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Abstract

Glaucoma is a progressive disease due to damage in the optic nerve with associated functional 

losses. Although the relationship between structural and functional progression in glaucoma is 

well established, there is disagreement on how this association evolves over time. In addressing 

this issue, we propose a new class of non-Gaussian linear-mixed models to estimate the 

correlations among subject-specific effects in multivariate longitudinal studies with a skewed 

distribution of random effects, to be used in a study of glaucoma. This class provides an efficient 

estimation of subject-specific effects by modeling the skewed random effects through the log-

gamma distribution. It also provides more reliable estimates of the correlations between the 

random effects. To validate the log-gamma assumption against the usual normality assumption of 

the random effects, we propose a lack-of-fit test using the profile likelihood function of the shape 

parameter. We apply this method to data from a prospective observation study, the Diagnostic 

Innovations in Glaucoma Study, to present a statistically significant association between structural 

and functional change rates that leads to a better understanding of the progression of glaucoma 

over time.
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1 Introduction

Glaucoma is an eye disease characterized by progressive neuroretinal rim thinning, 

excavation, and loss of the retinal nerve fiber layer. These structural changes are usually 

accompanied by functional losses. Although there is a relationship between structural and 

functional damage in glaucoma, the precise association and the evolution of this association 

over time are still unclear. For example, it is not yet known whether the glaucomatous 

structure and function develop at about the same rate, and how rates of change in structure 

are related to those of function at different stages of the disease. The evolution of association 

in rates of change is essential to enhance the understanding of the glaucomatous process and 

to determine the relative utility of tests for structure and function in monitoring different 

stages of glaucoma. Many studies have investigated the structural and functional 

relationship in glaucoma (Harwerth et al., 2010; Malik et al., 2012; Medeiros et al., 2012). 

These studies have shown different degrees of association between quantitative structural 

measures derived from imaging technologies and psychophysical tests such as standard 

automated perimetry (SAP). Similarly, large disagreements have been reported in 

longitudinal studies evaluating glaucoma progression (Keltner et al., 2006; Strouthidis et al., 

2006).

The association between the functional and structural changes in glaucoma can be modeled 

by studying the relationships among the subject-specific effects in mixed effects models for 

the longitudinal data. Statistically, we study the correlation of the random intercepts between 

the two change responses, and the correlation of the random slopes of time effects. 

Multivariate models are used when responses for two or more response variables are 

observed over time for each individual in a longitudinal study; such data are commonly 

collected in the health sciences and epidemiological studies. There is much literature on 

multivariate longitudinal data. For example, Reinsel (1984) considered the random effects 

model for multiple outcomes with a complete and balanced design. Shah et al. (1997) 

extended linear-mixed models to allow for multiple longitudinal outcomes in the case where 

the number and timing of observations may differ from individual to individual. Roy and 

Lin (2000) extended latent variable models to multivariate longitudinal data. There are two 

sources of within-subject correlation that should be reflected in the multiple-outcomes 

model: (i) among different outcomes; (ii) among repeated measures of the same outcome 

over time. Although one can perform separate analyses of the two outcomes, this does not 

address the main question of interest: how overall treatment practices have changed over 

time. Moreover, the analysis will have increased power if information from all of the 

outcomes is used (Pocock et al., 1987).

Our research is motivated by analyzing data obtained from a prospective observational 

study, the Diagnostic Innovations in Glaucoma Study (DIGS). The DIGS started in Sep. 

2005 and finished recruitment in Aug. 2011. It was carried out at the Hamilton Glaucoma 

Center of the Department of Ophthalmology, University of California, San Diego. The 

DIGS was designed to investigate the longitudinal structure and function relationship in 

glaucoma. Two responses, the visual field index (VFI) and the global average thickness of 

the retinal nerve fiber layer (RNFL), were collected for 203 patients at 6-month intervals. 
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The first response characterizes the functional loss, while the second characterizes the 

structural changes. Section 5 gives more information about the study and the responses.

