—blue) for all results except for cell viability in B. All simulations
obtained from a unique model. A-F are for the Biogro-CHOmedium, G-L for the PowerCHO-2 medium.

doi:10.1371/journal.pone.0136815.g002

Fig 3. Experimental andmodel simulation results for major extracellular amino acids. Same conditions and symbols than in Fig 2 applied. A-F are for
the Biogro-CHOmedium, G-L for the PowerCHO-2 medium.

doi:10.1371/journal.pone.0136815.g003
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steps were repeated in the same order until optimisation results yielded realistic (biologically)
parameter values with sufficiently narrow confidence intervals and minimal residual error.
At each iteration, the initial guesses were changed and the parameters to be optimized were
selected according to the sensibility analysis results. The results presented in this work corre-
spond to the final step of this process, which correspond to the minimal residual error attained.

Experimental data from 24 h after inoculation to when the cell viability decreased under
95% were considered, and the molecular species used for optimization are the same as for sen-
sitivity analysis. The parameter values were also normalized to their specific order of magni-
tude (10n) to improve the optimization process by allowing similar weight to each parameter.
The lower bounds for all parameters were set to 0. Finally, flux values and the 95% confidence
interval for each optimized parameter were calculated using the MATLAB built-in functions
nlparci and nlpredci as well as the Jacobian matrix from the lsqcurvefit function. When avail-
able, initial conditions were taken from experimental data or from [29] otherwise (see S3 Table
for initial conditions).

Five different optimization procedures were performed: using the four culture data sets,
focusing on the two cultures performed with Biogro-CHO, on the two cultures performed with
PowerCHO-2, using data from the two fed-batch cultures or using data from only the two con-
trol batch cultures. The parameter values were initially obtained considering all four cultures,
and those values were taken as the initial guesses feeding the four other optimizations. The goal
was to be able to compare the parameter confidence intervals from two different subsets of the
whole data sets. First, the batch cultures as a whole were compared to the fed-batch culture,
then the cultures with Biogro-CHO medium, independently of their culture mode, were com-
pared to the PowerCHO-2 cultures. In a similar way, data sets from each culture were also
divided into two phases based on cell growth behaviour before and after 72 h, which corre-
sponds approximately to the mid-exponential phase. The parameters were first optimized with
a data set that corresponded to the first 72 h for all cultures, followed by a second optimization

Fig 4. Experimental andmodel simulation results for major intracellular components. Same conditions and symbols than in Fig 2 applied. A-H are for
the Biogro-CHOmedium, I-P for the PowerCHO-2 medium.

doi:10.1371/journal.pone.0136815.g004
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step from 72 h to the end of the culture, for all 4 cases. The parameter initial guesses (at t = 0)
were the same in each case. The goal was to evaluate the appropriateness of dividing the model
in 2 culture phases.

Results and Discussion

The culture medium is a primary factor in cell culture behaviour
All cultures were performed until cell viability reached 50%, which occurred at 144 h and 216 h
for batch cultures using Biogro-CHO and PowerCHO-2 respectively, and after 192 h and 360 h
for the fed-batch cultures (Fig 2B and 2H). The PowerCHO-2 medium composition thus
allowed maintaining high cell viability for an extended time period in batch and fed-batch
cultures compared to Biogro-CHO. Moreover, both PowerCHO-2 cultures led to higher
maximum viable cell concentrations (Fig 2A and 2G) and higher mAb titers (Fig 2C and 2I)
(6.0x106 cells mL-1 and 69 mg mAb L-1 for the fed-batch culture, and 8.2x106 cells mL-1 and 67
mg mAb L-1 for the batch culture) than the cultures using Biogro-CHO (3.0x106 cells mL-1 and
14.9 mg L-1 for the fed-batch culture, 2.7x106 cells mL-1 and 12.1 mg L-1 for the batch culture).
High non-limiting glucose condition (Fig 2D), such as in the Biogro-CHO fed-batch culture,
has not resulted in higher culture performance, nor maintaining high glutamine concentration,
since the PowerCHO-2 batch culture exhibits sustained growth in absence of glutamine (Fig
3H). However, the PowerCHO-2 medium contains more aspartate, asparagine, isoleucine,
arginine and serine than the Biogro-CHO (Fig 3), most probably fuelling cell metabolism for
an extended culture period. The differences in culture behaviour between the two media can
thus be attributed to the balance of PowerCHO-2 components concentration and ratios. There-
fore, with a significant medium effect on cell behaviour, the selected experimental space
appeared appropriate for studying the dynamic model robustness.

