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Abstract

Low versus high glycemic load (GL) diet patterns are inversely associated with obesity and 

chronic diseases such as cancer and cardiovascular disease. These associations persist beyond the 

protection afforded by increased fiber alone, representing an important gap in our understanding 

of the metabolic effects of GL. We conducted a randomized, controlled, crossover feeding trial of 

two 28-day diet periods of high and low GL. Using LC-MS, targeted metabolomics analysis of 

155 metabolites was performed on plasma samples from 19 healthy adults aged 18-45 years. 

Fourteen metabolites differed significantly between diets (P<0.05), with kynurenate remaining 

significant after Bonferroni correction (P<4×10-4). Metabolites with the largest difference in 

abundance were kynurenate and trimethylamine-N-oxide (TMAO), both significantly higher after 

consumption of the low GL diet. Partial least squares-discriminant analysis showed clear 

separation between the two diets; however no specific pathway was identified in pathway 

analyses. We found significant differences in 14 plasma metabolites suggesting a differing 

metabolic response to low and high GL diets. Kynurenate is associated with reduced 

inflammation, and may be one mechanism through which protective effects of a low GL diet are 

manifested and warrants further evaluation. This trial was registered at clinicaltrials.gov as 

NCT00622661.
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Introduction

Obesity and chronic diseases such as cancer and cardiovascular disease (CVD), collectively 

account for roughly half of the deaths in the United States 1-3. Numerous epidemiologic 

studies find that low glycemic load (LGL) diets, characterized by consumption of foods that 

result in a relatively small postprandial increase in blood glucose4, are associated with 

reduced risk for obesity5, some types of cancer5, 6, diabetes5, CVD5, and coronary heart 

disease (CHD)5, 7. In contrast, high glycemic load (HGL) diets are associated with an 

increased postprandial glucose response, post-prandial hyperglycemia, and oxidative stress, 

which are thought to contribute to the negative health outcomes linked to chronic 

consumption of HGL diets6, 8.

Several explanations have been proposed to explain the protective effects of LGL diets. In 

addition to averting the hyperglycemic and hyperinsulinemic oxidative stress of HGL diets, 

higher fiber content is a suggested means by which LGL mitigates chronic disease risk. 

While LGL diets are inherently higher in dietary fiber, human studies have shown that 

increased fiber alone does not always confer the same degree of risk reduction for chronic 

disease as does lowering the GL of the diet6. Other factors, such as type of fiber (e.g., 

soluble vs insoluble), structural form of foods (e.g, whole grain vs milled), or the type of 

foods selected (high- vs low-phytochemical) may also contribute to response to a LGL diet. 

The protective effects of LGL beyond increased fiber represent an important gap in our 

understanding of the metabolic effects of differing GL.

Metabolomics is becoming a commonly used approach to identify metabolic differences 

resulting from various conditions, such as a diseased or non-diseased state, or exposures, 

e.g., before and after a drug or dietary treatment9. Metabolomics captures the current status 

of an organism's biochemistry and can illuminate consequences of environmental exposures 

(e.g., food), gene expression, and their combined implications10. In nutritional research, 

metabolomics has been used to identify biomarkers of dietary intake11, validate food 

frequency questionnaires (FFQs)12, and in dietary intervention studies to elucidate dietary 

effects on metabolic pathways13. A few studies have used metabolomics to identify 

biomarkers associated with glycemic index (GI) or exposure of dietary fiber intake14, 15. For 

example, after 77 overweight adults were randomized to high or low glycemic index diet for 

6 months, authors found urinary formate discriminated between the two dietary patterns 14. 

In another study, plasma concentrations of 2,6-dihyroxybenzoic acid and 2-aminophenol 

sulfate were increased after 5 weeks of consuming a high fiber diet compared to a low fiber 

diet15. However, no controlled feeding study has investigated metabolic changes in the 

plasma metabolome based on dietary GL in a crossover design.