In a preliminary analysis (see Supporting Information Fig. S1), we observed that the 

intercepts from a within-subject linear regression analysis fitting the logit-transformed VFI 

to time had a left-skewed distribution, while the within-subject distributions of the slopes for 

VFI and those of the intercepts and slopes for RNFL were roughly symmetric. To 

accommodate the skewness of one of the random effects and the associations among the 

multivariate responses, we propose extending the mixed effects model for longitudinal data 

of Zhang et al. (2008) to a bivariate linear-mixed effects model where the random effects are 

assumed to follow the log-gamma distribution. For the multivariate response model, the 

usual distributional assumption for the random effects is multivariate normal. However, 

there are only a few results on the consequences for statistical inference of misspecifying the 

random-effects distribution. This may impact the bias and variance of the parameter 

estimation and the power of hypothesis-testing procedures. Ghosh et al. (2007) developed a 

Bayesian approach to the bivariate-mixed effects model via a multivariate skew-normal 

distribution. However, there is no closed form of the marginal distribution of the responses 

when the random effects are assumed to be nonnormal. In this paper, we present a 

nonnormal linear-mixed effects model for multiple outcomes, which is feasible 

mathematically and computationally less complex. It is applied to the bivariate longitudinal 

study of glaucoma to investigate the association between the structural and functional 

progressions in the patients’ eyes.

The remainder of this article is organized as follows. Section 2 presents a nonnormal 

multivariate linear-mixed effects model. Section 3 discusses the inferences of the fixed 

effects, variance components, and random effects. We use a Gauss–Newton algorithm to 

calculate the maximum likelihood estimates (MLEs) of the parameters and the Markov 

chain Monte Carlo (MCMC) method for the inference of the random effects. Section 4 

presents a lack-of-fit test, based on the fact that the limiting distribution of the log-gamma 

distribution is normal, to test the adequacy of the log-gamma assumption. Section 5 presents 

the tests and the results, and Section 6 provides a discussion. Two figures and a brief 

introduction to the log-gamma distribution are given in the Supplementary Material.

2 Model and assumptions

In this section, we define a general multivariate linear-mixed effects model assuming that 

the skewed random effect follows a log-gamma distribution. Consider a multivariate 

longitudinal study with p responses and N subjects. For i = 1,…, N and k = 1,…, p, let 

 denote the collection of  observations for the k-th outcome of the 

i-th subject. We assume a linear-mixed effects model for Yik of the form

(1)

Here βk is a vector of fixed effects for the k-th response, Xik is the design matrix of fixed 

effects βk, bik is a vector of random effects for the k-th response, and Zik is the design matrix 

of random effects bik.
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Further, let  be a stacked vector of p responses for the i-th subject, 

 be a stacked vector of all fixed effects,  be a stacked 

vector of all random effects, Xi = diag (Xi1,…, Xip) be a block diagonal design matrix for all 

fixed effects, Zi = diag (Zi1,…, Zip) be a block diagonal design matrix for all random effects, 

and  be a stacked vector of error terms. Then the linear-mixed effects 

model in (1) can be written

(2)

We assume that Yi is independent of Yj for i ≠ j. That is, the stacked response vectors of two 

different subjects are independent. We also assume that Yik and Yil, k≠l are conditionally 

independent given the random effects bi. That is, for the same subject, the k-th and l-th 

response vectors are conditionally independent, given the random effects for that subject. 

Further, we assume that E (bi) = 0 and E(εi) = 0.

To model the skewness of the random effects, we rearrange the components in bi and divide 

them into two parts. Denote the reordered vector . The first q0 components 

have skewed distributions, and the remaining q – q0 components are symmetric. The 

reordering also results in the interchange of the columns in the design matrix Zi according to 

the subscripts of . To allow correlated random intercepts and random slopes, we define 

, where , and the linear transformation matrix R is an upper 

triangular matrix with unknown entries rij, 1 ≤ i < j ≤ q, and 1’s on the diagonal. The 

components of the vector  are independent of each other. Expressing the transformation in 

matrix notation gives

(3)

In (3), we specify that just one random effect in , , is from the log-gamma distribution. 