Sensitive parameters are of glycolysis regulation, the energetic
metabolism and Vmax’s
The model sensitivity analysis was performed as described in the Material and Methods sec-
tion, by first considering all four experimental data sets. The parameters for which the mean
value of the elementary effect was significantly high (i.e. lower than 0.6) were identified as the
most sensitive and were kept for the parameter optimization subsequent steps. The number of
parameters was restrained to the most sensitive ones in order to increase the accuracy and the
efficiency of the optimization process.

Of the 20 sensitive parameters, 11 are maximal rate constants (Vmax) and 4 are affinity con-
stants (Km), and the remaining parameters are inhibition (2) and activation constants (3).
Growth (Vmaxgrowth), glutamine metabolism (VmaxGlnT), glycolysis (VmaxHK, VfmaxPGI, VmaxPGK

and VmaxPK) and energetic metabolism (VmaxATPase, Vmaxresp, Vmaxleak, VrmaxAK and VfmaxAK)
were among sensitive parameters. Interestingly, the pathways with sensitive Vmax parameters
are among the ones previously identified as sensitive but for other CHO cell lines [29,30]. Of
the 4 sensitive Km, 3 are associated to cell energetics with KmNADH and KmATP, respectively
involved in NADH and ATP consumption, and KmADP/ATP, which affects seven energy-pro-
ducing reactions. Within the regulation constants, the sensitivity of KmG6P is explained by the
fact that glucose-6-phosphate level directly controls the glycolytic influx from a retro-inhibi-
tion term, with KdG6P also being a sensitive constant. The value of KmG6P has a direct impact
on the glucose-6-phosphate level, which in return affects greatly the glycolytic flux. Finally,
sensitivity of KdNH4growth may be linked to high NH4 concentration accumulating in the media
and thus expected to limit cell growth. The fact that 3 of those sensitive regulation constants,
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along with the VrmaxAK and VfmaxAK, are closely linked to the AMP-to-ATP ratio highlights the
crucial role of this regulation pathway on glycolysis. Moreover, the AMP-to-ATP ratio is an
efficient regulator of cell metabolism, since it varies faster than the ADP-to-ATP ratio [46] and
the fact that it affects several glycolytic enzymes, explaining the sensitivity of the parameters
that are linked to this ratio.

Although only Vmax constants have been identified as sensitive in our previous work with
CHO cells [29,30], Nolan & Lee [26] did also identified as sensitive some regulatory constants
from the glycolysis, especially in regards to lactate profile, studying a dynamic model for
another CHO cell line. Finally, performing a sensitivity analysis on a dynamic model for plant
cells [47], Mailier et al. [44] identified the concentrations of phosphate, nitrate and sulphur,
which acted as regulators, among the most sensitive parameters.

