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Abstract

The NCI-60 cancer cell line panel provides a premier model for data integration and systems 

pharmacology being the largest publicly available database of anticancer drug activity,, genomic, 

molecular, and phenotypic data. It comprises gene expression (25,722 transcripts), microRNAs 

(360 miRNAs), whole genome DNA copy number (23,413 genes), whole exome sequencing 

(variants for 16,568 genes), protein levels (94 genes), and cytotoxic activity (20,861 compounds). 

Included are 158 Food and Drug Administration (FDA)-approved drugs and 79 that are in clinical 

trials. To improve data accessibility to bioinformaticists and non-bioinformaticists alike, we have 

developed the CellMiner web-based tools. Here we describe the newest CellMiner version, 

including integration of novel databases and tools associated with whole exome sequencing and 

protein expression, and review the tools. Included are i) “Cell line signature” for DNA, RNA, 

protein and drugs, ii) “Cross correlations” for up to 150 input genes, microRNAs, and compounds 

in a single query, iii) “Pattern comparison” to identify connections among drugs, gene expression, 

genomic variants, microRNA and protein expressions, iv) “Genetic variation versus drug 

visualization” to identify potential new drug:gene DNA variant relationships, and v) “Genetic 

variant summation”, designed to provide a synopsis of mutational burden on any pathway or gene 

group for up to 150 genes. Together, these tools allow users to flexibly query the NCI-60 data for 

potential relationships between genomic, molecular and pharmacological parameters in a manner 

specific to the user’s area of expertise. Examples for both gain- (RAS) and loss- (PTEN) of-

function alterations are provided.
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Introduction

This review provides a synopsis of both the use and novel features of the CellMiner web 

application. CellMiner is designed specifically for the purpose of facilitating integration of 

pharmacological with molecular data from the NCI-60 cell lines. Its provision of “Cell line 

signatures” for both drug activity and multiple forms of molecular data, in which many of 

the preprocessing steps have already been done, allow a broad segment of the scientific 

community to make rapid and meaningful explorations into pharmacological-molecular 

relationships. The cell line models will always form the basis for studies of this type, due to 

their obvious advantages in providing testable models. Observations and hypotheses with 

translational importance made with these models will increasingly form the intellectual basis 

for a more specific and logical application of treatments, based on a patient’s disease’s 

specific molecular characteristics.

Data and Tools Available through CellMiner

CellMiner is a web-based application that provides both the data for the NCI-60 cancer cell 

lines, and the tools to mine those data (1, 2). It is appropriate for both the novice as well as 

the expert in the field. The application is accessed using the URL in ref. 3, and, in the 

current version, is organized into the seven tabs shown in Fig. 1A (3).

The “Home” tab (top left, Fig. 1A) provides: i) a general description of the site, ii) 

references, iii) recent press releases, iv) a description of each of the other six tabs, and v) 

links to the Discover, and Developmental Therapeutics Program websites (4, 5).

The “NCI-60 Analysis Tools” tab provides visualizations and patterns for quality controlled 

molecular and pharmacological data, as well as tools for data integration. Both the data sets 

and integration tools available in this tab are focused on in this publication.

The “Query Genomic Data” tab provides access to all molecular data, queryable by gene 

identifier, chromosomal or genomic location, or platform specific identifier for 17 platforms. 

It does not provide a synopsis result by gene or have internal requirements for consistency or 

range (within a single gene) as within the “NCI-60 Analysis Tools”. Data are received in 

both Excel (.xls) and text (.txt) format. New data sets and organization improvements 

continue to be added to this tab.

The “Query Drug Data” tab provides access to the data for growth inhibition 50% (GI50) 

compound activities measured by the Developmental Therapeutics Program (5, 6). The 

curated version of these data with synopsis results by drug and internal requirements for 

consistency and range (within a single drug) are in the “NCI-60 Analysis Tools” (see 

below). Compounds are queryable using one of six options (Fig. 1B, Step 1). Data are 

received in both Excel and text format. Data updates and organization improvements have 

been and will continue to be incorporated in this tab.

The “Download Data Sets” tab allows one to download entire datasets in either raw or 

normalized formats (dependent on dataset). Available in this section is also our cell line 

fingerprinting data, a useful resource for identification of each of the 60 cell lines (7). Also, 
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introduced and included here in the lower “Download Normalized Data Set” section of the 

page is our “RNA: 5 Platform Gene Transcript” compilation of quality controlled transcript 

data from microarrays. This is the all gene version of the information provided by “NCI-60 

Analysis Tools”\“Cell line signature”\“Gene transcript z scores”. The data sets within this 

tab will primarily be of use to the bioinformatician. New data sets and organization 

improvements continue to be incorporated to this tab.