See Section 2 of the Supplementary Material for a brief introduction to the log-gamma 

distribution. From (3), we observe that  are linear combinations of  and other 

random effects in . By specifying the distribution of  to be skewed, we can model 

 as skewed random effects. Allowing multiple random effects in  to be from the 

log-gamma distribution would complicate the calculation of the MLEs of the unknown 

parameters. Moreover, in our real-data analysis, there is only one skewed random effect, that 

is the random intercept for the logit-transformed VFI. In (3), we just need to set q0 = 1. 

More details can be found in Section 5.
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The mean of the log-gamma random variable  is set to zero, and the remaining 

components of  are assumed to have a multivariate normal distribution with mean 0 and 

diagonal covariance matrix G. Thus, from (3),  and so E(bi) = 0. If the distribution 

of the random effect  is positively skewed, then a minus log-gamma distribution should 

be selected for  because the log-gamma distribution is negatively skewed (see Supporting 

Information Fig. S3). For the other skewed components, the sign of the coefficient of 

, determines the direction of skewness. The advantage of introducing the linear 

transformation matrix R rather than specifying the correlated random effects directly is that 

this gives a relatively simple model and also makes it easy to implement the log-gamma 

mixed-effects model.

3 Inference

In this section, we discuss how to calculate the estimates of the unknown parameters and the 

random effects. We denote the unknown parameters as θ = (β′,G,R,κ, Σi)′, where β contains 

the regression coefficients, G contains the covariance components, R contains the 

parameters of the linear transformation matrix in (3), κ is the log-gamma shape parameter, 

and Σi = Cov(εi) = diag  contains the conditional covariance 

parameters. The estimation and inference of θ are based on the marginal likelihood function, 

which is given by

(4)

where  represents the density function of the standard log-gamma distribution (see 

Eq. (1) of the Supplementary Material). The MLE of θ is defined to be . By 

verifying the regularity conditions in Weiss (1973) and Jiang (2001), we can show that the 

MLE  is consistent and asymptotically normal, with the asymptotic covariance matrix 

equal to the inverse of the Fisher information matrix. Because there is no closed-form 

expression for the integration (4), we need numerical integration techniques to maximize the 

likelihood function.

To find  numerically, we use a Gauss–Newton algorithm (Ruppert, 2005), in which the 

Fisher information matrix is approximated by , where li(yi; θ) is 

the log-likelihood contributed by the i-th subject and li(yi; θ) is the first derivative of li(yi; θ) 

with respect to θ. Thus, only the first-order derivatives of the log likelihood are involved. 

The key step of this algorithm is to halve the value of δ, which guarantees a steady increase 

in the likelihood between iterations. To be more precise, the (k + 1)-th iteration calculates
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where δ is the step-halving term and . The algorithm starts with δ = 1 and 

halves δ until the log-likelihood function l(θ) = log L (θ) satisfies l(θk+1) > l(θk). It stops 

when an increase in the likelihood is no longer possible, or the difference between two 

consecutive updates is smaller than a prespecified precision. The starting values are obtained 

by fitting a bivariate linear-mixed model assuming normal random effects using the SAS 

procedure MIXED, as discussed by Thiébaut et al. (2002).

Once  has been obtained, we use it to estimate the random effects. The posterior 

distribution of  is given by

(5)

The posterior mean is used to predict the random effects , and the unknown parameters θ 

are replaced by their MLEs . We may use the MCMC to simulate direct draws from the 

posterior distribution in (5) to obtain the posterior mean.

4 Lack-of-fit test

In this section, we consider the lack-of-fit test. That is, we would like to test if the log-

gamma distribution is as good as or better than the normal distribution. Note that the mean 

and variance of the standard log-gamma distribution W are E(W)=ψ(κ) and Var(W)=ψ′(κ), 

which behave like log κ and κ−1 respectively for large κ. Here ψ and ψ′ are the digamma 

and trigamma functions. It has been shown that the transformed log-gamma variate Z = κ1/2 

(W – logκ) converges to the standard normal distribution as κ → ∞ (Bartlett and Kendall, 

1946; Prentice, 1974). Therefore, for the lack-of-fit test, we test if κ0 = ∞, where κ0 is the 

true value of κ.