A single set of parameters allows describing cell behaviour for various
culture conditions
The model was first calibrated using all four sets of the experimental data obtained in this
work, as described in the Material and Methods section. The resulting model was then used to
produce simulations of experimental data (Figs 2–4 and S1–S3 Figs). It was then evaluated if
model parameters are culture medium and/or culture mode dependent. Therefore, indepen-
dent model calibrations were performed on all possible combinations of experimental data sub-
sets. Model parameters were then compared for their confidence regions (Fig 5 presents the
differences between the culture mode and the culture medium, see S5 Table for numerical val-
ues with 95% confidence intervals). There are only few parameters that are significantly differ-
ing according to the data sets used for optimization. In fact, there are no differences between
the batch and the fed-batch results, while there are only 3 parameters out of 20 being modified
comparing the two culture media. VmaxPGK is slightly (but significantly) lower in PowerCHO-
2, while lower KmNADH and higher Vmaxresp for the PowerCHO-2 could reveal a higher respira-
tion rate for this medium. The absence of difference between batch and fed-batch cultures is in
agreement with another dynamic model describing hybridoma metabolism [48]. In that case,
among half-saturation constants for all metabolic reaction rates, only the asparagine half-satu-
ration constant for asparagine consumption differed simulating batch and fed-batch culture
data, while 9 maximum reaction rates on 11 were identical, with only the Vmax for the conver-
sion of glutamate to proline and for the conversion of asparagine to asparatate being different.
The overall performance of the model in the present work suggests that a unique model can be
used to adequately simulate different fed-batch strategies on different culture media with a
unique set of parameter values, which was not the case when analysing different mAb recombi-
nant CHO clones [29]. Moreover, the calibration of the model parameters on each experimen-
tal data set taken separately negatively impacts on the magnitude of the confidence intervals
(Fig 5), thus reducing the overall model precision. The choice of a model with a single set of
parameters thus seems more interesting since, the parameters are more accurate when using a
wide array of experimental data obtained from different experimental spaces, and it allows the
model to be used in a more robust way. Given that normally each medium is developed specifi-
cally for a cell line and that its composition is highly complex, with for instance tedious to mea-
sure growth factors, it should be assumed that a dynamic metabolic model is expected being
specific to each medium to perform well. However, in our case a single model showed being
efficient at simulating the major metabolic differences between two different media applied to
the same cell line. Indeed, it thus seems from this work and previous observations [29] that a
model has to be cell line specific but it can be a useful tool to simulate cell behaviour testing
various culture media and culture conditions.
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A single set of parameters allows describing exponential and plateau
growth phases
Moving further challenging the model structure performance, we have evaluated the benefit of
dividing the model to describe two distinct but successive phases: before (< 72 h) and after
(> 72 h) mid-exponential growth phase. This time point approximates the moment where
growth and other major fluxes start declining. Although a fully dynamic model that includes
pathway regulation, such as in this work, is thought being able to cope with cell behaviour vari-
ation with time, the aim was to evaluate the effect on model simulations accuracy. The idea of
dividing the culture into two [16,24,49], three [50] or four [17] distinct culture phases has also
been proposed to model mammalian cells behaviour. In these works, indeed, metabolic flux
analysis (MFA) studies have revealed significant differences of flux levels and distribution at
different stages of a culture, under quasi-steady state condition however. In the present work,
the confidence regions overlap (confidence intervals (95%) in Fig 6, and numerical values in S6
Table) for all except for two parameters comparing before and after 72 h. The estimated value
of KmG6P is slightly lower after 72 h (2.6�10

−8 mmol.10-6cells versus 2.9�10−8 mmol.10-6cells),
which could indicate the limitation of glucose-6-phosphate depletion, and the value of KaAMP

is higher (0.11 versus 0.09), which may reveal a decrease of glycolytic activity and lactate pro-
duction at the mid-exponential phase. Overall, although simulation error can be lower when
changing the value of these two parameters, the structure of the model also shows that it is

Fig 5. Parameter estimates with confidence intervals for different media and culture modes. The parameter values and their confidence region are
compared when using for the optimization: All data from all cultures, Data from fed-batch cultures, Data from batch cultures, Data from cultures using Biogro-
CHO and Data from cultures using PowerCHO-2.

doi:10.1371/journal.pone.0136815.g005
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possible to describe the whole culture behaviour from inoculation to the decline phase with a
unique set of parameter values. While some discrepancies between experimental and simulated
data for some species can still be observed, this model is, to the best of our knowledge, the only
capable to simulate intracellular and extracellular concentrations for batch and fed-batch cul-
tures. It thus represents a first step in the development of a predictable in-silico platform of cell
behaviour. Moreover, since the model does not describe cell viability, and considering that the
metabolomic data remain reliable at high cell viability, it was decided to limit the further evalu-
ation of the model to the data sets with cell viability level of 95% and above. The decline phase
is thus not described nor simulated, limiting the scope of the model to the exponential and
early plateau phase.

Therefore, a unique model structure with a unique set of parameter values has been used to
simulate each culture (Figs 2–4). The simulations are in general within the experimental
data ± error range, which corresponds to the standard deviation. The model simulates ade-
quately the cell (Fig 2A and 2G) and mAb (Fig 2C and 2I) concentrations with time for the two
media. Glucose (Fig 2D and 2J) and glutamine (Fig 3B and 3H) profiles match the experimen-
tal data for batch cultures, while the model somewhat underestimates glucose consumption for
the fed-batch culture using PowerCHO-2 but overestimates glutamine consumption for both
fed-batch cultures. It should be reminded that the only model inputs are the parameter values,
the initial conditions and the feed volume and composition. Since glucose and glutamine are
fed in greater quantities, the deviations could be explained by the cumulative error at each feed.

