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Abstract

Meniscal tears are common injuries, and while partial meniscectomy is a frequent treatment 

option, general meniscus loss is a risk factor for the development of osteoarthritis. The goal of this 

study was to measure the in vivo tibiofemoral cartilage contact patterns in patients with meniscus 

tears in relation to biomarkers of cartilage catabolism in the synovial fluid of these joints. A 

combination of magnetic resonance imaging and biplanar fluoroscopy was used to determine the 

in vivo motion and cartilage contact mechanics of the knee. Subjects with isolated medial 

meniscus tears were analyzed while performing a quasi-static lunge, and the contralateral 

uninjured knee was used as a control. Synovial fluid was collected from the injured knee and 

matrix metalloproteinase (MMP) activity, sulfated glycosaminoglycan, cartilage oligomeric matrix 

protein, prostaglandin E2, and the collagen type II cleavage biomarker C2C were measured. 

Contact strain in the medial compartment increased significantly in the injured knees compared to 

contralateral control knees. In the lateral compartment, the contact strain in the injured knee was 

significantly increased only at the maximum flexion angle (105°). The average cartilage strain at 

maximum flexion positively correlated with total MMP activity in the synovial fluid. These 

findings show that meniscal injury leads to loss of normal joint function and increased strain of the 

articular cartilage, which correlated to elevated total MMP activity in the synovial fluid. The 

increased strain and total MMP activity may reflect, or potentially contribute to, the early 

development of osteoarthritis that is observed following meniscal injury.
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1. Introduction

Meniscal tears are a common injury, with more than 850,000 meniscal surgeries performed 

each year in the United States and nearly twice as many worldwide (Arendt et al., 1999; 

Baker and Lubowitz, 2006). The menisci play a critical role in normal knee function by 

providing important load bearing capabilities, lubrication, proprioception, joint congruity, 

and joint stability (Ahmed and Burke, 1983; Haut Donahue et al., 2004; Markolf et al., 

1981; Wojtys and Chan, 2005). Meniscal injury is associated with pain and degradative 

changes in the knee joint that may ultimately lead to osteoarthritis (Badlani et al., 2013; 

Berthiaume et al., 2005; Christoforakis et al., 2005; Hunter et al., 2006; Majewski et al., 

2006; Roos et al., 1998; Sharma et al., 2008; Wyland et al., 2002). Furthermore, the surgical 

treatment of a meniscal tear by partial or total meniscectomy is strongly associated with 

articular cartilage degradation and the progression of osteoarthritis (Lohmander et al., 2007; 

Lohmander et al., 1994; Roos et al., 1998; Wyland et al., 2002). In fact, more than half of 

people with meniscectomy develop knee osteoarthritis within 5–15 years after joint injury 

(Lohmander et al., 2007; Lohmander et al., 1994). Therefore, surgeons attempt to preserve 

and repair the native meniscal tissue following injury (Abrams et al., 2013; Hutchinson et 

al., 2014; Lee et al., 2006; Maffulli et al., 2010). However, when repair is not feasible, 

partial meniscectomy is frequently implemented to treat meniscal tears. While these patients 

report improvements in pain and function, the ability of this surgery to mitigate the risk of 

premature development of osteoarthritis may be limited (Andersson-Molina et al., 2002; 

Fauno and Nielsen, 1992; Hall et al., 2014; Hoser et al., 2001; Katz et al., 2006; Rangger et 

al., 1995).

In order to better understand the mechanisms by which meniscal injury or meniscectomy 

predisposes the joint to osteoarthritis, changes in joint loading have been assessed using a 

variety of approaches, including finite element models (Pena et al., 2006; Peña et al., 2005; 

Wilson et al., 2003; Zielinska and Donahue, 2006), animal models (Cook et al., 2006; Elliott 

et al., 1999), and cadaveric studies (Bedi et al., 2010; Lee et al., 2006; Seitz et al., 2011). For 

example, finite element modeling of the joint has shown that partial meniscectomy, similar 

to total meniscectomy, results in decreased contact areas and increased peak stresses in 

articular cartilage (Pena et al., 2006; Peña et al., 2005; Zielinska and Donahue, 2006). 