Let the profile log-likelihood function be lp (κ) for κ. The statistic of the likelihood ratio test 

Λ(κ0) for the hypothesis H0: κ = κ0 versus Ha : κ ≠ κ0 is

where  is the MLE that maximizes lp(κ). For finite κ0 the distribution of Λ(κ0) is 

asymptotically  under H0. A slight technical difficulty arises in testing the normal model, 

since κ0 = ∞ is on the boundary of the parameter space. However, the other parameters in θ 

with true values are not on the boundary. Therefore. when κ0 = ∞, the asymptotic 

distribution of Λ(κ0) is a 50:50 mixture of  and ; then for 

 (Self and Liang, 1987).

5 Data analysis

In DIGS, subjects were included if they had a diagnosis of glaucoma or were suspected of 

having the disease at the baseline. At each visit during the follow-up, the subjects underwent 

a comprehensive ophthalmologic examination and additional tests designed to evaluate 
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glaucoma structure and function. They were tested at 6-month intervals. The functional 

assessment was performed with visual field testing by SAP (the SITA 24-2 test, Humphrey 

perimeter, Carl-Zeiss Meditec, Dublin, CA). The evaluation of the rates of visual field 

change during the follow-up was performed using the VFI. The VFI represents the 

percentage of normal age-corrected visual function, and it is used to calculate rates of 

progression and the staging of glaucomatous functional damage. The VFI can range from 

100% (normal visual field) to 0% (perimetrically blind field). The structural assessment was 

performed by measuring the thickness of the RNFL using optical coherence tomography 

(OCT). The RNFL thickness measurements were obtained in a 3.2-mm diameter circle 

around the optic nerve head. The global average RNFL thickness (calculated as the average 

of all the RNFL measurements obtained in the circle around the optic nerve) was used in this 

study.

A total of 1939 repeated measures were collected from each of the 203 patients included in 

DIGS. The mean (± standard deviation) age of the participants was 64.1 ± 12.1 years; 54.5% 

of the subjects were female and 32.9% were of African ancestry. There was a wide range of 

disease severities at the baseline, with the SAP mean deviation (MD) values ranging from 

−19.6 to 2.3 dB and the RNFL thickness values ranging from 40 to 123 μm.

Because we investigate two types of outcomes simultaneously in this study, we have p = 2 in 

the general model (2). The VFI scores are proportional data, so we apply a logit 

transformation. The measures of RNFL are regular continuous values. We assume that the 

disease progression is a linear function of time and that the slope depends on the individual 

patient. For the i-th patient, the baseline measures of the k-th (k = 1, 2) outcome recorded 

can be expressed as βk0 + bik0, where βk0 is an unknown parameter and bik0 is the random 

intercept. Several measures are collected at time tijk, for . The coefficient βk1 is 

an unknown parameter, bik1 is the random slope for the i-th patient, and the subject-specific 

progression rate can be expressed as βk1 + bik1tijk. Hence, bi1 = (bi10, bi11)′, bi2 = (bi20, 

bi21)′, and bi = (bi10, bi11, bi20, bi21)′. Therefore, we have q = 4 in model (3). Furthermore, a 

random error is associated with each time measurement. Using the vector and matrix 

notation, the linear-mixed effects model can be written

where

A preliminary analysis indicated that the intercepts of the VFI scores, the first outcome, 

show a negatively skewed pattern when only the linear-mixed model for the Yi1’s is fitted. 
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Histograms of the regression coefficients for the within-subject regressions of the two 

outcomes on time are shown in Supporting Information Fig. S1. They not only verify that 

the distribution of the subject-specific intercepts for VFI is negatively skewed but also 

clearly indicate the relationship between the two random intercepts and that of the two 

slopes.