The model also simulates cell respiration rate (Fig 4H and 4P) and related TCA metabolites
such as malate (Fig 4C and 4K) and NAD/NADH ratio (Fig 4G and 4O). The accumulation of
glucose-6-phosphate in the fed-batch culture using PowerCHO-2 is also accurately simulated
(Fig 4I). The AMP-to-ATP ratio is somehow underestimated by the model (Fig 4F and 4N)
but, however, it follows the general trend of experimental data except for the fed-batch culture

Fig 6. Parameter estimates with confidence intervals for different growth phases. Parameter value (black square) and confidence region when using
data before the mid-exponential growth phase at 72 h or after the mid-exponential growth phase for optimization.

doi:10.1371/journal.pone.0136815.g006
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using the Biogro-CHO medium. The metabolic shift from alanine production to alanine con-
sumption (Fig 3D and 3J) is not as pronounced in the simulations compared to experimental
data. The initial underestimation of pyruvate concentration (Fig 4L) might be related to the
overestimation of the direct VAlaTA flux in the latter stages of the culture, since the pyruvate
concentration stays constant in the simulations compared to experimental data. Also, in the
model, the VAlaTA reverse reaction is inhibited by extracellular glutamine, while the shift seems
closely related to glutamine depletion, suggesting that the chosen descriptive mechanism might
not be optimal. Moreover, the uptake rate for some amino acids seems to be overestimated
(e.g. tyrosine on S2A and S2F Fig and valine on S2B and S2G Fig) or underestimated (e.g.
asparagine, S2E and S2J Fig) for some others. A strategy to enhance the simulation fit for these
compounds would consist in optimizing cell and mAb composition (i.e. stoechiometry); under-
standing that the cell and mAb compositions can differ from the values proposed in literature
[34,35]. Moreover, this could also contribute improving simulation of the pentose phosphate
pathway components (xylose-5-phosphate shown in S3D and S3H Fig), which are currently
overestimated by the model. Since ribulose-5-phosphate is consumed for biomass synthesis,
this pathway is highly sensible to growth rate and thus to the cell content in nucleotide
precursors.

Fed-batch culture mode enables maintaining cell metabolic activity
The model, which showed being efficient at describing cell behaviour for the four culture con-
ditions assessed, was then used as an in silico platform to perform a dynamic MFA study
extracting tedious to impossible to obtain data from the same cultures. Major fluxes (Fig 7) at
all time points for all four cultures, as well as the numerical results with 95% confidence inter-
vals at 48 h (mid-exponential growth phase) and 96 h (plateau growth phase) (S7 and S8
Tables) are shown. Simulated metabolic fluxes are in agreement with literature on CHO cells.
Glucose consumption rate (VHK) was similar to that for lactate consumption (VLDH) rate (~
2x10-4 mmol.10-6cells.h-1 after 48 h), a value range that is consistent with literature with [1–2]
x10-4 mmol glucose.10-6 cells.h-1 and [1–3]x10-4 mmol lactate.10-6 cells.h-1 at exponential
phase [16,17,50]. The pyruvate dehydrogenase flux, which connects glycolysis and TCA cycle
shows a low value range of 1.6 ±0.2 to 1.7±0.2 10−5 mmol.10-6cells.h-1 that is close to a value
of 2.71x10-5 reported by Templeton et al. [17], while an higher value (13.5x10-5 mmol.10-6cells.
h-1) has been reported by Ahn & Antoniewicz [16] at exponential phase. The pentose phos-
phate pathway flux value (3.4±0.3–3.7±0.3 10-6mmol.10-6cells.h-1 at 48 h) is similar to values
reported at exponential phase with 1.8±0.2 mmol.10-6cells.h-1 [16] and at early exponential
phase 1.25x10-6 cells.h-1 [17].

There are very few differences in the flux levels for the first 72 h of the culture when the
four cases are compared. At 48 h, the glutamine consumption rate (VGlnT) is significantly lower
for the batch culture using Biogro-CHO than for the fed-batch culture using PowerCHO-2.
Ammonia production rate (VGLDH+VGlnT+VSDHH+VASN+VHISARGTA) seems lower for Biogro-
CHO compared to PowerCHO-2, although the difference is only significant when comparing
the batch mode with that medium to other cultures. This result was expected since Biogro-
CHOmedium contains significantly less glutamine at inoculation (and after 48 h), thus limit-
ing VGlnT and indirectly ammonia production.