Furthermore, in human cadaveric knees, radial tears or partial meniscectomy significantly 

increased contact pressures, and surgical repair of the meniscus failed to restore the normal 

pressure distribution in the knee (Bedi et al., 2012; Bedi et al., 2010). However, available in 

vivo data detailing the changes in tibiofemoral contact mechanics following meniscal tears is 

limited.

In addition to the altered mechanical environment following a meniscal tear, the biochemical 

environment may also be affected by joint injury (Brophy et al., 2012; Lindhorst et al., 2000; 

Lohmander et al., 1999). A variety of biomarkers of cartilage metabolism in the synovial 

fluid have been associated with the development of osteoarthritis, including matrix 

metalloproteinases (MMPs) (Baragi et al., 2009; Janusz et al., 2002; Pozgan et al., 2010), 

sulfated glycosaminoglycans (sGAGs) (Lindhorst et al., 2000; Lohmander et al., 1999), 

cartilage oligomeric matrix protein (COMP) (Carlson et al., 2002; Wu et al., 2014), 
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prostaglandin E2 (PGE2) (Nishimura et al., 2002), and C2C (Fraser et al., 2003), which is a 

type II collagen neoepitope released upon collagenase cleavage. However, the relationship 

between catabolic biomarkers in the synovial fluid and cartilage strains following meniscal 

injury has yet to be studied. Such information could provide insights into the link between 

biomechanical and biochemical changes in injured joints that may promote the early 

development of osteoarthritis.

The primary goals of this study were to quantify the effects of meniscal tears on in vivo 

cartilage strains over a full range of weight bearing flexion angles and to determine the 

relationship of cartilage strain with biomarkers of cartilage degradation in the synovial fluid. 

We hypothesize that following a medial meniscus tear, the contact strain in the medial 

compartment will be increased as compared to the uninjured knee and that cartilage strain 

magnitudes will positively correlate with catabolic biomarkers in the synovial fluid.

2. Methods

2.1 Patient recruitment and inclusion criteria

Eight subjects (5 male, 3 female, mean age: 54, range: 48–62) with an isolated unilateral 

medial meniscus injury were recruited and provided informed consent for this study with 

approval by the Duke University Medical Center Institutional Review Board (IRB). All 

subjects reported an identifiable, traumatic injury that occurred prior to their study visit. 

Subjects had full range of motion in the injured knee at the time of study participation. In 

addition to a clinical examination and patient history, the diagnosis of meniscal tear was 

confirmed by clinical MRI. From the scans, the range of tears were classified as follows: 

body/posterior horn tear with a flipped fragment (4 subjects) and complex tear of the 

posterior horn (4 subjects). Subjects were excluded if they had MRI evidence of arthritis, 

previous knee surgery, or chronic knee pain. In all subjects, the contralateral knee was 

normal with no history of trauma, chronic pain, or surgery and served as a control. MR 

images were reviewed by a board certified musculoskeletal radiologist with more than 25 

years of experience. Cartilage of the femoral condyles and tibial plateaus was assessed in 

both knees. Six of the subjects had normal cartilage. Minimal surface irregularity was 

present on one surface of each of the two remaining subjects (one medial tibial plateau and 

one posterior medial femoral condyle).

2.2 MR-based modeling

Cartilage contact strains were measured using a previously established technique combining 

MR-based 3D models of the knee and biplanar fluoroscopy (Bischof et al., 2010; Van de 

Velde et al., 2009). Both the injured and uninjured control knees were imaged using a 3T 

MR scanner (Trio Tim, Siemens, Germany). Sagittal plane images were captured using a 

fat-suppressed 3D double-echo steady state (DESS) sequence (flip angle: 25°, TE: 6ms; TR: 

17ms) with a 16cm x 16cm field of view. The matrix was 512 × 512 pixels and slice 

thickness was 1 mm. Next, the MR images were imported into solid modeling software 

(Rhinoceros, Robert McNeel and Associates, Seattle, WA) so that outlines of the bony 

cortices and articular cartilage surfaces could be traced. These line models were converted 

into point clouds and 3D meshes of the femur, tibia, and articular cartilage were created with 
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Geomagic Studio software (3D Systems, Rock Hill, SC) (Figure 1) (Coleman et al., 2013). 