The “Cell Line Metadata” tab provides background information on the cell lines, including 

tissue of origin, age and sex of patient, prior treatment (when known), histology, ploidy, 

TP53 status, multi-drug resistance function, and doubling time. A link to each cell lines 

fingerprinting data is included.

The “Data Set Metadata” tab provides background information on the types of data, 

platform information, the principal collaborators, and some description of the data. 

Currently there are 22 datasets described here, with more being added.

The “Query Genomic Data” and “Query Drug Data” Tools

These two tools give access to the specific data in the absence of the additional quality 

control assumptions applied within the “NCI-60 Analysis Tools” section. The data in this 

form may be preferential dependent on the question being asked, and allows users flexibility 

to apply their own judgment and assumptions.

“Query Genomic Data” functions as the unfiltered data query tool for the molecular data sets 

(Fig. 1A). In Step 1, users select the type of queries that best fit their needs. The query 

options include i) gene name, ii) RefSeq (mRNA or protein), iii) Entrez identifier, iv) 

chromosome number, v) chromosome location, vi) cytoband, or vii) four types of platform 

specific identifier. In Step 2, users input these identifiers either as a list or as an uploaded 

text (.txt) or Excel (.xls) file. In Step 3, users select from among 17 datasets that provide 

various types of information at the DNA, RNA, or protein level described previously (2, 3, 

8–13). In Step 4, users provide their E-mail address, and click “Get data”. There are 

currently 25,722 transcripts, including genes, pseudogenes, and open reading frames with 

data in this format.

“Query Drug Data” functions as the unfiltered data query tool for the compound activity 

data set (Fig. 1B). In Step 1, users may select the type of query: i) NSC, ii) compound name, 

iii) molecular formula-exact match, iv) molecular formula-element match, v) molecular 

weight range, or vi) mechanism of action (introduced here). The “Molecular formula-

element match” allows the used to search based on specific elements in the compound, such 

as Zn or Se. In Step 2, the user inputs these identifiers either as a list or as an uploaded text 

(.txt) or Excel (.xls) file. In Step 3, users provide their E-mail address, and click “Get data”. 

There are currently 52,269 compounds with activity data in this format.

NCI-60 Analysis Tools

These tools (Fig. 2A) provide synopsis information for five forms of molecular as well as 

compound activity data, in addition to offering several forms of data integration. Data in this 
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form will be used most frequently when one wishes to make comparisons across platforms 

in a more systems biological fashion without having to engage in time consuming and 

detailed analysis for each data set. A potential drawback for using data of this type is that 

quality control requirements are applied, such as data reproducibility and minimal probe and 

experimental range requirements, and these might eliminate meaningful data in specialized 

cases. In those cases where data are unavailable, the user will receive a 

“USER_ERROR_MESSAGE”. This file will detail why data were not received, including 

the input gene or compound failed quality control, that we have no data for that input, or 

there was some problem with your input.

The tool of interest is selected in Step 1 using the check boxes. The current choices are i) 

“Cell line signature”, ii) “Cross-correlation of transcripts, drugs, and microRNAs, and 

drugs”, iii) “Pattern comparison”, iv) “Exome sequencing (DNA) graphical synopsis by 

gene”, and v) “Genetic variant versus drug visualization”. Two footnotes are included; the 

first “1Available identifiers and drug mechanisms of action definitions” provides all 

identifiers for i) drugs (and compounds), ii) gene transcripts, iii) microRNAs, iv) proteins, v) 

amino acid changing genetic variants, vi) protein function affecting genetic variants, vii) 

DNA copy number, and viii) the definitions for the drug mechanism of action categories and 

abbreviations. The second footnote, “2Pattern comparison input template”, provides the 

input file to which numerical values may be added for uploading into “Pattern comparison”. 

A maximum of ten patterns may be entered in this fashion in a single query.

In Step 2 you select your input by checking either “Input list” or “Upload file”. Using “Input 

list” allows you to type up to 150 identifiers (as provided in footnote 1 into the “Input the 

identifier(s)” box). Using “Upload file” allows uploading of these same identifiers as either 

a text (.txt) or Excel (.xls) file, or to upload your “Pattern comparison input template”. In 

Step 3, enter your e-mail address, and click “Get data”.