In the present study we take an agnostic approach to evaluate the extent to which HGL and 

LGL diets modify the plasma metabolome using a targeted metabolomics approach on 

specimens collected from a controlled feeding trial. We hypothesize that LGL diets 

influence metabolism differently than HGL diets and that these effects will result in 

differences in metabolite abundances between the two diets. Results from this study may 

provide insight on the protective benefits of consuming low glycemic load diets.
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Materials and Methods

The metabolomics analysis was a secondary analysis using samples derived from the 

“Carbohydrate and Related Biomarkers” study (CARB) conducted between June 2006 and 

July 2009 at the Fred Hutchinson Cancer Research Center (FHCRC) in Seattle, Washington. 

This trial was registered at clinicaltrials.gov as NCT00622661. CARB was a crossover 

dietary intervention with two 4-week feeding periods of HGL and LGL diets given in a 

computer-generated, randomly assigned order16. Metabolomics analysis was conducted on 

plasma collected from a subset of 20 participants at the end of each intervention period, 

from which samples from 19 pairs could be analyzed. The study protocol was approved by 

the FHCRC Institutional Review Board and all participants gave written informed consent.

Participants and Study Design

Details on recruitment and study design have been published elsewhere 16. In brief, non-

smoking, healthy individuals between the ages of 18-45 years were recruited from the 

Seattle area. Exclusion criteria included impaired fasting glucose (fasting blood glucose ≥ 

5.6 mmol/L), any physician-diagnosed condition requiring a restricted diet, food allergies, 

regular use of hormones or anti-inflammatory medication, pregnancy or lactation, or heavy 

use of alcohol (>2 drinks per day). A total of 82 individuals completed all study activities. 

The study population was 50% male and was evenly distributed between normal weight 

(BMI >18.5 ≤ 25.0 kg/m2) and overweight/obese (BMI ≥ 28.0 ≤ 40.0 kg/m2)17. Diet order 

was randomly assigned, with half of the participants receiving the HGL diet first. Each 

intervention was four weeks long, with a four week washout period in between study 

periods16. A subset of 20 individuals was selected for this pilot metabolomics analysis. The 

group was selected to represent the larger study population: 50% male, evenly distributed 

between normal and overweight, with half having received the HGL diet first. Blood was 

drawn at the end of each intervention period for a total of 40 samples; however, one sample 

was compromised during sample preparation. Thus both time-points for that individual were 

excluded and final analysis was conducted on the remaining 19 pairs.

Study Diets

The study diets were based on a repeating seven-day menu, with identical distribution of 

macronutrients for both the HGL and LGL diets (see Table 1 for sample menu). The diets 

were designed to differ largely in GL, with the LGL diet being half the GL of the HGL 

intervention (125 and 250 GL/d respectively), and differed notably in fiber (55 and 28 g/d 

for the LGL and HGL, respectively). Total GL for each mixed meal was calculated by 

multiplying the grams of carbohydrate in each food by that food's GI value. The diets were 

isocaloric for each individual, although minor adjustments were made as necessary to keep 

participants' weight stable during the intervention (Table 2). Further details of the study diet 

have been published previously16. All food was provided by the FHCRC during the 

intervention, with weekday dinners consumed under supervision at the Center and the next 

day's breakfast and lunch taken home for consumption. On Fridays, participants received all 

weekend meals. Any unconsumed food was returned to the study center, weighed and 

recorded. During the washout period individuals returned to their habitual diet patterns.
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Sample Collection And Analysis

At baseline, height and weight measurements were recorded for assignment to the 

overweight + obese (BMI > 28 kg/m2) or normal weight (BMI < 25 kg/m2) category. Those 

with BMI 25-27.9 kg/m2 were excluded to ensure sufficient contrast between the normal 

weight and overweight/obese groups. Whole-body dual-energy X-ray absorptiometry 

(DEXA) scans (GE Lunar DPX-Pro) were also completed for each participant to accurately 

assess body fat percent. Weight measurements were taken regularly throughout the study 

period, with adjustments made to the study food provided as necessary to keep participants 

weight stable16. Blood was taken from each participant on Day 28 of both treatment periods 

after a 12-hour overnight fast, and processed and stored at -80°C using a standard protocol.

Metabolomics analysis

Metabolite profiling of plasma was completed at the University of Washington's Northwest 

Metabolomics Research Center. Targeted metabolomics analysis on the plasma of the subset 

of 19 participants was carried out using a liquid chromatography tandem mass spectrometry 

(LC-MS/MS) platform in both positive and negative ion modes against 155 standard 

metabolites from 25 metabolic pathways, (e.g., Glycolysis, TCA cycle, Amino Acid 

Metabolism, etc.) of potential significance to monitor diet effects (see Supplemental 

Table)18-20.