This method has been previously validated for measuring tibiofemoral cartilage thickness 

(Van de Velde et al., 2009). Additionally, a recent study from our laboratory demonstrated a 

coefficient of repeatability of 0.03 mm in measuring tibial, femoral, and patellar cartilage 

thickness (Coleman et al., 2013), corresponding to a difference in cartilage thickness of 1% 

(Coleman et al., 2013; Widmyer et al., 2013).

2.3 Fluoroscopic imaging

Each subject’s injured and contralateral uninjured control knee were imaged using biplanar 

fluoroscopy (Pulsera, Philips, The Netherlands) (Abebe et al., 2011a; Abebe et al., 2011b). 

Digital radiographs were captured while the subject was standing with a single knee 

positioned between the crossing beams of the fluoroscopes. To evaluate a wide range of 

motion, each subject performed a quasi-static lunge from full extension to 90° in increments 

of 30°. To capture even deeper flexion, we also included a 105° knee flexion position. 

Subjects were positioned at each flexion angle using a goniometer. The radiographic images 

were imported into the solid modeling software to reproduce the position and orientation of 

the fluoroscopes at the time of testing. For each flexion angle, the MR-based 3D models of 

the femur and tibia were imported into this system and manually positioned in 6 degrees of 

freedom until their projections matched their respective silhouette on each of the 

fluoroscopic images simultaneously (Figure 1) (DeFrate et al., 2006). Thus, the 3D models 

were used to reproduce the position of the knee during the lunge sequence (Abebe et al., 

2011b; DeFrate et al., 2006). Previous studies have shown that this methodology can 

reproduce joint motion to within less than 0.1mm and 0.3°(Caputo et al., 2009; DeFrate et 

al., 2006; Utturkar et al., 2013).

2.4 Measurement of cartilage strain

Knowing the relationship of the cartilage surfaces relative to the bones from MRI, areas of 

overlap of the undeformed tibial and femoral cartilage mesh surfaces were used to calculate 

tibiofemoral cartilage contact strains in each knee position. Cartilage-to-cartilage contact 

strains were calculated by taking the ratio of the distance of penetration to the thickness of 

the two cartilage layers at each point on the tibial cartilage surface (Bischof et al., 2010; Van 

de Velde et al., 2009) (Figure 2). Peak strains were calculated on both the injured and 

uninjured knee in both the medial and lateral compartments at each flexion angle. 

Differences in peak cartilage contact strains were compared within each compartment using 

a two-way ANOVA, with flexion angle and the presence or absence of meniscal injury as 

repeated measures. The Newman-Keuls post hoc test was used to detect differences between 

means as appropriate. Differences were considered statistically significant at a 95% 

confidence level (p < 0.05).

2.5 Synovial fluid biomarkers

As part of the IRB approved protocol, serum and lavaged synovial fluid was collected at the 

time of meniscal surgery in seven of the eight subjects. The median time from injury to 

surgery was 13 weeks and ranged from 4 – 34 weeks. Synovial fluid was centrifuged for 5 
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min at 3500g and 4°C. Then the synovial fluid and serum were aliquoted and stored at 

−80°C until biomarker analyses were performed.

Total MMP activity was measured as previously published using the quenched fluorogenic 

substrate Dab-Gly-Pro-Leu-Gly-Met-Arg-Gly-Lys-Flu (Sigma-Aldrich; St. Louis, MO) 

(McNulty et al., 2009; Wilusz et al., 2008). sGAG content was measured in the synovial 

fluid using an alcian blue assay (Kamiya Biomedical Company, Seattle, WA). Enzyme-

linked immunosorbent assays (ELISAs) were used to measure the following biomarkers in 

the synovial fluid: COMP (Biovendor, Czech Republic), PGE2 (R & D Systems, 

Minneapolis, MN), and C2C (Ibex, Montreal, Canada). Urea measurements were performed 

on the matched serum and synovial fluid samples using the urea nitrogen reagent set (Pointe 

Scientific, Canton, MI) and urea standards (CMA Microdialysis, North Chelmsford, MA) to 

determine the dilution factor for the lavaged synovial fluid. The dilution factor (DF) was 

calculated as follows: DF = (Serum Urea + 0.897)/Synovial Fluid Urea (Kraus et al., 2002). 