“Cell Line Signature” Data Compilation and Outputs

“Cell line signature” (Fig. 2B–C) has been developed to i) integrate the multiple probes or 

experiments that exist for a single gene or drug, ii) provide a “best” synopsis of several 

forms of molecular and pharmacological data, facilitating their cross-comparison, and iii) 

avoid the necessity for users to have expertise in the integration of multiple platform types 

for systems biological and pharmacological studies. This tool provides several data types in 

a stereotypical format. The six current profiles types are shown in Fig. 2C, and include i) 

“Gene transcript z scores” for 25,722 genes, pseudogenes, and open reading frames (from 

five microarray platforms, recorded in the National Center for Biotechnology Information, 

Gene Expression Omnibus (GEO) with accession numbers GSE5949, GSE5720, GSE32474, 

GSE29682, and GSE29288) ii) “microRNA mean values” for 360 microRNAs (GEO 

accession number GSE22821), iii) “Drug activity z scores” for 20,861 compounds, iv) 

“Gene DNA copy number” for 23,413 genes (from four microarray platforms, with GEO 

accession numbers GPL11068, GPL13786, GPL3812, and GPL6983) v) “Genetic variant 

summation” for 12,705 amino acid changing and 9,142 protein function affecting genes and 

vi) “Protein mean values” for 94 genes and 162 antibodies (GEO accession number 

GSE5501). Introduced here are help pages designed to give the new user a quick synopsis of 
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what the tool does for each of the signatures. These are accessed by clicking on the text for 

the signature-of-interest (Fig. 2B).

To use the tool, in Step 1 check the “Cell line signature” box, and then select the radio 

button for the data type of interest. Input the appropriate identifiers in “Step 2” (provided in 

the Step 1 footnote 1). Five of these signatures of have been introduced previously (2, 8, 14). 

Examples of the bar graph outputs for each of the six signature types are presented in Fig. 

2C.

The “Protein mean values” signature is introduced in this manuscript with the release of the 

CellMiner version 1.6. Data were generated using reverse phase protein lysate arrays (15). 

The data set is high quality, having met stringent specificity requirements. Details of the 

antibodies used in its generation are described in our AbMiner web-based tool (16, 17). The 

tool output includes relative protein levels as tabular data, in both normalized and 

normalized mean centered forms. The mean centered version is visualized as a bar graph 

(example in Fig. 2C for p53), with the bars for each cell line color-coded by tissue of origin 

(2). Range, minimum, maximum, average, and standard deviation for the normalized data 

are included. The user also receives the distribution of the normalized data as a histogram.

The “Cross-Correlations” Tool: Combining and Comparing Different Data

To enable cross-comparison of several forms of data, we have developed “Cross correlations 

of transcripts, microRNAs and drugs” (Supplementary Fig. S1A). Upgraded from its 

introduction as an option for either gene transcripts or drug activities (2) under the old “z 

score determinations” tool, it is now a stand-alone tool (introduced in this manuscript), 

allowing direct comparison of any combination of from 2 to 150 gene transcript levels, 

microRNA expression levels, and compound activities in the same query. Identifiers 

available for input are listed in the “Identifiers and drug mechanism of action” footnote 1 

(Fig. 2A, Step 1). The output provides all cross-correlations for the selected identifiers.

In the example given in Supplementary Fig. S1B, the “Cell line signature” pattern of 

SLFN11 transcript expression, a gene recently identified in the DNA damage response 

pathway (18, 19) was used as input for a “Pattern comparison” analysis, which identified 

significantly correlated drugs. The cross-correlations output between SLFN11’s transcript 

expression level and the activities of these drugs, organized by mechanism of action type, is 

shown (mechanism of action headers have been added to clarify the figure).

The “Cross correlations” output identifies their interrelationships, identifying significant 

positive correlations between SLFN11 and DNA damaging drugs (alkylating agents 

targeting guanine N7, A7; DNA synthesis inhibitors, Ds; topoisomerase I inhibitors, T1; 

topoisomerase II inhibitors, T2). Among the FDA-approved or clinical trial drugs, tubulin 

inhibitors and serine-threonine kinase inhibitors (STK), including RO-5126766 had 

significant negative correlation. The importance of SLFN11 expression for the DNA-

targeting classes of drugs has been documented (18, 19). An additional point made obvious 

by viewing the data is that the A7, Ds, T1, and T2 drugs have significant positive correlated 

to one another, presumably due to their common DNA damaging effects and the common 

features determining cellular response to these drugs.
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These relationships between SLFN11 and drugs from these mechanism-of-action categories, 

originally detected bioinformatically, have been shown to be causal, and illustrate the 

discovery potential of these databases (18–20).