All plasma samples were prepared at the same time. A standard protocol was used, where 25 

μL plasma and 150 μL high performance liquid chromatography (HPLC) grade methanol 

were combined in an Eppendorf vial and vortexed for 2 min. After 20 min storage at -20 °C 

the samples were centrifuged at 18,000 g for 10 min. A fixed volume of 150 μL supernatant 

was collected and placed in a new Eppendorf vial. The protein pellets were mixed with 

another 300 μL HPLC grade methanol, then vortexed for 10 min and centrifuged for 10 min 

at 18,000 g. 250 μL was collected and combined with the previous 150 μL sample. Samples 

were then dried at 30 °C in a Speed Vac for 3 h.

The samples were analyzed in two sequential batches, each containing two quality control 

(QC) samples so that batch variation could be assessed. Prior to each LC run, samples were 

reconstituted with 100 μL 5 mM ammonium acetate in 95% water/5% acetonitrile + 0.5% 

acetic acid, and filtered through 0.45 μm PVDF filters (Phenomenex, Torrance, CA) prior to 

analysis on an AB Sciex QTrap 5500 LC-MS/MS system (AB Sciex, Toronto, ON, 

Canada)21-23. The LC system was composed of two Agilent 1260 binary pumps, an Agilent 

1260 auto-sampler and Agilent 1290 column compartment containing a column-switching 

valve (Agilent Technologies, Santa Clara, CA). Each sample was injected twice, 10 μL for 

analysis using negative ionization mode and 2 μL for analysis using positive ionization 

mode. Both chromatographic separations were performed in reverse phase (RP) on Thermo 

Accucore PFP columns (150 × 2.1 mm, 2.6 μm particle size, Thermo Fisher Scientific Inc., 

Waltham, MA). The flow rate was 0.250 mL/min, auto-sampler temperature was kept at 4 

°C, and the column compartment was set at 40 °C. The mobile phase was composed of 

Solvents A (5 mM ammonium acetate in H2O + 0.5% acetic acid + 0.5% acetonitrile) and B 

(acetonitrile + 0.5% acetic acid + 0.5% water). After chromatographic separation, MS 

ionization and data acquisition was performed using AB Sciex QTrap 5500 mass 
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spectrometer (AB Sciex, Toronto, ON, Canada) with electrospray ionization (ESI) source. 

The collision gas was 99.99% pure nitrogen. The data gathered through the multiple reaction 

monitoring were integrated using MultiQuant 2.1 software (AB Sciex, Toronto, ON, 

Canada).20 Intra-assay CVs were 9.4% and 6.3 for negative and positive ion mode, 

respectively and 7.4% across all samples.

Statistical Analysis

Of the 155 metabolites measured, 125 had detectable signal in all study samples and were 

retained for analysis. Plasma data showed between-batch variability, and were therefore 

normalized using the mean signal among all study samples for a given batch as the constant 

by which to standardize the values for that metabolite within-batch. Paired t-tests were 

conducted on log-transformed metabolite values to identify statistically significant (P<0.05) 

within-person differences in plasma metabolite abundances, comparing Day 28 

measurements from the LGL versus the HGL diet. Bonferroni and Benjamini-Hochberg 

(false discovery rate, FDR) methods were used to correct for multiple comparisons (Stata 

v13.1, College Station, TX)24. To compare the relative abundance of metabolites (within-

person) between diet interventions, geometric mean ratios of detected metabolite 

concentrations after the LGL diet versus the HGL diet were calculated by exponentiating the 

mean within-person differences in log-transformed metabolite signals.