Final concentrations of the biomarkers were corrected for the synovial fluid dilution factor. 

The synovial fluid measurements were not normally distributed and thus the median values 

are reported. Spearman correlations were performed to determine the relationship between 

the average strain in the medial and lateral compartments at 105° of flexion and the synovial 

fluid concentrations of each biomarker.

Results

Peak contact strains in the medial compartment of the injured knee were significantly greater 

than those of the uninjured knee (Figure 3, p = 0.008). Across all flexion angles, peak 

medial compartment strain averaged 17 ± 5% (mean ± standard deviation) in the intact knee, 

compared to 23 ± 7% in the injured knee. No statistically significant effects of flexion angle 

(p = 0.59) or significant interactions between flexion angle and the presence or absence of 

meniscal injury (p = 0.21) were detected.

In the lateral compartment, a statistically significant interaction between flexion angle and 

meniscal injury was observed (Figure 4, p = 0.038). In the normal knee, the contact strain 

ranged from 15 ± 3% at 0° of flexion to 17 ± 3% at 105° of flexion. In the injured knee, 

contact strain was 12 ± 3% at 0° of flexion and increased to 23 ± 7% at 105° of flexion. 

There was a statistically significant increase in contact strain between the normal and injured 

knee at 105° of flexion (p = 0.029).

All of the catabolic biomarkers were detectable in the synovial fluid from the injured knee at 

the time of joint surgery. The median total MMP activity was 906 × 103 fluorescent 

units/mL in the synovial fluid of the meniscal tear patients (Figure 5A). The median 

concentration of each of the other biomarkers in the synovial fluid was 78 µg/mL sGAG 

(Figure 5B), 15 µg/mL COMP (Figure 5C), 25 ng/mL PGE2 (Figure 5D), and 69 ng/mL 

C2C (Figure 5E).

Given the significant increases in cartilage strain in both the medial and lateral 

compartments at 105° of flexion, we averaged the strain across both compartments to give 

an average total strain across the tibiofemoral joint. This average strain was then correlated 
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to the concentrations of the biomarkers in the synovial fluid (Table 1). There was a positive 

correlation between the total MMP activity and average cartilage strain (R = 0.79, p < 0.05). 

However, there were no significant correlations between sGAG, COMP, PGE2, or C2C 

levels and cartilage strain in these subjects.

Discussion

This study investigated in vivo cartilage contact strain patterns in knees with injured medial 

menisci through the use of MRI, biplanar fluoroscopy, and 3D modeling and correlated 

cartilage strain with biomarkers of cartilage metabolism in the synovial fluid, which have 

previously been associated with the development of osteoarthritis. Based on the established 

link of increased risk for early onset osteoarthritis following meniscal tear (Lohmander et 

al., 2007), our hypothesis was that there would be increased contact strain in the injured 

knees and that the catabolic biomarkers would correlate with cartilage strain. In general, our 

results confirm the hypothesis, demonstrating that medial compartment strains increased 

significantly across all flexion angles and that lateral compartment strains increased at 105° 

of flexion. Overall, the average increase in contact strain following injury was 

approximately 6% in the medial compartment. Because peak strains were elevated in both 

compartments at maximum flexion, correlations were performed between average strain and 

biomarker levels in this knee position. As a result, we found that average cartilage strain at 

105° of flexion correlated with the total MMP activity in the synovial fluid.