Pattern Comparison

To compare any pattern of interest for the NCI-60 to the complete lists of multiple forms of 

data, we have developed “Pattern comparison” (Supplementary Fig. S1C). The “Pattern 

comparison” output has previously provided correlations to the input pattern for: i) the 

activities of compounds (20,861 currently), ii) the transcript expression of genes (26,065 

currently) and iii) 365 microRNAs. Included within the compounds are 158 FDA-approved 

and 79 clinical trial drugs. Upgraded and reintroduced in this manuscript, “Pattern 

comparison” now also provides correlations to: i) amino acid changing genetic variants 

(from exome sequencing) for 12,705 genes, ii) putative protein function affecting variants 

absent in either the 1000 Genomes or ESP5400 (non-cancerous genomes from 5400 

patients) for 9,143 genes, iii) protein levels for 94 genes (as measured by 162 antibodies), 

and iv) 24 phenotypic parameters, currently focused on genomic instability, epithelial versus 

mesenchymal status, and pharmacological response (21, 22). The two forms of genetic 

variants are as obtained using the “Genetic variant summation” cell line signature (Fig. 2B). 

Format changes include a split of the results into two worksheets, with the statistically 

significant correlations in the “Significant” worksheet, and the complete (significant and 

insignificant) results within the “All” worksheet. For comparisons derived from “60 element 

pattern” inputs, the outputs also include a “Pattern input” worksheet that records the input 

pattern used (as an organizational help). Patterns may be entered using NA values to exclude 

cell lines from the analysis when there is scientific reason to do so, such as when one wishes 

to consider only those cell lines with wild type TP53.

Direct identification of input parameters is available for: i) gene transcript, ii) microRNA 

transcript, iii) drug activity, and, iv) protein expression levels (introduced here). All these 

identifiers are available within the footnote 1 identifiers download (Fig. 2A). Any other 

pattern, such as for a phenotype, characteristic, combination of molecular events, or tissue-

of-origin may be entered using the “60 element pattern” option. An input template for this 

option is available using the “Pattern comparison input template” download from footnote 2 

(Supplementary Fig. S1C). This template has also been updated to allow up to ten patterns to 

be submitted simultaneously.

In the example given in Supplementary Fig. S1C and D, a melanoma tissue-specific “60 

element pattern” was uploaded (Supplementary Fig. S1D, “Input”). The top two correlated 

gene transcript patterns, plus CTLA4 are shown under “Outputs”. Calpain-3 (CAPN3) and 

dopachrome tautomerase (DCT) have prior association with invasiveness, and assessment of 

melanomas, respectively (23, 24). CTLA4 is a target for ipilimumab in patients with non-

resectable and malignant melanoma, however its method of action is thought to occur 

through effects on the patient’s endogenous immune system so its unexpected expression 

within 5/10 melanomas is of interest (25, 26). Of the next five most highly correlated genes 

from this list, four have previously established connections to melanoma (SOX10, TYR, 

S100A1, and MLANA). The top two significant microRNA correlations, hsa-miR-146a and 
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211 have prior association to melanoma initiation and progression, and to invasiveness, 

respectively (27, 28). Among the FDA-approved or clinical trial drugs, the top two 

correlated drugs, vemurafenib and selumetinib both have prior report of efficacy in 

melanoma patients (29, 30). The pattern matches between the melanoma input pattern and 

these already established molecular and pharmacological patterns illustrate the quality and 

informative nature of these databases. The drug target CTLA4, microRNA 514, and drug 

hypothemycin are all novel correlations, and illustrate the potential for of Pattern 

Comparison as a discovery tool.

Exome Sequencing (DNA) Graphical Synopsis by Gene

To provide the user a visual summary of the genetic variants that occur within a gene as 

identified in our exome sequencing study, we developed “Exome sequencing (DNA) 

graphical synopsis by gene” (10). This tool is selected by checking its box as shown in Fig. 

3A. Identifier input and data retrieval are as described for Fig. 2A. The output includes both 

a synopsis of all variants within the NCI-60, as seen in Fig. 3B, as well as individual 

visualizations for all cell lines (not shown). The types of variants are identified as defined in 

Fig. 3B. The version of the gene used for visualization is as defined by the denoted NCBI 

accession number (in the html output). The two examples shown include a tumor suppressor 

(TP53), and an oncogene (KRAS). Note that in general, inactivating mutations tend to be 

more widespread for tumor suppressor genes as seen for TP53, while activating mutations 

tend to congregate for oncogenes, as seen for KRAS codon 12, with mutations in seven cell 

lines. This may be expected to be the case for the important, although uncommon, 

neomorphic (gain of novel gene function) mutations as well.