While the study protocol attempted to achieve weight maintenance, most participants 

experienced a minor change in weight (∼1%). Up to 3% change was permitted, consistent 

with many dietary intervention studies as it represents minor fluctuations in fluid balance 

and normal day to day variation. To ensure that these minor fluctuations did not impact the 

findings, a linear mixed regression model was used to test the effects of weight change and 

diet on metabolite concentrations, modeled as a fixed effect, and individual baseline 

metabolite concentrations as a random effect (R statistical package v3.01, with package 

lme4 1.0). Models were also carried out to evaluate metabolites adjusted for fat distribution 

as determined by android to gynoid body fat % ratio, and body fat % using data derived 

from DEXA scans. Finally, to ensure that there were no carry over effects, diet sequence and 

period were evaluated. As these covariates did not have any effect on point estimates, data 

are presented without adjustment.

To consider differences occurring beyond the level of individual metabolites, pathway level 

analyses were conducted using the global test for changes among groups of metabolites 

described by Goeman, et al.25 (Globaltest R statistical package v3.02). A priori pathways 

assessed were Krebs cycle, Gluconeogenesis and Glycolysis. Among inflammation-related 

pathways, the Tryptophan pathway was the only one with a sufficient number of metabolites 

to allow for meaningful analysis. We evaluated each pathway using 4 to 7 metabolites from 

the respective pathways, as identified in the Human Metabolome Database (HMDB)26 and 

Kyoto Encyclopedia of Genes and Genomes (KEGG)27 databases.

To determine whether the intervention diets led to holistic differences in metabolic 

responses, partial least squares discriminant analysis (PLS-DA) plots were generated via 

class separation in MetaboAnalyst 2.0 (http://www.metaboanalyst.ca/) with input of all 

metabolites, using the method described by Westerhuis, et. al., which considers the paired 
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data structure.28 Leave one out cross-validation method was used to test the predictive 

performance of the model, and R2 and Q2 values were calculated. The variable importance 

in projection (VIP) score was used to estimate the influence of each metabolite to the first 

two components of the PLS model. Variables with VIP scores >1 are generally considered to 

have an important contribution to the model.29

Results

Characteristics for the 19 participants stratified by sex are given in Table 3. There are 

approximately an equal number of men and women evenly distributed between normal and 

overweight/obese.

Of the 125 plasma metabolites detected, a total of 14 metabolites differed significantly 

between the LGL and HGL interventions (P<0.05; Table 4). After Bonferonni correction for 

multiple comparisons (P<0.05/125=4×10-4), one metabolite (kynurenate) remained 

significant, while two additional metabolites, cystamine and methyl succinate, satisfied the 

less stringent threshold of FDR q<0.20. Geometric mean changes for metabolites in LGL 

compared to HGL ranged from 0.77-1.37 with a near equal number of analytes increasing as 

decreasing after the LGL diet relative to the HGL diet. Metabolites with the greatest fold 

change between diets were kynurenate and trimethylamine N-oxide (TMAO). Adjusting for 

weight change, body fat %, and fat distribution did not alter these findings (data not shown). 

Pathway analyses for Krebs cycle, Glycolysis and Gluconeogenesis, and Tryptophan 

metabolism did not yield significant findings (data not shown).

PLS-DA using all 125 detected metabolites showed good separation between the diets by the 

primary and secondary components (Figure 1). Together, these two components accounted 

for ∼23% of the variability (11.7% and 10.7% for the first and second components, 

respectively). The R2 and Q2 values were 0.72 and 0.45, and 0.91 and 0.75, for components 

1 and 2 respectively. The metabolites with the greatest contribution in distinguishing the 

diets in the first component were kynurenate, cystathionine, glycocholate, 

glycochenodeoxycholate, adenylosuccinate, glyceraldehyde 3-phosphate, and biotin, all with 

VIP scores >2. The metabolites with the greatest contribution in the second component 

based on VIP scores of >2, were kynurenate, cystathionine, glycochenodeoxycholate, 

hippuric acid, glycerol-3-phosphate, and biotin.

Discussion

In this randomized crossover feeding trial, concentrations of 14 plasma metabolites differed 

significantly in abundance between the HGL and LGL intervention diets, with a near-equal 

number increasing as decreasing after the LGL. Differentially-abundant metabolites could 

be classified into several different metabolic pathways, but we were not able to 

unequivocally identify pathways that would be uniquely related to GL. Further analyses, 

focused on energy metabolism and the Tryptophan pathway using all retained metabolites, 

did not reveal statistically significant pathway perturbations between the diets. Differences 

in some metabolites between diets were small (5-37%), yet all but one were larger than the 

overall intra-assay variation (7%). Although modest, such differences compounded over 
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decades may, in part, account for observed differences in disease risk associated with 

differing habitual dietary patterns. Further, these differences may increase over time.