Several previous studies have examined tibiofemoral cartilage contact strains in healthy 

knees (Bingham et al., 2008) and knees with cruciate ligament deficiencies (Van de Velde et 

al., 2009). The magnitudes and trends in contact strains reported in this study are consistent 

with these previous studies (Bingham et al., 2008; Van de Velde et al., 2009). Specifically, 

these previous studies have shown that strains from the uninjured knee of subjects with ACL 

injuries and in subjects with healthy knees ranged from 10–30%, with higher values 

typically occurring in the medial compartment (Bingham et al., 2008; Van de Velde et al., 

2009).

The effects of the medial meniscus injury were most evident in the medial compartment, 

which experienced significantly elevated contact strains compared to the uninjured control 

knee at all flexion angles. Other studies have investigated the mechanical effects of medial 

meniscus injuries and treatment on various knee functions in both computational (Bae et al., 

2012; Peña et al., 2005; Vadher et al., 2006; Zielinska and Donahue, 2006) and in vitro 

(Allaire et al., 2008; Bedi et al., 2010; Lee et al., 2006; Seitz et al., 2011) models. However, 

these data are typically reported in the form of contact pressures or stresses. While it is not 

possible to infer contact stresses directly in the current study, the data trends are similar in 

both model modalities, indicating that loss of medial meniscus integrity results in increases 

in medial compartment loading. Interestingly, the results of the present study also found 

increased contact strains in the lateral compartment at 105° of flexion. Since the medial 

meniscus is believed to have an important role in transmitting load in higher flexion angles 

(Lee et al., 2006; Pinskerova et al., 2009; Seitz et al., 2011; Yao et al., 2008), it is likely that 

disruptions in the position of the knee due to a medial meniscus tear alter load transmission 

through the lateral compartment as well, as observed in this study.
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Altered joint loading is believed to play an important role in the development of 

osteoarthritis (Guilak, 2011). While the multifactorial origin of mechanically-induced joint 

degeneration remains to be elucidated, the connection between traumatic knee injury and 

early osteoarthritis is well established, especially given the high rates of disease progression 

in those who have ligamentous or meniscal injuries (Lohmander et al., 2007). Because these 

injuries have been shown to invoke joint kinematic changes during a variety of functions 

(Ahn et al., 2011; Andriacchi et al., 2004; Bedi et al., 2012; Bedi et al., 2010; Chen et al., 

2012; Tashman et al., 2004), it has been suggested that these ensuing changes alter cartilage 

loading detrimentally. Several studies, including our present findings, provide support for 

this hypothesis by demonstrating alterations in cartilage stress and strain patterns after joint 

injury (Bedi et al., 2013; Bedi et al., 2010; Bischof et al., 2010; Peña et al., 2005; Van de 

Velde et al., 2009). However, despite the increasing evidence of altered stress and strain 

distributions in the joint following injury, how these changes relate to mechanical and other 

physical factors experienced at the cellular and molecular compositional level is less clear 

(Halloran et al., 2012). In this regard, in vivo strain data, in combination with experimental 

measures of contact stress (Bedi et al., 2010) and computational models of the knee (Pena et 

al., 2006; Wilson et al., 2003; Zielinska and Donahue, 2006) may provide important insights 

into the mechanobiologic response of cartilage to altered loading (Sanchez-Adams et al., 

2014). In this study, we have shown the effects of a meniscal tear on cartilage strain but it is 

also important to note that the altered mechanical loading in the joint following a meniscal 

injury likely affects other joint tissues including the meniscus, bone, ligaments, and 

synovium. In particular, the meniscus, bone, and synovium have been shown to be involved 

in the production of catabolic biomarkers as well (Brophy et al., 2012; Galliera et al., 2010; 

Heard et al., 2011).