Genetic Variant Versus Drug Visualization

Designed to explore potential gene-drug relationships, “Genetic variant versus drug 

visualization” provides a visualization that compares variants for a given gene to shifts in 

activity for a given compound (14). This tool is selected as shown in Fig. 3C.

Using this tool, previously recognized (proof-of-principle) relationships may be observed, as 

for the protein kinase BRAF and the MEK (MAP2K1, 3, and 6)-ERK (MAPK1, 3, 4 and 15) 

inhibitor hypothemycin (10). Novel plausible relationships may also be discovered, such as 

between the DNA repair gene MUS81 and the DNA synthesis inhibitor clofarabine. Another 

example of this type is the pro-apoptotic STAT2 and the alkylating agent uracil mustard. 

STAT2 has had prior reported association with DNA synthesis inhibitors (31); however 

genes that affect apoptosis might be expected to influence the response to multiple drug 

types. In addition, one can identify unstudied compounds that may target potentially 

pharmacologically useful genes, such as the epithelial-mesenchymal associated tight 

junction protein 3 (TJP3).

Introduced here, this tool also allows the user to query a single gene versus all compounds 

(example input, *:BRAF) or a single drug versus all genes (example input, 123127:*). These 

inputs will identify all correlated drugs for the *:BRAF example, or genes for the 123127:* 

(doxorubicin) example. Queried in this fashion, BRAF identifies 38 correlated drugs, and 

doxorubicin identifies four genes. The criteria for inclusion using this function include a 
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Mathew’s correlation coefficients (MCC) of ≥ 0.596 (p ≤ 0.0002 for n = 35), and are the 

gene-compound pairings in Table 3 and Supplementary Tables S4A and B of our prior 

manuscript (14). Outputs of this type with more than 150 matches will be received as a 

summary sheet.

Consideration of Inter-parameter Relationships: RAS Activation

In addition to the consideration of individual molecular events involved in either cancer 

progression or pharmacological response, CellMiner provides an opportunity to examine the 

contribution of multiple molecular events and forms of data simultaneously. A simple 

example that also illustrates the complexity of considering overlapping molecular events is 

provided by consideration of whether RAS is activated across these cancer cell lines. The 

three forms of RAS, H, K, and N, are well-studied, important oncogenes (32).

Three forms of data provided by the “Cell line signature” tool (Fig. 4A) are informative for 

this purpose, DNA copy number, gene transcript levels, and activating mutations (from the 

“Genetic variant summation” tool). Reviewing shifts in copy number from 2N from the 

“Gene DNA copy number” option, in its “Graphical Output” worksheet, one finds 

amplifications for all three forms of RAS. Examples are given for each gene in Fig. 4B. 

Reviewing those data systematically, one, six, and five of the cell lines appear to have DNA 

amplifications for HRAS, KRAS, and NRAS, respectively (Fig. 4C). Next, by observing the 

transcript levels using the “Gene transcript z scores” option, it is apparent that each of these 

RAS amplified cell lines also have up-regulated mRNA expression. In addition, one and 

four additional cell lines (without DNA amplifications) are found to have up-regulated 

transcript levels in HRAS and NRAS, respectively (Fig. 4C). Finally, by determining the 

presence of activating mutations (those with amino acid changes at 12, 13, and 61) using the 

“Genetic variant summation” option, one, ten, and two of the cell lines appear to be 

activated genetically in HRAS, KRAS, and NRAS, respectively (Fig. 4C). Viewing these 

data in aggregate (Fig. 4D), 3, 14, and 10 of the cell lines appear activated for HRAS, 

KRAS, and NRAS, respectively. So overall, 26/60 of the cell lines have indication of RAS 

activation, including 4/5 breast, 4/6 leukemia, and 5/9 lung cell lines.

Consideration of Inter-parameter Relationships and Their Relationship to 

Pharmacology: PTEN Knockdown

An extension of the consideration of the contributions of multiple molecular events 

simultaneously is how it might influence pharmacology. An example of this is provided by 

the consideration of PTEN knockdown. PTEN is an important tumor suppressor that 

antagonizes the PIK3 (PIK3CB, C3, and R5)-AKT (AKT1, 2, and 3) pathway and is 

commonly deleted in cancer (33, 34).