The random intercept of the first outcome bi10 in bi is the only skewed element. It is in the 

first position, so there is no need to reorder bi to obtain the desired form. That is, q0 = 1 in 

(3). Then, we define the linear transformation bi = Rsi with

where si = (si10, si11, si20, si21)′, with independent components. We model si10 through the 

log-gamma distribution, and the remaining components in si are multivariate normal. Since 

the log-gamma distribution is negatively skewed, bi10 is negatively skewed also. 

Conditioning on the random effects, we assume the responses for a particular individual to 

be independent and conditionally normal:

Table 1 gives the estimates of the parameters in the log-gamma and normal random effects 

models. The estimates of the parameters in the log-gamma model are close to those of the 

normal model. In univariate longitudinal data analysis, deviations from the normality 

assumption have little impact on the estimation of the fixed effects and the variance 

components. Based on the parameter estimates in Table 1, the same appears to be true for 

the multivariate case. We use the multivariate delta method and the asymptotic properties of 

the MLEs  to calculate the standard errors of the variance components of bi. The 

introduction of the linear transformation matrix R does not lead to any difficulties in the 

computation of the standard errors of the variance component estimates. The computational 

complexity is similar to that for the setting of the random effects in the normal case; they are 

usually specified with a nondiagonal covariance matrix. The estimated average regression 

coefficients for VFI and RNFL are −0.0327 and −0.5310, respectively. For both outcomes, 

larger values of the regression coefficients of time indicate a slower deterioration. Therefore, 

negative slopes indicate disease progression over time.

The profile likelihood functions lp(κ) are derived by maximizing log L(θ) with κ fixed. The 

likelihood-ratio statistic Λ (∞) is 2402.4, and the p-value is extremely small: < 0.0001. 

There is strong evidence to reject the null hypothesis that the normal random effects model 

is equivalent to the log-gamma model, suggesting that the log-gamma model has a better fit 

to the data.
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Table 2 lists the means and standard errors of the N = 203 predicted random effects under 

the log-gamma and normal models, the means of the posterior distributions of bi given Yi. In 

the log-gamma model, given estimates of the fixed effects, variance components, and R, the 

random effects bi were predicted from 18,000 sample points of three chains generated from 

the posterior distributions f(bi|yi), with the first 4000 sample points discarded for burn-in. In 

the normal model, the random effects bi were predicted from Empirical Bayes estimates. 

The distributions of the estimates of the random effects bi from the N = 203 posterior means 

under the log-gamma model are shown in Supporting Information Fig. S2. We found that 

the distribution of the predicted random effects (bi10’s) is negatively skewed, which 

confirms the observed skewness from the preliminary study. The estimate of the skewness 

parameter κ = 2.5762 shows that the estimated distribution of the random slopes is not close 

to a normal distribution.

The correlations between the two random intercepts, ρ0, and between the two random 

slopes, ρ1, of the two outcomes are of most interest. We obtained the correlations of the 

pairs of random effects and their standard errors from the log-gamma and normal-mixed 

effects models; they are presented in Table 3. Under the log-gamma model, for the null 

hypothesis H0: ρ0 = 0, the Wald test statistic has z = 21.7790 with p-value < 0.0001, which 

shows that there is a significant positive relationship between the two random intercepts of 

the regressions of the two test results on time. The positive relationship between the 

intercepts of the two outcomes is clearly seen in the scatterplot of the intercepts from the 

single-patient regression analysis, which is shown in the upper-left panel of Fig. 1. The 

Wald test for the hypothesis regarding the correlation of slopes, H0 : ρ1= 0, gives z = 3.1588 

with p-value 0.0016. The intercepts represent the level of disease at the start of the study. 