Cartilage strain following meniscal injury correlated positively with total MMP activity in 

the synovial fluid. MMPs are a family of enzymes capable of degrading all components of 

the extracellular matrix, and in particular the collagenases MMP-1, MMP-8, MMP-13, and 

membrane type 1 MMP (MT1-MMP) are the only enzymes capable of breaking down the 

intact triple helical collagen (Billinghurst et al., 1997). MMPs have previously been shown 

to be upregulated following meniscal injury (Brophy et al., 2012; Killian et al., 2011) and to 

be mechanically regulated (Blain, 2007). In addition, specific inhibition of MMP-13 or 

broad spectrum MMP inhibition protects against the development of osteoarthritis following 

medial meniscus tear in a rat model (Baragi et al., 2009; Janusz et al., 2002). Broad 

spectrum MMP inhibition can also promote integrative meniscal repair in the presence of 

IL-1 (McNulty et al., 2009). In this study, the total MMP activity measured is a combination 

of the activity of both the pro-MMPs and active MMPs secreted into the synovial fluid. Very 

few of the synovial fluid samples contained active MMPs and thus the majority of the 

MMPs were in the proenzyme form. Therefore, it is possible that active MMPs may be 

bound in the tissue extracellular matrix or may have degraded during sample processing. 

Alternatively, the MMPs in the joint are not yet activated. A variety of factors in the joint 

can activate the pro-MMPs, including plasmin and MT-MMPs (Milner et al., 2001) and also 

activated protein C (APC), which is elevated in the synovial fluid of osteoarthritic patients 

(Jackson et al., 2014). Therefore, the measured total MMP activity is a good surrogate for 
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the potential MMP activity in the joint that may contribute to extracellular matrix 

component breakdown and ultimately osteoarthritis.

The synovial fluid concentrations of sGAG, COMP, PGE2, and C2C in our study were not 

correlated with average cartilage strain. Aggrecan turnover is increased following meniscal 

tears (Lohmander et al., 1999) and with high strain of cartilage and meniscal explants 

(Killian et al., 2011; Waters et al., 2014). COMP synthesis and release by chondrocytes is 

mechanically regulated (Piscoya et al., 2005; Wong et al., 1999) and has been shown to be 

elevated following canine meniscectomy, with peaks around 4 – 8 weeks after injury 

(Lindhorst et al., 2000). Previous studies have shown that 30 minutes of one-legged knee 

extension exercise decreases synovial fluid COMP in osteoarthritic knees (Helmark et al., 

2012). Furthermore, the knee state and type of exercise impact alterations in COMP levels, 

as in healthy knees serum COMP levels correlate with cartilage volume changes after drop 

landing but not after running (Niehoff et al., 2011). PGE2 is also increased in osteoarthritic 

synovial fluid (Nishimura et al., 2002) and is mechanically regulated in cartilage, as well as 

meniscus (Fermor et al., 2002; Hennerbichler et al., 2007; Waters et al., 2014). Finally, a 

trend towards increased C2C was reported at 30 days following a single 8 MPa stress on 

cartilage explants (Barr et al., 2014). However, in the meniscal tear subjects, longer times 

following joint injury may be necessary to detect the breakdown of the collagenous matrix.

Since the type of meniscus injury varied between patients and the extent of tissue removed 

during a meniscectomy varies, future studies may wish to examine changes in joint 

biomechanics with the loss of different proportions of the meniscus. In cadaveric studies, 

joint contact stresses increase with the extent of meniscus removal (Baratz et al., 1986; Bedi 

et al., 2010; Lee et al., 2006). While we did not group our population according to type or 

severity of medial meniscus tear, the results of our study show that load transmission 

changes occur after meniscus injury and prior to meniscectomy. Surgical protocols now 

emphasize maximizing the preservation of the meniscal peripheral rim, in order to minimize 

changes in contact area and joint stability (Englund, 2008; Lee et al., 2006). Future studies 

measuring in vivo strain in patients following surgical treatment should provide key 

information to further revise guidelines on the acceptable limits of resection to maintain 

normal cartilage contact patterns, with the goal of ultimately reducing the risk of 

osteoarthritis development.

