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Abstract

Purpose—Patients with succinate dehydrogenase subunit B (SDHB) mutation-related 

pheochromocytoma/paraganglioma (PHEO/PGL) are at a higher risk for metastatic disease than 

other hereditary PHEOs/PGLs. Current therapeutic approaches are limited but the best outcomes 

are based on the early and proper detection of as many lesions as possible. Because PHEOs/PGLs 
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overexpress somatostatin receptor 2 (SSTR2), the goal of our study was to assess the clinical 

utility of [68Ga]-DOTA(0)-Tyr(3)-octreotate ([68Ga]-DOTATATE) positron emission 

tomography/computed tomography (PET/CT) and to evaluate its diagnostic utility in comparison 

to the currently recommended functional imaging modalities [18F]-fluorodopamine ([18F]-FDA), 

[18F]-fluorodihydroxyphenylalanine ([18F]-FDOPA), [18F]-fluoro-2-deoxy-D-glucose ([18F]-

FDG) PET/CT as well as CT/magnetic resonance imaging (MRI).

Experimental Design—[68Ga]-DOTATATE PET/CT was prospectively performed in 17 

patients with SDHB-related metastatic PHEOs/PGLs. All patients also underwent [18F]-FDG 

PET/CT and CT/MRI with 16 of the 17 patients also receiving [18F]-FDOPA and [18F]-FDA 

PET/CT scans. Detection rates of metastatic lesions were compared between all these functional 

imaging studies. A composite synthesis of all used functional and anatomical imaging studies 

served as the imaging comparator.

Results—[68Ga]-DOTATATE PET/CT demonstrated a lesion-based detection rate of 98.6% 

(95% confidence interval (CI) 96.5% to 99.5%), [18F]-FDG, [18F]-FDOPA, [18F]-FDA PET/CT, 

and CT/MRI showed detection rates of 85.8% (CI 81.3% to 89.4%) (p<0.01), 61.4% (CI 55.6% to 

66.9%) (p<0.01), 51.9% (CI 46.1% to 57.7%) (p<0.01), and 84.8% (CI 80.0% to 88.5%) (p<0.01), 

respectively.

Conclusions—[68Ga]-DOTATATE PET/CT showed a significantly superior detection rate 

compared to all other functional and anatomical imaging modalities and may represent the 

preferred future imaging modality in the evaluation of SDHB-related metastatic PHEO/PGL.
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INTRODUCTION

Pheochromocytomas/paragangliomas (PHEOs/PGLs) are tumors derived from sympathetic 

tissue in adrenal or extra-adrenal abdominal locations or from parasympathetic tissue in the 

thorax or head and neck (1). More than 35% of PHEOs/PGLs are hereditary, including 

multiple endocrine neoplasia 2 (MEN2), von Hippel-Lindau syndrome (VHL), and 

neurofibromatosis 1 (NF1). In recent years, gene mutations encoding the 4 subunits of the 

succinate dehydrogenase (SDH) complex (2, 3), fumarate hydratase (FH) (4), MYC-

associated factor X (MAX) (5), and hypoxia-inducible factor 2α (HIF2A) (6) have been 

evaluated and often found to be associated with the presence of multiple and metastatic 

PHEOs/PGLs.

More than 40% of metastatic PHEOs/PGLs are related to succinate dehydrogenase subunit B 

(SDHB) mutation carriers (7), who are at high risk for developing metastatic disease. Some 

studies show a risk of up to 90% (8), with an only 36% 5-year probability of survival after 

diagnosis of metastatic disease (7). Proper staging and early detection of metastatic disease 

and evaluation of the extent of metastatic disease in these high risk patients is crucial and 

has a major effect on a patient’s prognosis, including choosing the necessary treatment and 

follow-up (9).

Janssen et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Current treatment options in metastatic PHEOs/PGLs are limited and consist of radionuclide 

therapy with [131I]-metaiodobenzylguanidine (MIBG) and chemotherapy with 

cyclophosphamide, vincristine, and dacarbazine (CVD) (10, 11). Surgery and external beam 

radiotherapy are less commonly used options in some patients. However, at least 50% of 

patients with metastatic PHEOs/PGLs, especially those with SDHB mutations, do not benefit 

from [131I]-MIBG treatment due to a lack of the norepinephrine transporter system, resulting 

in suboptimal or no [131I]-MIBG-uptake (12). The use of CVD is a good alternative, but is 

reserved for patients with rapidly growing tumors or extensive organ tumor burden 

(especially in the liver) and limited by treatment-related toxicity. Thus, there is great interest 

and need to find new means of therapeutic options, including radionuclide therapy.