Despite the lack of significant pathway differences, the PLS-DA plot showed good 

separation between the diets with several metabolites, including kynurenate contributing 

considerably (VIP scores >2) to the model. Kynurenate was also identified in univariate 

analyses as significantly different between interventions, satisfying the stringent Bonferroni 

significance threshold (P<0.05/125=4×10-4). While plasma kynurenate was ∼40% higher 

after the LGL diet compared with the HGL diet, its precursor, tryptophan, was not 

appreciably altered.

Tryptophan is converted to kynurenine, and then further degraded to quinolinate or 

kynurenate, which agonize and antagonize N-methyl-D-aspartate (NMDA) receptors, 

respectively30. While the effect of tryptophan metabolites is most pronounced in 

cerebrospinal fluid, NMDA receptors are also found in peripheral tissue, where they elicit 

the same excitatory and inhibitory responses31. Among other functions (e.g., cognition and 

memory), these receptors modulate inflammation pathways31, 32. Whereas quinolinate 

activates NMDA receptors, stimulating immune activation, kynurenate inhibits these effects. 

Modulatory effects on inflammation have been noted apart from the effects these 

metabolites have on receptor activity. For example, quinolinate is also produced by 

macrophages in the periphery in response to cytokine activation which, in turn upregulates 

other inflammatory mediators, such as MCP-1, a potent chemoattractant33, as well as 

enzymes involved in the conversion of tryptophan to quinolinate31. Therefore, quinolinate 

not only stimulates pro-inflammatory pathways, but also upregulates the enzymes which 

lead to its further production, in a forward-feed cycle. Further, quinolinate, through 

interaction with hydroxyl kynurenine, an intermediate in the quinolinate pathway, is a pro-

oxidant34. Consequently, a shift towards the kynurenate, or inhibitory side of the pathway, 

as observed after the LGL diet, suggests potential anti-inflammatory effects of the 

intervention35, 36. This finding is consistent with our previous report of reduced C-reactive 

protein concentrations after the LGL diet 16.

When considering directionality of all plasma metabolites in the Tryptophan pathway 

measured in our metabolite panel, regardless of significance (e.g., tryptophan, L-kynurinine, 

kynuranate, 3-hydroxykynurenine, xanthurinate, and quinolinate), a consistent shift away 

from quinolinate, and toward the kynurenate side of the pathway was observed; however, 

there was no significant difference in quinolinate concentrations between the diets. Although 

we did not determine absolute concentrations in plasma, studies suggest that the ratio of 

kynurenate to quinolinate is what determines its protective effects. Indeed, a higher ratio of 

quinolinate to kynurenate has been implicated in many neurodegenerative diseases thought 

to have an inflammatory basis, e.g., Alzheimer's disease, Parkinson's disease and 

Huntington's 34, 37. Thus, increases in kynurenate relative to quinolinate, as observed after 

the LGL diet in the present study, is hypothesized to be beneficial35, 36, 38, and may be one 

mechanism by which LGL diets contribute to reduced chronic disease risk.

TMAO was 37% higher at the end of the LGL compared to the HGL intervention. 

Generation of TMAO occurs via oxidation of gut bacterially-derived trimethylamine (TMA) 
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in the liver. Therate of TMA to TMAO conversion is determined by a combination of 

genetics and substrate availability39. Given the crossover nature of this study, differences are 

likely due to substrate availability, although diet itself may alter the gut microbial 

community, in turn affecting TMAO production40. Precursors for TMA include carnitine, 

choline and betaine41, 42. These substrates are absorbed by a combination of active and 

passive transport in the small intestine, only reaching the microbiota responsible for their 

conversion to TMA in the large intestine when doses are high enough to saturate these 

transport mechanisms43-45. The LGL diet had slightly less protein from animal sources, a 

rich source of carnitine, than the HGL diet (daily average of 47% of total animal protein 

compared to 59%) to accommodate other foods associated with lower GL (e.g., beans and 

whole grains). As these lower GL foods are higher in protein, meat content was reduced to 

keep macronutrient ratios constant between the diets. Carnitine was therefore lower in the 