The same three forms of data used in Fig. 4 are again provided by the “Cell line signature” 

tool, querying the database for PTEN DNA copy number, gene transcript levels, and 

deactivating mutations, as shown in Fig. 5A. Reviewing shifts in DNA copy number from 

2N from the “Gene DNA copy number” option, in the “Graphical Output” worksheet, one 

finds PTEN deletions for four cell lines. Three of these are shown in Fig. 5B. By observing 
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the transcript levels using the “Gene transcript z scores” option, it is apparent that each of 

these PTEN deleted cell lines also has down-regulated expression, and that these cell lines 

are the four lowest PTEN expressers in the NCI-60 (Fig. 5C). By determining the presence 

of predicted function-affecting mutations, as detailed in the “Genetic variant summation” 

tool, four different cell lines have indication of being genetic hypomorphs with loss-of-

function (Fig. 5C). Of these, both BT-549 and SF-295 have nonsense (premature stops), 

MOLT-4 a frameshift, and SK-MEL28 the T167A mutation, which has been shown 

previously to result in a 50% reduction in function (35). Taking these three molecular 

parameters as a composite, a pattern of eight cell lines with apparent PTEN inactivation can 

be derived (Fig. 5C, right).

Using this PTEN composite pattern as input for the “Pattern comparison” tool, using the “60 

element pattern” option (Fig. 5A), four drugs with either FDA-approval or clinical trial 

status are found to have significant correlation (p< 0.05, Fig. 5D). Of these, fenretinide 

(NSC 374551) has been shown to reactivate PTEN previously, affirming the relationship to 

the gene (36). PX-316 (NSC 710297) also has pathway connection, being an AKT-inhibitor. 

Thus 2/4 (50%) of the drugs with significant correlation to the input PTEN knockdown 

pattern have obvious connection to PTEN, whereas only 4.8% of the total known 

mechanism of action drugs present in CellMiner do. This enrichment was found to be 

significant (p<0.01) by binomial distribution, providing evidence for the saliency of the 

molecular data when compared to the pharmacological.

Discussion

In addition to providing a review of the preexisting CellMiner tools, the current manuscript 

also introduces new tools and upgrades to current ones, as well as providing examples of 

how the tools and databases may be used for systems biology and systems pharmacology. 

Examples are given that provide both proof-of-principle as well as novel findings 

(Supplementary Fig. S1A–D, Fig. 3C–D, Fig. 4A–D, and Fig. 5A–D).

New and upgraded tools include i) the introduction of the “Protein mean values” cell line 

signature (Fig. 2B and C), ii) the “Cross-correlations of transcripts, microRNAs, and drugs” 

as an upgraded stand-alone tool (Supplementary Fig. S1A and B), iii) four additional data 

types for the “Pattern comparison” output- “Amino acid changing” and “Protein function 

affecting” genetic variants, “Protein levels”, and “Miscellaneous phenotypic parameters”, 

and iv) introduction of the star feature (*) for the “Genetic variant versus drug visualization” 

tool, allowing the user to rapidly identify all compounds with significant correlation to a 

single gene, or vice versa.

CellMiner previously has enabled us to: i) identify promoter-proximal transcriptional 

pausing in human genes (37, 38), ii) discover the helicase SLFN11 as a causal determinant 

of response to DNA-damaging agents (18), iii) recognize the regulation of MYC expression 

by miR-375 (39), iv) recognize the importance of MYC as a driver of mitochondrial genes 

(40), v) reveal genetic inactivation or endogenous activation of CHEK2 across the NCI-60 

(40); vi) link USP7 and Daxx to taxane resistance (41), vi) link TP53 wild type status, 

Mdm2 transcript level, and miR-34a transcript level with nutlin activity (10), viii) reveal the 
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interrelationship between RAS (H, K, and NRAS)-BRAF-PTEN mutational status, EGFR 

expression, and ERBB2 expression with erlotinib activity (10), ix) demonstrate the strong 

correlation between ABCB1 expression and doxorubicin activity (2), x) recognize both 

known and novel genes expression levels, microRNA expression levels, and drug activities 

with a colon-specific pattern input to “Pattern comparison” (2), xi) identify predominant co-

regulation among cell migration genes (42), xii) identify co-regulation among kinetochore 

genes, their prospective regulatory elements, and their association with genomic instability 

(43), xiii) show the connection between accumulation of mass homozygotes in the cancer 

cell lines as compared to non-cancerous HapMap trios (44), xiv) identify the drug Ro5-3335 

as a candidate treatment for core binding factor leukemias (45), xv) associate CDKN2A 

DNA copy number and expression to mitoxantrone activity (8), xvi) define an epithelial 

gene expression signature (46), and xvii) recognize the composite relationship between the 

mutational status of multiple genes from the EGFR-ERBB2 pathway and drug response, 

including the directionality of that influence as a function of molecular pathway 

considerations (14). The diversity among these observations gives an indication of the 

boundless scope and range of the types of possible discoveries that can be made using the 

NCI-60 database and CellMiner set of tools.