Although all metabolic fluxes show a decreasing trend whatever the culture conditions from
48–96 h, significant differences of behaviour raised in the latter culture stages comparing flux
levels among cultures. This flux decrease was noticeable for glucose consumption (VHK, Fig
7A), lactate production (VLDH, Fig 7B), glutamine consumption (VGlnT, Fig 7D), alanine pro-
duction (VAlaTA, Fig 7E), the global TCA cycle activity (Fig 7G, defined as the sum of the fluxes
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that enter the TCA cycle or VGLDH+VPDH+VAlaTA+VPC+5�VAAtoSUC), and for the net ATP pro-
duction rate (Fig 7I, defined as the sum of all ATP-producing fluxes or VPGK + VPK + VAKGDH

+ VPC + VGlnT + 2�2.5�Vresp). In the case of VHK and VLDH, the only significant difference after
96 h is observed between the batch culture using Biogro-CHO and the other cultures, a result
that may be due to faster glucose depletion in the former case. However, both the glutamine
consumption rate and the ammonia production rate show maintaining their activity levels in
the two fed-batch cultures. This result indicates that the feed strategy was able to maintain glu-
tamine metabolism towards the TCA cycle and to limit glutamine depletion. Unlike glutamino-
lysis, glycolysis is not maintained at the same activity level in fed-batch cultures even if glucose
was not limiting. This could be due to the inhibition effect of lactate and alanine on phospho-
fructokinase (VPFK, equation 3 in S2 Table) and pyruvate kinase (VPK, equation 5 in S2 Table)
respectively. The value of the inhibition term of lactate on glycolysis under fed-batch condi-
tions decreased from 0.89 initially to 0.29 after 96 h, while the effect of alanine is much smaller
(0.96 to 0.86), thus decreasing phosphofructokinase less than lactate. Lactate accumulation is
thus thought causing a significant inhibition phenomenon in fed-batch. The dynamic structure
of the model as well as the inclusion of the main mechanisms involved in glycolysis regulations
result in a robust but reactive biosystem; the decreasing of a single flux can affect all the other
glycolytic fluxes, including glucose consumption (VHK) and lactate production rates. The
pentose phosphate pathway global activity (VG6PDH, Fig 7C), however, remains constant

Fig 7. Model simulation of metabolic fluxes.Metabolic fluxes (all in mmol.10-6cells.h-1) were simulated for the same conditions as in Figs 2–4 for batch
cultures using Biogro-CHO (straight line—black) and PowerCHO-2 (dashed line—green), and fed-batch cultures using Biogro-CHO (dotted line—red) and
PowerCHO-2 (dashed and dotted lines—blue). Ammonia production (Fig 7F) is defined as VGLDH+VGlnT+VSDHH+VASN+VHISARGTA, and TCA cycle flux (Fig 7G)
is defined as the sum of the reactions entering in (VGLDH+VPDH+VAlaTA+VPC+5*VAAtoSUC), and finally the net ATP production flux (Fig 7I) consists in the sum of
the ATP-producing metabolic fluxes (VPGK + VPK + VAKGDH + VPC + VGlnT + 2*2.5*Vresp).

doi:10.1371/journal.pone.0136815.g007
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throughout the culture unlike glycolysis to which it is intimately related. Interestingly, the
pyruvate dehydrogenase activity level (VPDH, Fig 7G) shows being linked to the medium com-
position rather than to the culture mode. Indeed, the values in Biogro-CHO after 96 h (0.75
±0.13 10−5 mmol.10-6cells.h-1 for batch culture, 0.75±0.19 10−5 mmol.10-6cells.h-1 for the
fed-batch culture) are significantly lower than the ones for PowerCHO-2 (1.36±0.17 10−5

mmol.10-6cells.h-1 for batch culture, 1.26±0.15 10−5 mmol.10-6cells.h-1 for the fed-batch cul-
ture). Since VPDH activity relies on the intracellular concentration of pyruvate and on the
NAD/NADH ratio in our model, it may be affected indirectly by the culture medium composi-
tion in the latter culture stages from extracellular metabolites concentration. However, further
investigations are required to clearly elucidate the cause behind this difference of behaviour.