A potential limitation of this study is the relatively small sample size, which was sufficient 

to determine biomechanical differences and also the strong correlation between strain and 

MMP activity but is likely limited for the detection of small to modest correlations of other 

biomarkers. Additionally, the single timepoint of synovial fluid collection at surgery and the 

wide range of time from injury to collection across the patients may have made correlations 

difficult to detect. Furthermore, synovial fluid from the contralateral, uninjured knee could 

provide information on the baseline biomarker profiles of each individual in relation to those 

of the injured knee. The measured synovial fluid concentrations in the meniscal tear subjects 

are slightly lower than previously reported for patients following an ACL tear; however, the 

collection of synovial fluid occurred much closer to the time of injury in the ACL study 

(average 15 days versus median 13 weeks) (Catterall et al., 2010).

Carter et al. Page 8

J Biomech. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is important to note that meniscal injuries can occur as a result of an acute trauma or due 

to tissue degeneration. In general, degenerative tears are associated with increased age and 

osteoarthritic changes (Berthiaume et al., 2005; Englund, 2008; Greis et al., 2002). 

Additionally, degenerative tears often have an insidious onset of symptoms without a 

specific traumatic event initiating injury (Englund, 2008; Howell et al., 2014; Sihvonen et 

al., 2013). Therefore, to minimize the effects that existing joint degeneration may be playing 

in the measurements of the present study, patient inclusion criteria were enforced to recruit 

individuals with an identifiable, traumatic injury and no MRI evidence of cartilage 

degeneration on the femoral condyles or tibial plateaus of both knees.

In conclusion, this study investigated in vivo tibiofemoral contact strain patterns in patients 

with an isolated medial meniscus tear and levels of biomarkers of cartilage metabolism in 

the synovial fluid. Cartilage contact strains increased after meniscal tear when compared to 

the contralateral control knee, especially at higher flexion angles. In addition, total MMP 

activity positively correlated with the average cartilage strain across the joint at maximum 

flexion. These findings suggest that the ability of the meniscus to distribute load is 

compromised after the injury, thus overloading the cartilage and upregulating mechanically 

sensitive mediators like the MMPs. These changes likely contribute to the development of 

osteoarthritis following meniscal injury and support the need to improve surgical treatment 

options to restore normal cartilage loading.
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Figure 1. 
High resolution MR images were segmented to create 3D models of the knee (top left). 

Next, the patients were imaged using biplanar fluoroscopy while performing a quasi-static 

lunge (top right). The fluoroscopic images and 3D models were used to reproduce the 

motion of each knee during the lunge (bottom).
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Figure 2. 
Strain (ε) across the tibiofemoral joint was approximated from the overlap in cartilage 

surfaces. The penetration distance (d) was divided by the combined thickness of the 

undeformed tibial (t1) and femoral (t2) cartilage surfaces at each point within the joint to 

create a strain map (top). Contact strain maps were created for all angles of both the injured 

and uninjured knees. The strain maps are shown for one subject at 60° of flexion. With a 

meniscus tear (bottom right), the cartilage contact strain increased in the medial 

compartment, as compared to the uninjured knee (bottom left).
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Figure 3. 
In the medial compartment, meniscus injury increased peak contact strains. There were no 

statistically significant effects of flexion or interactions between flexion and injury. Data is 

presented as the mean peak contact strain + standard deviation.
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Figure 4. 
In the lateral compartment, a statistically significant interaction between flexion angle and 

meniscal injury was observed. At the maximum flexion angle of 105°, peak contact strains 

were increased in the injured knee as compared to the contralateral control. Data is presented 

as the mean peak contact strain + standard deviation.
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Figure 5. 
Synovial fluid concentrations of catabolic biomarkers in the knees of meniscal tear subjects 

at the time of surgery. (A) Matrix metalloproteinase (MMP) activity, (B) sulfated 

glycosaminoglycan (sGAG) concentrations, (C) cartilage oligomeric matrix protein (COMP) 

concentrations, (D) prostaglandin E2 (PGE2) levels, and (E) C2C concentrations in the 

synovial fluid. Each point indicates the concentration for an individual and the median for 

each biomarker is indicated by the line.
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Table 1

Correlation of Average Cartilage Strain to Biomarkers

Biomarker Spearman R p-value

MMP Activity 0.79 0.04

sGAG −0.64 0.12

COMP −0.57 0.18

PGE2 0.50 0.25

C2C 0.14 0.76
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