PHEOs/PGLs, similar to other neuroendocrine tumors (NETs), are known to express 

somatostatin receptors (SSTRs) (13) and new, promising radiolabelled DOTA-peptides for 

SSTR imaging and SSTR-targeting treatment have been developed.

Compared to [111In]-DTPA-octreotide (Octreoscan), which is used for SSTR scintigraphy, 

the newly developed DOTA-peptides such as DOTA(0)-Tyr(3)-octreotate (DOTATATE), 

DOTA(0)-Phe(1)-Tyr(3)-octreotide (DOTATOC), and DOTA(1)-Nal(3)-octreotide 

(DOTANOC) bind to SSTR expressing tumors much more effectively (14). In particular, 

DOTATATE has a very high affinity for SSTR2, (14), which is overexpressed in most 

PHEOs/PGLs (13), and has recently been used for their localization (15). Increased 

expression of SSTR2A and SSTR3 was recently shown in PHEOs/PGLs with SDH 

deficiency (16), including SDHB mutations.

DOTA-peptides can either be labeled with the diagnostic positron emission tomography 

(PET) tracer [68Ga] or therapeutic β-emitters like [177Lu] or [90Y]. On one hand, they can 

provide sensitive SSTR-imaging, enabling improved anatomic localization using PET/

computed tomography (CT) technique (17) compared to SSTR scintigraphy. On the other 

hand, when bound to therapeutic β-emitters, they can and are used for peptide receptor 

radionuclide therapy (PRRT) in SSTR overexpressing tumors, especially 

gastroenteropancreatic NETs (18). Treatment results in metastatic PHEOs/PGLs are also 

promising (19).

The present study had two main aims: first, to evaluate [68Ga]-DOTATATE PET/CT in 

patients with metastatic SDHB-related PHEOs/PGLs and assess their eligibility for future 

PRRT as a new and needed therapeutic approach; and second, to assess the diagnostic value 

of [68Ga]-DOTATATE PET/CT in comparison to other well-established and currently 

recommended functional imaging studies in PHEOs/PGLs (20), including [18F]-

fluorodopamine ([18F]-FDA), [18F]-fluorodihydroxyphenylalanine ([18F]-FDOPA), [18F]-

fluoro-2-deoxy-D-glucose ([18F]-FDG) PET/CT, and in comparison to CT/magnetic 

resonance imaging (MRI). Because histological proof was not possible in many metastatic 

lesions, the composite of both anatomical and all functional imaging tests was considered 

the imaging comparator.
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PATIENTS AND METHODS

Patients

Between January and December 2014, 17 consecutive patients (11 men, 6 women) with 

SDHB mutation-associated PHEOs/PGLs with a mean age of 40.3±14.0 years were 

prospectively evaluated at the Eunice Kennedy Shriver National Institute of Child Health 

and Human Development (NICHD) at the National Institutes of Health (NIH). All patients 

had proven metastatic PHEOs/PGLs based on clinical evaluation, including previously 

found and surgically removed PHEOs/PGLs, biochemical diagnosis, and anatomical and 

functional imaging.

The study protocol was approved by the institutional review board of the Eunice Kennedy 

Shriver NICHD (protocol: 00-CH-0093). All patients provided written informed consent for 

all clinical, genetic, biochemical, and imaging studies regarding PHEOs/PGLs.

Mean age at diagnosis of primary PHEO/PGL in these patients was 30.2±15.0 years. The 

average interval between diagnosis of a primary tumor and referral to the NIH was 4.5±3.8 

years. All 17 patients previously underwent resection of their primary PHEO/PGL. 

Individual patient characteristics are summarized in Table 1.

Imaging Techniques

CT scans of the neck, chest, abdomen, and pelvis were performed using the following 

devices: Siemens Somatom Definition AS, Siemens Somatom Definition Flash, Siemens 

Medical Solutions; Toshiba Aquilion ONE, Toshiba Medical Systems. Section thickness 

was up to 3 millimeters (mm) in the neck and 5 mm through the chest, abdomen, and pelvis. 

All studies were performed with intravenous (i.v.) rapid infusion of nonionic water-soluble 

contrast agent as well as oral contrast material.