Fed-batch culture condition enhances the stability of metabolic flux
distribution
To further investigate the behaviour of the cells looking at biological markers, the carbon flow
distribution through the metabolic network was also analysed by model simulations (Fig 8 for
key metabolic ratios, and S9 Table for numerical values and 95% confidence intervals at 48 and
96 h). Similarly than for most fluxes (Fig 7), flux ratios are closely similar for all culture condi-
tions until 96 h, which corresponds to late exponential phase in batch and mid-exponential in
early fed-batch operation. Then, the behaviours differ for the two batches with PowerCHO-2,
while all flux ratios exhibit quasi steady-states with similar values in both fed-batch cultures.
Interestingly, PowerCHO-2 batch shows opposite behaviour of that in Biogro-CHO medium
from 96 h. We recall the Biogro-CHO batch reached maximum cell density at ~ 96 h compared
to ~ 120 h in PowerCHO-2 batch, while cell growth extended to more than 120 h in both fed-
batches (Fig 4B and 4H). Indeed, from 96 h in the PowerCHO-2 batch culture the ratio of
pyruvate dehydrogenase (VPDH)-to-glycolytic flux (VPK) and the VPDH contribution to the
TCA cycle both suddenly increase until the end of the culture (Fig 8B and 8D respectively),
while amino acids flux to the TCA cycle suddenly decreases (Fig 8E). These punctual metabolic
shifts coincide with glutamine depletion observed in this PowerCHO-2 batch culture. Of inter-
est, the lactate production-to-glucose consumption rates ratio (VLDH/VPK, Fig 8A) exhibits an
enhanced stability, also in that culture compared to the batch Biogro-CHO culture. Moreover,
the simulated ATP turnover rate, either in glycolysis (VHK+VPFK, Fig 8C) or from the oxidative
phosphorylation (Vresp, Fig 8F), shows a higher stability in the PowerCHO-2 batch culture. The
effect of re-feeding essential medium components in fed-batch cultures clearly show stabilizing
the cell metabolic efficiency for all flux ratios analysed (Fig 8), exhibiting steady-state trend for
the whole culture duration regardless of the use of the Biogro-CHO or PowerCHO-2 media.
Therefore, although each individual flux shows to evolve with culture time (Fig 7), the cell met-
abolic robustness at maintaining stable carbon flux distribution seems enhanced, including the
ATP turnover rate which determines a cell global efficiency. We have previously showed that
such stable cell energetic state also determines cell productive capacity [29]; thus agreeing with
the model predictions of similar production capacity in all the cases under study. Specifically,
the specific growth rates and mAb production rates are adequately simulated.

Our results show a robust metabolism for this cell line, when in batch mode, with little dif-
ferences in the flux distribution even at the end of the experimental phase. Similar results in
regards to this flux distribution was observed by Naderi et al. [25] concerning the absence of
differences between exponential and stationary phases for viable cells in batch cultures. In con-
trast, some reports indicate that stationary phase exhibits lower glycolytic fluxes coupled with a
TCA activity similar to [16] or greater [17] than the TCA cycle activity measured during the
exponential phase. In our model, however, simulations were stopped rapidly in the stationary
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phase because of the criteria of 95% cell viability imposed. Those results from literature might
have been observed in this work if the model structure would have allowed extending the simu-
lation further at low cell viability.

When comparing batch and fed-batch-modes, model simulations are in agreement with
previous work of Dorka et al. (2009) who also used a dynamic model for hybridoma cells to
compare culture modes showing a similar flux distribution for both modes. However, other
work performing a MFA study on NSO cells [51] showed a significantly different flux distribu-
tion comparing fed-batch to batch modes. Authors reported that either the flux distribution
and the flux ratios changed when the cells switched from a lactate production mode to a lactate
consumption mode, a phenomenon that has not been clearly observed in this work neither
experimentally nor from model simulations, and which may explain a different conclusion in
our work compared to Muluktula et al. [51]. Taking all of the above, this in silico dynamic met-
abolic flux distribution analysis thus suggests that the CHO cell line studied has a highly regu-
lated metabolism.