In addition to being a resource for generating or providing tests for hypotheses, such as 

those described above, CellMiner also provides a template for making “omic” data of this 

type accessible and usable for a broad portion of the scientific public. Access of this type 

remains a serious shortcoming for the field currently, and improved access to and 

connectivity between the multiple cell line and clinical databases that have either already 

been done or are in progress should be a goal. A synopsis of the types of data available 

across the three major cell line screens, the NCI-60, the Cancer Cell Line Encyclopedia 

(CCLE), and the Cancer Genome Project (CGP), is presented in Supplementary Table S1. 

However, currently the barriers to data integration and interrogation remain daunting, 

restricting access primarily to bioinformaticians, statisticians, and those with computer 

expertise. Due to the multi-faceted nature of the disease information that needs to considered 

in the cancer context, there is certainly need for the input of molecular biologists, clinicians 

and all others with pertinent domain expertise as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The “Query Genomic Data” and “Query Drug Data” tools. A. The “Query Genomic Data” 

tool. To access this tool, click on the “Query Genomic Data” tab (with red fill). In “Step 1”, 

the type of identifier to be used is selected. One may choose from the options shown, with 

the choice being dependent on the data set to be selected. In “Step 2”, the identifiers are 

entered. In “Step 3”, the data set of interest is selected. Currently there are 17 data sets, with 

only one being shown in the figure due to size constraints. In “Step 4”, the user enters their 

e-mail address, and clicks “Get data”. B. The “Query Drug Data” tool. To access this tool, 

click on the “Query Drug Data” tab (with red fill). In “Step 1”, the type of identifier to be 

used is selected from the options shown. In “Step 2”, the identifiers are entered. In “Step 3”, 

the user enters their e-mail address, and clicks “Get data”.
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Figure 2. 
The “NCI-60 Analysis Tools” and “Cell line signature”. A. The “NCI-60 Analysis Tools”. 

To access this tool, click on the “NCI-60 Analysis Tools” tab (with red fill). In “Step 1”, the 

type of analysis to be done is selected from the options shown. The identifiers used in these 

tools are available from the “Identifiers and drug mechanism of action definitions” 

download. In “Step 2”, the user selects whether to input the identifiers as a list or as an 

uploaded file, and the identifiers are entered or uploaded. In “Step 3”, the user enters their e-

mail address, and clicks “Get data”. B. The “Cell line signature” tool. To access this tool, 

click on the “NCI-60 Analysis Tools” tab, followed by the “Cell line signature” check box. 

Select from the six forms of signatures using the radio buttons. Identifier input and data 

receipt is done as in Fig. 2A. C. Bar graph examples for the five forms of molecular data, 

plus the compound activities available currently. In all bar-plot outputs, the x-axis indicates 

higher levels to the right, and lower levels to the left. The y-axis is the 60 cell lines, 

organized by tissue of origin. The red star next to “Protein” indicates it is a new output 

(introduced here).
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Figure 3. 
The “Exome sequencing (DNA) graphical synopsis by gene” and “Genetic variant versus 

drug visualization” tools. A. The “Exome sequencing (DNA) graphical synopsis by gene” 

tool. To access this tool, click on the “NCI-60 Analysis Tools” tab, followed by the “Exome 

sequencing (DNA) graphical synopsis by gene” check box. Use gene HUGO names as input, 

to a maximum of 150. Data receipt is done as in Fig. 2A. B. The composite images for the 

TP53 and KRAS inputs. The gene exons, UTRs and genetic variant locations, number and 

types are as indicated. C. The “Genetic variant versus drug visualization” tool. To access 

this tool, click on the “NCI-60 Analysis Tools” tab, followed by the “Genetic variant versus 

drug visualization” check box. Select input as NSC:HUGO name pairs, to a maximum of 

150 (pairs). Data receipt is done as in Fig. 2A. D. The bar graph output for four NSC:HUGO 

name pairs are shown. The x-axis is the drug activity z score. The y axis is the cell lines. 