LGL diet (Table 4). In contrast, the inclusion of more whole grains and leafy greens on the 

LGL diet resulted in ∼80% higher betaine, based on the nutrient data available, although it 

should be noted that betaine content of diet is not as well-documented as that of other 

micronutrients. Dietary intake of choline appeared to be similar between the diets. Thus, 

only one of the TMAO precursors —betaine, was higher in the LGL diet. It is possible that 

consuming a LGL diet, inherently high in fiber, results in changes to the gut microbiome 

community structure that enhance production of TMAO, however studies done on 

individuals who consume vegan or vegetarian diets, or other diets characteristically high in 

fiber, would suggest otherwise46, 47.

TMAO is hypothesized to be associated with CVD risk due to its interference with 

cholesterol clearance, and the association between red meat intake and CVD is attributed, in 

part, to carnitine-derived TMAO 42, 48. Therefore, the increase in TMAO after the LGL diet 

is contrary to what might be expected. Increased intakes of whole grains and leafy greens 

are widely accepted as healthy dietary behaviors49, with betaine specifically identified as 

contributing beneficially as a methyl group donor to homocysteine50. A recent review 

evaluating dietary betaine and choline intakes not only found no association between 

increased intake and CVD risk, but reported reduced inflammation and other CVD risk 

factors51. Solanky et al. reported similar findings of increased TMAO after a dietary 

intervention with soy52, and TMAO is found in high quantities in fish53, both foods to which 

health benefits have been ascribed.

To our knowledge, this is the first study to use metabolomics to interrogate metabolic 

differences in specific pathways as a result of high and low GL dietary patterns in a 

crossover study design. While not specifically evaluated in other studies of GL, targeted 

metabolomics has been applied in the context of glycemic index, fiber and whole grain 

intake, mainly for dietary biomarker discovery14, 15, 54. An additional strength is the 

crossover design where individuals serve as their own control. The 4-week duration of the 

controlled diet intervention, where all foods were provided, was of sufficient length to allow 

us to capture changes in metabolism16. The participants largely maintained their weight on 

the standardized diets where macronutrient levels, with the exception of fiber, were held 

constant, differing only in GL. Adherence to the diets was excellent, with 97% of the 

participants consuming > 90% of the study provided food, with no difference in compliance 

between the two study diets. Targeted metabolomics, unlike global metabolomics, also 
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enabled us to be more certain about the identities and relative abundances of the metabolites, 

although our targeted profile was limited to 125 mostly aqueous metabolites.

This study was limited in that LC-MS was used, and some compounds, such as some 

volatile compounds, are not well detected with this method. Additional analysis with GC-

MS and NMR, as well as lipidomics could provide more comprehensive insight into 

metabolic changes between the two GL diets. Fitness and activity level impact the 

metabolome55 and while participants were asked to keep physical activity constant, detailed 

data on daily physical activity were not collected, and thus no adjustments were made. 

Although we were able to adjust for body fat and weight change, these variables account for 

only a small proportion of total metabolome variation. Finally, although fiber is a 

fundamental determinant of GL, it is difficult to ascertain whether the results of consuming a 

LGL diet pattern are due to differences in amount of fiber, type of fiber, structure of the 

foods, or other dietary constituents associated with low GI.

Conclusion

In summary, we found significant differences in plasma metabolites between a high and low 

GL diet which appear to suggest a metabolic response to differing GL; however, there were 

no statistically significant discernable shifts in the specific pathways examined that explain 

reported associations between LGL diet and reduced chronic disease risk. While the first 

two components in the PLS-DA analysis accounted for ∼22% of the variance, and only 14 

metabolites were significantly altered between the diets, our ability to distinguish between 

the diets in this discriminate analysis suggests the GL of a diet affects plasma metabolites 

broadly. The metabolite with the largest difference in abundance was kynurenate, which 

increased after the LGL interventionm was identified as one of the small number of 

metabolites driving the separation between diets seen in the PLS-DA. Kynurenate, the only 

metabolite remaining statistically significant after Bonferonni correction, is associated with 

reduced inflammation and may be one mechanism through which protective effects of a 