MR scans of the neck, chest, abdomen, and pelvis were obtained with 1.5 and 3 Tesla 

scanners (Philips Achieva 1.5 and 3 Tesla, Philips Medical Systems; Siemens Verio 1.5 

Tesla, Siemens Medical Solutions). Image thickness was 5 mm for all neck studies and 6 

mm for chest, abdominal, and pelvic scans. Pre- and post-injection images were obtained in 

the axial plane. All MR scans included axial T2 series with and without fat saturation, STIR 

series, and T1 pre- and post-contrast series. MR scans of the abdomen and pelvis also 

included axial T1 in and out of phase and dynamic THRIVE during infusion of contrast, 

followed by delayed axial and coronal post-contrast scans after i.v. injection of a 

gadolinium-diethylenetriamine pentaacetic acid contrast agent.

All 17 patients underwent [68Ga]-DOTATATE, [18F]-FDG PET/CT scanning, and CT/MRI, 

with 16 also receiving [18F]-FDOPA and [18F]-FDA PET/CT scans.

PET/CT scans from the upper thighs to the skull were performed 60 min after i.v. injection 

of a mean administered activity of 201.8±39.6 MBq [68Ga]-DOTATATE, 60 min after 

362.8±112 MBq [18F]-FDG, 30 min after 458.5±83.1 MBq [18F]-FDOPA, and 

approximately 8 min after 37.2±1.1 MBq [18F]-FDA. 60 min before each [18F]-FDOPA 

scan, 200 milligrams (mg) of carbidopa were administered orally. All PET/CT scans were 
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performed on a Siemens Biograph-mCT 128 PET/CT scanner (Siemens Medical Solutions). 

PET imaging was obtained in 3D mode. PET images were reconstructed on a 256 × 256 

matrix using an iterative algorithm provided by the manufacturer, which also uses time of 

flight (TOF). Low-dose CT studies for attenuation correction and anatomic co-registration 

were performed without contrast and used for anatomical localization only.

Analysis of Data

[68Ga]-DOTATATE PET/CT studies were each read independently by two nuclear medicine 

physicians blinded to all imaging and clinical data except for the diagnosis, sex, and age of 

the patient.

Maximal standardized uptake values (SUVmax) were determined and focal areas of 

abnormal uptake showing a higher SUVmax than surrounding tissue were considered as 

lesions. Discrepancies, which occurred in 6 lesions with a mean SUV of 6.2±5.6 in 4 

patients, were solved by consensus review. In all other imaging studies, physicians were 

blinded to [68Ga]-DOTATATE PET/CT scans and clinical data except for diagnosis, sex, 

age of the patient, and previous imaging studies. All imaging studies were performed within 

22±15 days of each other. For regional analysis, adrenal glands, liver, abdominal/pelvic 

compartments (excluding adrenal glands and liver), lungs, mediastinum, and bone were 

analyzed separately. A patient or region was considered positive regardless of the number of 

positive findings. Patient-to-patient, region-to-region, and lesion-to-lesion analyses were 

performed. If the number of lesions in a region exceeded 15, the count was truncated at 15. 

Patient-, region-, and lesion-related detection rates were compared. Head and neck PGLs 

were excluded from the analysis in patients with head and neck PGLs and sympathetic 

PGLs.

Histologic proof of metastatic lesions was not feasible. The composite of anatomic and all 

performed functional imaging tests was considered the imaging comparator. A positive 

result on at least two different functional imaging modalities or at least one functional 

imaging study and CT/MRI was counted as true disease, whereas a lesion detected only on 

CT/MRI or only on one functional imaging test while negative on all other used imaging 

tests was considered a false-positive imaging result.

Statistics

Results are given as means with 95% confidence intervals (CIs) unless stated otherwise. For 

statistical analysis, the McNemar test was used to compare sensitivities between [68Ga]-

DOTATATE PET/CT and the other imaging modalities. A two-sided p<0.05 was considered 

significant.

RESULTS

[68Ga]-DOTATATE PET/CT had a lesion-based detection rate of 98.6% (CI 96.5% to 

99.5%), identifying 285 of 289 lesions (mean SUV 56.0±62.1) compared to our defined 

imaging comparator. Significantly more lesions were identified on [68Ga]-DOTATATE 

PET/CT compared to all other used functional imaging modalities and CT/MRI (two-sided 

p<0.01 for each imaging modality compared to [68Ga]-DOTATATE PET/CT; 
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corresponding cross tables in Supplemental Figure 1). Lesion-based findings on [68Ga]-

DOTATATE PET/CT compared to all other used functional imaging modalities and 

CT/MRI are summarized and outlined in Tables 2 and 3 as well as in Figure 1. Metastatic 

lesions were found in the mediastinum, lungs, liver, abdomen/pelvis, and bones. Those in 

the mediastinum, abdomen, or pelvis were located in lymphatic nodes. Three bone lesions, 

which were positive on [18F]-FDA and [18F]-FDG PET/CT, and one lung lesion, which was 

positive on [18F]-FDG PET/CT and anatomical imaging, were not identified by [68Ga]-

DOTATATE PET/CT. A lesion-based evaluation excluding the patient who only received 

[68Ga]-DOTATATE, [18F]-FDG PET/CT, and CT/MRI did not lead to any statistical 

change.