Brown filled bars indicate that the cell line has no variants that contribute to a statistically 

significant shift in drug activity. The yellow filled bars indicate that the cell line has variants 

that contribute to a statistically significant Pearson correlation to the selected drug. “R” is 

the correlation value between the presence of variants and shift in drug activity.
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Figure 4. 
A composite analysis of RAS activation. A. All data used in this analysis is from the “Cell 

line signature” tool”. Access, identifier input, and data receipt is as described for Fig. 2. 

Data from the three indicated signatures “Gene transcript z scores”, “Gene DNA copy 

number”, and “Genetic variant summation”, were selected one at a time. B. Examples of cell 

lines with amplified DNA copy number for H, K, and NRAS taken from the “Gene DNA 

copy number” tool (“Graphical Output” worksheet). The x-axis is the chromosomal location. 

The y-axis is dual labeled for both log2 intensity of the probes, and estimated DNA copy 

number. The dark blue points are the flanking probe intensities. The red points are the gene 

probe intensities. C. Three molecular indications of RAS activation. DNA amplification 

occurs for one, six, and five cell lines for H, K, and NRAS, respectively. For the bar graphs, 

the colored bars indicate amplification, and the y-axis indicates the cell lines. RNA 

transcript expression is up-regulated in two, six, and nine cell lines for H, K, and NRAS, 

respectively, as indicated by the red stars. For the bar graphs, the x-axis is relative 

expression as indicated by z score. The y-axis is the cell lines. Activating mutations occur in 

one, eleven, and two cell lines, respectively. For the bar graphs, the colored bars indicate 

activating mutations, and the y-axis indicates the cell lines. D. Composite activation patterns 
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using the DNA amplification, RNA up-regulation, and activating mutations (from Fig. 4C). 

Indicators of activation occur for 3, 14, and 10 cell lines for H, K and NRAS, respectively. 

Taken in total, “RAS” in the generic sense is activated in 26 of the cell lines. For the bar 

graphs, the colored bars indicate RAS activation, and the y-axis indicates the cell lines. The 

bar graphs in “C” for “DNA amplification” and “Activating mutations”, and in “D” were 

generated to illustrate the point, and were not generated directly by CellMiner.
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Figure 5. 
A composite analysis of PTEN knockdown and its link to pharmacology. A. All data used in 

this analysis is from the “Cell line signature” and “Pattern comparisons” tools. Access, 

identifier input, and data receipt is as described for Fig. 2 and Supplementary Fig. S1C and 

D. Data from the four indicated signatures “Gene transcript z scores”, “Gene DNA copy 

number”, “Genetic variant summation”, and “Drug activity z scores” were selected one at a 

time, using a “60 element pattern” input. B. Examples of cell lines with DNA copy number 

loss for PTEN, taken from the “Gene DNA copy number” tool (“Graphical Output” 

worksheet). The x-axis is the chromosomal location. The y-axis is dual labeled for both log2 

intensity of the probes, and estimated DNA copy number. The blue points are the flanking 

probe intensities. The red points are the probe intensities that fall within the gene. C. Three 

molecular indications of PTEN knockdown. DNA loss as measured by aCGH occurs for 

four cell lines. For the bar graph, the x-axis indicates the DNA copy number, and the y-axis 

indicates the cell lines. RNA transcript expression is down-regulated in four cell lines. For 

the bar graphs, the x-axis is relative expression as indicated by z score. The y-axis is the cell 

lines. Deactivating mutations occur in four cell lines. For the bar graph, the colored bars 

indicate deactivating mutations, and the y-axis indicates the cell lines. In all three of these 

bar plots, the red stars indicate those cell lines with indication of PTEN knockdown. The 

composite (knockdown) pattern, derived from the three forms of molecular data, indicate 

Reinhold et al. Page 19

Clin Cancer Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



knockdown occurs in eight cell lines. For this bar graph, the colored bars indicate PTEN 

knockdown, and the y-axis indicates the cell lines. The bar graphs for “Genetic variants”, 

and in the “Composite pattern” were generated to illustrate the point, and were not generated 

directly by CellMiner. D. Input of the composite pattern from Fig. 5C to “Pattern 

comparisons” identifies four FDA-approved or clinical trial drugs with significant 

correlation. MOA is mechanism of action. The red stars indicate that two of these have prior 

connection to PTEN, either through literature or pathway.
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