Amino acids metabolism limits growth in the latter phases of the culture
The CHO cells under study exhibit an inefficient glucose metabolism with more than 75%
of glycolysis resulting in lactate production, which leads to lactate accumulation an thus
growth inhibition (< 58.5 mM lactate [52]). Around only 7% of the glycolytic flux is directed

Fig 8. Model simulations of the metabolic ratios.Metabolic fluxes were simulated for the same conditions than in Fig 2, legend is the same as in Fig 7.
Formulation of TCA cycle flux and net ATP production are the same as in Fig 7. Amino acids contribution to the TCA cycle is the ratio of the sum of the fluxes
from amino acids feeding the TCA cycle (VGLDH+VAlaTA+5*VAAtoSUC) to the sum of all the fluxes feeding the TCA cycle, as defined in Fig 7. The net ATP
production from glycolysis is the ratio of the sum of the ATP-producing rate from glycolysis (VHK+VPFK) and the net ATP production rate. The net ATP
production from respiration is the ratio of 2*2.5*Vresp (or 2 moles equivalent of NADH) to the net ATP production rate.

doi:10.1371/journal.pone.0136815.g008
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toward the TCA cycle via the pyruvate dehydrogenase (VPDH) enzyme, while another fraction
of the glycolytic flux is directed toward alanine production (VAlaTA) (~10%) and pyruvate
carboxylase (VPC) (less than 5%). The inefficient use of glucose for ATP production is a
well-known characteristic of CHO cells [38], converting most of the available glucose into
lactate obtaining ATP from an aerobic glycolysis process. Glycolysis normally accounts for
roughly 45% of the net ATP production, cell respiration being responsible for the remaining
production.

Since most of medium glucose is not processed via the VPDH enzyme, the TCA cycle is
largely fed from amino acids metabolism (VAlaTA+VGLDH+5�VAAtoSUC), indeed accounting for
60±1 to 62±1% after 48 h depending on the culture, compared to only 22±1% for the pyruvate
dehydrogenase. The major contribution of glutamine and asparagine to TCA feeding in CHO
cells was reported previously [53]. Surprisingly in our case, the glutamate dehydrogenase flux
(VGLDH) was negligible; most of the glutamate integrating the TCA cycle via alanine transferase
(VAlaTA). Unlike VGLDH, VAlaTA pathway does not produce directly ammonia, a metabolite
known to inhibit cell growth and viability as well as recombinant proteins glycosylation pattern
[7]. However, the cells do not consume extracellular glutamate, and the conversion of gluta-
mine to glutamate via VGlnT, of asparagine to aspartate via VASN, which can be further trans-
formed to glutamate via aspartate transferase, both produce ammonia as a by-product. While
the cells manage to maintain an efficient amino acids metabolism in regards to ammonia secre-
tion, the use of amino acids to fuel the TCA cycle still produces undesired metabolites com-
pared to the use of glycolysis. In our case for fed-batch culture, the inhibition term of growth
equation in regards to lactate went from 0.99 initially to 0.89 using Biogro-CHO, and from
0.99 initially to 0.86 using PowerCHO-2. Concerning ammonia, however, its inhibition term in
the growth equation changed from 0.957 in both fed-batch cultures initially to 0.372 for the
fed-batch culture using Biogro-CHO, and 0.278 for the fed-batch culture using PowerCHO-2
after 120 h. The accumulation of ammonia, more than the accumulation of lactate, may explain
the slow growth observed in the latter stages in both fed-batch cultures, and the absence of
improvement of the mAb final titer compared to the batch cultures regardless of the culture
medium used. Moreover, the inhibition factor linking growth rate to ammonia concentration
was previously identified as a sensitive parameter (see Table 1), highlighting and agreeing with
the negative effect of ammonia. Since our model does not simulate cell death mechanisms, it
was then impossible to determine if ammonia is inhibiting cell growth or promoting cell death.
However, from our simulation results, it is obvious that ammonia affects negatively the net cell
growth rate, which is the effective sum of both growth and death rate. The choice of an inhibi-
tion mechanism may thus seem appropriate of being eventually considered.