The positive correlation coefficient of the two random intercepts indicates that the structural 

and functional outcomes are consistent with each other. A high baseline in one test will be 

associated with a high level in the other. Most importantly, the rates of progressive RNFL 

loss are significantly associated with the rates of functional change in glaucoma, as indicated 

by the small p-value of the correlation between the two random slopes. Under the normal 

model, the test for H0 : ρ0 = 0 gives z = 8.8771 with p-value < .0001, and the test for slopes, 

H0: ρ1= 0, has z = 1.4845 with p-value 0.1378. Clearly the model with misspecified 

distributions of the random effects gives less reliable conclusions on the correlations of the 

random effects. The normal model underestimates the correlation of the random slopes of 

the two outcomes, which results in a small value in the test statistic and a large p-value. The 

log-gamma mixed-effects model gives a better fit to the data, so the results on the 

correlations of the random effects are more reliable. Hence, the progression rates of function 

in glaucoma, measured with the VFIs, and the progression rates of structures, measured with 

the RNFLs, are shown to be positively correlated in glaucoma patients.

6 Discussion

We have proposed a class of log-gamma linear-mixed models for modeling longitudinal data 

with multiple outcomes and applied it to a longitudinal glaucoma study. To address the main 

scientific questions of whether the structural and functional measurements are associated 

and how the progressions of the two outcomes are related, we performed hypothesis tests 

based on the proposed model. We concluded that the progressions of the structural and 
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functional outcomes are positively correlated, and the rates of change in the two outcomes 

are highly correlated.

Besides reflecting the covariance structure of the multivariate responses, the main advantage 

of the class of log-gamma mixed-effects models lies in its simplicity in accounting for the 

skewness of the random effects, which results in a more efficient estimation of the 

parameters. We considered the density functions in the location family of the standard log-

gamma distributions with mean zero for the modeling of the skewed random effects. This 

subfamily of the location-scale family of the log-gamma distributions is sufficient to model 

the skewness, and it reduces the computational complexity of the search for the MLEs of the 

marginal log-likelihood function, especially when the dimension of the vector of parameters 

is high. The expression of the reordered random effects by the product of the linear 

transformation matrix and the random vector of independent components avoids high-

dimensional integration in the marginal log-likelihood function and makes the 

implementation feasible. The introduction of the linear transformation matrix not only 

accounts for the correlated random effects, but also ensures that the dimension of the 

numerical integration of the marginal likelihood is one, since the convolution of two normal 

distributions is still normal. This new class provides a generalized method for estimating the 

correlation between two or more slopes. In the case of a single response, the model reduces 

to that of Zhang et al. (2008). The family of log-gamma distributions possesses the nice 

property that the limiting distribution is normal, and a lack-of-fit test on the adequacy of the 

log-gamma distributional assumption of the random effects can be derived. It would be of 

interest to extend the model to the case of mixed multivariate responses in which the 

continuous outcome response shows a skewed pattern.

In this bivariate longitudinal data analysis, we observed that the random slopes of time 

effects from one of the outcomes had a skewed distribution. Modeling this feature using the 

log-gamma distribution not only led to a better fit than that for the regular multivariate 

normal-mixed effects models but also led to a different conclusion on the correlation 

between the two random effects from the two outcomes. This is because the log-gamma 

model gives more accurate estimates of the random effects by assuming more realistic 

distributions for the random effects than normal models do. Better accuracy in the 

estimation of subject-specific effects using the log-gamma model rather than normal models 

has been observed in univariate longitudinal data analysis (Zhang et al. 2008). Future work 

will include a theoretical investigation into how misspecifications of the random effects 

distributions affect the estimation and inference of the correlations of the random effects of 

multivariate longitudinal data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Panels (A) and (B) are scatterplots of the intercepts and slopes for the within-subject 

regressions of two outcomes on time. Panels (C) and (D) are scatterplots of the empirical 

estimates of the intercepts and slopes from the posterior distributions of the random effects 

of the normal random effects model. Panels (E) and (F) are scatterplots of the estimates from 

the log-gamma random effects model.
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Table 2

Results for the posterior distribution outcomes of random effects under the log-gamma and normal random 

effects models.

Random effect Log-gamma Normal

Mean SE Mean SE

bi10 −0.0676 1.2142 −0.0000 1.2444

bi11   0.0006 0.0672   0.0000 0.0538

bi20 −0.3418 6.5187 −0.0002 6.3864

bi21 −0.0186 0.7049   0.0001 0.3978
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