Besides the 285 lesions confirmed by the defined imaging comparator, [68Ga]-DOTATATE 

PET/CT detected 33 additional lesions: 8 in mediastinal lymphatic nodes, 10 in 

retroperitoneal and pelvic lymphatic nodes, and 15 bone lesions (mean SUV 8.2±6.4). All 

lesions were in the field of view of CT/MR. In the anatomical imaging studies CT/MRI, 8 

lesions were reported, which were not positive on any functional imaging study. Two were 

retroperitoneal lymphatic nodes (1.5 centimeter (cm) and 1.6 cm), 4 were in the lungs (0.4 

cm-0.8 cm), and two in the liver (0.7 cm and 0. 8 cm). Three mediastinal lesions were only 

positive in [18F]-FDG PET/CT. Not a single lesion was only positive in either [18F]-FDOPA 

or [18F]-FDA PET/CT but not another functional or anatomic imaging test.

Per patient detection rates of [68Ga]-DOTATATE, [18F]-FDG, [18F]-FDOPA, [18F]-FDA 

PET/CT and CT/MRI were 100% (17 out of 17 patients (17/17)), CI 81.6% to 100%, 100% 

(17/17), CI 81.6% to 100%, 87.5% (14/16), CI 64.0% to 96.5%, 81.3% (13/16), CI 57.0% to 

93.4% and 100 % (17/17), CI 81.6% to 100%, respectively.

The per region detection rate for [68Ga]-DOTATATE was 100%, identifying 42 out of 42 

regions (42/42), CI 91.6% to 100%, 97.6% for [18F]-FDG (41/42), CI 87.7% to 99.6%, 

65.9% for [18F]-FDOPA (27/41), CI 50.6% to 78.4%, 58.4% for [18F]-FDA PET/CT 

(24/41), CI 43.4% to 72.2%, and 95.2% for CT/MRI (40/42), CI 84.2% to 98.7%.

A PET-imaging example comparing [68Ga]-DOTATATE, [18F]-FDG, [18F]-FDOPA, and 

[18F]-FDA PET/CT is shown in Figure 2.

DISCUSSION

In this study, we evaluated [68Ga]-DOTATATE PET/CT in a cohort of patients with SDHB-

related metastatic PHEOs/PGLs in comparison to [18F]-FDA, [18F]-FDOPA, [18F]-FDG 

PET/CT, and CT/MRI. The composite of both anatomical and all functional imaging tests 

was considered the imaging comparator.

[68Ga]-DOTATATE PET/CT demonstrated a lesion-based detection rate of 98.6% (CI 

96.5% to 99.5%), which was significantly superior to all other imaging modalities in this 

study, thus demonstrating the utility of this modality in localizing tumors in SDHB-related 

PHEO/PGL. We feel this modality will also be useful in determining the possible eligibility 

for PRRT in patients with SDHB-related PHEO/PGL.
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Functional imaging agents are able to target PHEOs/PGLs through different mechanisms. 

[18F]-FDA as well as [123I]-MIBG specifically target catecholamine synthesis, storage, and 

secretion pathways, and both enter the cell via the norepinephrine transporter (21, 22). In 

this study, [18F]-FDA had a low lesion-based detection rate of 51.9% (CI 46.1% to 57.7%), 

which might be explained by tumor dedifferentiation associated with loss of the 

norepinephrine transporter in these patients. This is supported by the reported [123I]-MIBG 

negativity of more than 50% of patients in SDHB mutation-associated PHEOs/PGLs (12). 

Six of the patients in our study had undergone [123I]-MIBG-scintigraphy with a very low 

lesion detection rate of 18.7% (CI 12.0% to 27.9%), but this result was most likely biased by 

the small patient cohort and the heavy disease burden of our patient population.

[18F]-FDOPA targets cells via the amino acid transporter system (23) and has demonstrated 

excellent results in patients with SDHx mutation-related head and neck PGLs (24). 