LGL dietary pattern are manifested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HGL high glycemic load

TMAO Trimethylamine-N-oxide

TMA Trimethylamine

CVD cardiovascular disease

CHD coronary heart disease

FFQ food frequency questionnaire

CARB Carbohydrate and Related Biomarkers

FHCRC Fred Hutchinson Cancer Research Center

DEXA dual-energy X-ray absorptiometry

LC-MS liquid chromatography mass spectrometry

GC-MS gas chromatography mass spectrometry

NMR nuclear magnetic resonance

HPLC high performance liquid chromatography, QC, quality control

FDR false discovery rate

PLS-DA partial least squares discriminant analysis

VIP variable importance in projection
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Figure 1. 
PLS-DA score plot of plasma metabolites after 28-d consumption of high glycemic load 

(HGL, Δ) and low glycemic load (LGL, +) diets in a randomized crossover-feeding study. 

The within individual variation and class-separated score plot between the selected 

components showed clear separation. The first component accounted for 11.7% and the 

second for 10.7% of the variance. R2 and Q2 values were 0.0.72 and 0.45, and 0.91 and 0.75 

for components 1 and 2, respectively.
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Table 1

Sample daily meal plans for high glycemic load (HGL) and low glycemic load (LGL) intervention diets in the 

Carbohydrate and Related Biomarkers study.1

HGL Breakfast LGL Breakfast

Grape-nut cereal Dates All Bran Strawberries/blueberries

2% milk Dried cranberries 2% milk Nut crunch

Sweetener Sweetener Tomato juice

HGL Lunch LGL Lunch

White bread Cauliflower Pumpernickel bread Carrots

Roast beef Potato salad Roast beef Tabouli

Mayo Ranch dressing Mayo Hummus

Mustard Mustard

Tomatoes Dessert Tomato Dessert

Lettuce Fruit roll ups Lettuce M&Ms

Onions Jellybeans Onions Pears

Pickles Apricots Pickles

HGL Dinner LGL Dinner

Chicken breast Sour cream Chicken breast Sour cream

Green pepper White rice Green pepper Tortilla

Red pepper Taco shell Red pepper

Onions Dessert Onions Dessert

Mexican sauce Rice pudding Mexican sauce Chocolate mousse

Salsa Cranberry juice Salsa Apple juice

HGL Snack LGL Snack

Energy bar Dried apple Chocolate power bar

1
Menuswere designed to contain similar foods with specific items substituted to alter glycemic load (GL) of overall meal so as to minimize change 

to the diet outside of GL
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Table 2

Summary of average daily intake macronutrient and glycemic load (GL)in high glycemic load (HGL) and low 

glycemic load (LGL) intervention diets.1

Daily intake HGL diet LGL diet

Energy, kcal 2610 (476) 2719 (563)

Carbohydrate, g; % 364 (69) 67% 386 (84) 68%

Protein, g; % 95 (18) 17% 98 (22) 17%

Fat, g; % 86 (16) 16% 87 (20) 15%

GL 259 (50) 125 (27)

Fiber, g 28 (5) 56 (12)

1
Mean (SD)

Food Funct. Author manuscript; available in PMC 2016 September 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barton et al. Page 16

Table 3
Baseline characteristics of study participants (n=19)

Demographics Men Women

N 9 10

Age, y1 31.3 (9.2) 31.9 (9.5)

BMI2 group (N)

 Normal (BMI < 25) 4 4

 Overweight/obese (BMI > 28) 5 6

Mean body fat %3

 BMI < 25 20.57 (4.4) 28.74 (5.6)

 BMI > 28 36.19 (6.0) 45.58 (4.6)

Mean waist/hip ratio4

 BMI < 25 0.86 (0.0) 1.08 (0.2)

 BMI > 28 (0.11) 1.21 (0.1)

Fasting blood glucose, mmol/L1

 BMI < 25 4.9 (0.3) 4.9 (0.4)

 BMI > 28 4.8 (0.8) 4.8 (0.7)

1
Mean (SD)

2
BMI, body mass index= weight in kg/m2

3
Body fat % (SD), measured by DEXA

4
Waist to hip ratio (SD), calculated using android body fat % divided by gynoid body fat % from DEXA scan data
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