Conclusion
In this work, we have further developed, accounting for the regulation of glycolysis, and
adapted a kinetic metabolic model previously described for other CHO cell lines. The model
was challenged with experimental data from two different culture media used in batch and
fed-batch cultures. In such model, the initial conditions and the feed composition are the only
inputs required to perform culture simulations. A single set of kinetic parameter values allowed
describing CHO cell nutritional and metabolic behaviours under batch and fed-batch cultures
using two different culture media (Biogro-CHO and PowerCHO-2). To the best of our knowl-
edge, it is the first time a metabolic model that includes such a wide array of intracellular con-
centrations is used to compare culture media and fed-batch strategies for CHO cells. Given its
flexible dynamic structure, while the model is cell line-specific, our results suggest that it is not
culture medium-specific. In addition to the concentration profiles, given the dynamic nature of
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the model, we performed a dynamic metabolic flux analysis from model simulation that was
in agreement with literature. Model simulations suggest that the cell line used in this study
(CHO-DXB11) has a robust metabolism, showing little changes in terms of flux distribution
throughout nearly all of the exponential and plateau phase. That metabolism was maintained
regardless the medium or the culture mode for most of the culture duration. The fed-batch
mode showed stabilizing cell metabolism for an extended period of time. However, sustained
amino acids metabolism in fed-batch cultures led to important ammonia accumulation, which
may have limited growth while resulting, however, in higher mAb production. We thus believe
such model can be further used as an in silico platform and challenged for the identification of
optimized medium composition and fed-batch culture strategies, guiding and accelerating bio-
process development steps.

Supporting Information
S1 Fig. Experimental and model simulation results for intracellular nucleotides. Same con-
ditions and symbols than in Fig 2 applied.
(TIF)

S2 Fig. Experimental and model simulation results for intracellular metabolites. Same con-
ditions and symbols than in Fig 2 applied.
(TIF)

S3 Fig. Experimental and model simulation results for extracellular amino acid. Same con-
ditions and symbols than in Fig 2 applied.
(TIF)

Table 1. Sensitivity analysis for the selected parameters.

Parameters Mean of the elementary effect Standard deviation of the elementary effect

Vmaxgrowth 4.6 6.9

VmaxPK 1.7 4.1

VrmaxAK 1.6 3.6

VmaxPGK 1.4 3.5

Vmaxresp 1.4 3.6

VfmaxAK 1.3 2.9

VmaxHK 1.3 3.3

VmaxATPase 1.2 4.7

KmATP 1.1 4.0

KmADP/ATP 1.1 2.6

KmNADH 0.9 3.1

KdNH4 growth
0.9 3.4

KmG6P 0.9 3.4

αAMP/ATP 0.8 2.5

VfmaxGlnT 0.7 3.1

βAMP/ATP 0.6 2.5

Vmaxleak 0.6 1.6

VfmaxPGI 0.6 2.1

KaAMP/ATP 0.6 1.7

KdG6P 0.6 1.7

doi:10.1371/journal.pone.0136815.t001
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S1 Table. Reactions of the metabolic model. All units are in millimole. Conversion factors for
biomass and mAb are 2.93x10-3mmol.10-6 cells and 9.17x10-3 mmol.mg-1 respectively.
(DOCX)

S2 Table. Kinetic rate equations.
(DOCX)

S3 Table. State variables and initial conditions.
(DOCX)

S4 Table. Parameter values. Parameter values for all parameters, including non-optimized
parameters, and the boundary of their confidence interval (95%), when it applied. All the data
available was used for parameter estimation (four cultures).
(DOCX)

S5 Table. Parameter values for the 20 most sensitive parameters for different media and
culture modes. Parameter values and confidence intervals (95%) for the same conditions than
in Fig 5.
(DOCX)

S6 Table. Parameter values for the most sensitive parameters for different growth phases.
Parameter values and confidence intervals (95%) for the same conditions than in Fig 6.
(DOCX)

S7 Table. Metabolic fluxes at 48 and 96 h (Batch cultures).Metabolic fluxes (all in mmol.10-
6cells.h-1) and their confidence intervals at 48 h and 96 h for the same conditions than in Fig 7
(Batch cultures only). Definition for ammonia production, TCA cycle and net ATP production
are the same than in Fig 7.
(DOCX)

S8 Table. Metabolic fluxes at 48 and 96 h (Fed-batch cultures).Metabolic fluxes (all in
mmol.10-6cells.h-1) and their confidence intervals at 48 h and 96 h for the same conditions
than in Fig 7 (Fed-batch cultures only). Definition for ammonia production, TCA cycle and
net ATP production are the same than in Fig 7.
(DOCX)

S9 Table. Metabolic flux ratios at 48 and 96 h.Metabolic ratios (all in mmol.10-6cells.h-1) and
their confidence intervals at 48 h and 96 h for the same conditions than in Fig 7. Definition for
ammonia production, TCA cycle and net ATP production are the same than in Fig 7.
(DOCX)
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