However, the lesion-based sensitivity of [18F]-FDOPA in SDHB-related PHEOs/PGLs 

outside the head and neck regions has been shown to be poor in a previous study (25). The 

detection rate in our study reached 61.4% (CI 55.6% to 66.9%).

[18F]-FDG is a sensitive but non-specific radiopharmaceutical that enters the cell via glucose 

transporters (GLUT) (26). Its accumulation is related to increased glucose metabolism as 

seen in many different types of tumors (26). In SDHB-related metastatic PGLs, its high 

sensitivity has been well documented (27-29). Higher standardized uptake values (SUV) 

compared to sporadic and other hereditary PHEO/PGL are also reported, accompanied by an 

upregulation of hexokinases 2 and 3 (30). Further, it is known that a mutation in the 

succinate dehydrogenase complex II subunit B can lead to a downregulation or loss of 

succinate dehydrogenase enzyme activity in the Krebs cycle, resulting in an upregulation of 

hypoxic angiogenetic pathways via HIFs (6), which force tumor cells to shift from oxidative 

phosphorylation to aerobic glycolysis (Warburg effect) (31). Currently, [18F]-FDG PET/CT 

is recommended as the functional imaging technique of choice for patients with metastatic 

PHEOs/PGLs, including their follow-up and assessment of treatment-related responses (20, 

32). In this study, we found a lesion-based detection rate of 85.8% (CI 81.3% to 89.4%) for 

[18F]-FDG PET/CT.

With a lesion-based detection rate of 98.6% (CI 96.5% to 99.5%), [68Ga]-DOTATATE 

PET/CT was significantly superior to all other functional imaging modalities in this study. 

[68Ga]-DOTATATE, which is known to have an approximately 10-fold higher affinity for 

SSTR2 than [68Ga]-DOTATOC (which also has high affinity to SSTR5) and an 

approximately 100-fold higher affinity for SSTR2 than [111In]-DTPA-octreotide (14), has 

already shown excellent results in the imaging of SSTR2 expressing gastroenteropancreatic 

NETs (33), and PHEOs/PGLs are also known to overexpress predominantly SSTR2 (13). A 

recent study also demonstrated an increased expression of SSTR2A and SSTR3 in PHEOs/

PGLs with SDH deficiency (16), which also supports the approach of SSTR imaging and 

treatment in these tumors. Until now, there have only been a few small and heterogeneous 

studies and case reports on imaging of PHEOs/PGLs with DOTA-analogues. These have 

shown high sensitivities of [68Ga]-DOTATATE and [68Ga]-DOTATOC PET/CT, 

approaching or reaching 100% (17, 34).
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Besides its diagnostic value, [68Ga]-DOTATATE PET/CT can be used to determine which 

patients may benefit from PRRT, which would be a desirable new treatment option for these 

patients (7, 8). While PRRT has not been specifically evaluated in SDHB-related PHEOs/

PGLs yet, it has already been shown to lead to longer progression-free survival, mainly in 

gastroenteropancreatic NETs (18) but also in other metastatic NETs, including PHEOs/

PGLs (35). Unfortunately, PRRT is not approved by the United States Food and Drug 

Administration at present. In the meanwhile, the high sensitivity of [68Ga]-DOTATATE 

PET/CT in SDHB-related metastatic PHEO/PGL suggests that these patients can be treated 

with cold SSTR analogs, including sandostatin LAR, lanreotide, or others. Although this 

approach has not yet been evaluated in PHEOs/PGLs, results using lanreotide in 

gastroenteropancreatic NETs (36) and individual reports of octreotide treatment in patients 

with head and neck PGLs support this approach (37, 38). This could also be extremely 

useful for patients in whom the location or extension of a PHEO/PGL lesion(s) (especially 

skull base) cannot be accessed by any surgical approach.

The phenomenon of additional lesions appearing with [68Ga]-DOTA-analogues PET/CT 

that were not seen by other imaging studies has been reported before (15, 17). Since 

histologic proof of these lesions in our study was not possible, these lesions have to be 

discussed as false positive lesions. On the other hand, there are also studies that have 

reported histological confirmation of SSTR-positive tumor tissue in such cases, which led to 

a treatment change in up to 60% of patients (39).

Last, the high detection rate of [68Ga]-DOTATATE PET/CT in these patients also suggests 

that the high malignant potential and presumed dedifferentiation of metastatic PHEOs/PGLs 

in SDHB mutations apparently do not lead to a significant loss of SSTR expression. This is 

supported by the increased SSTR2A and SSTR3 expression, which was found in SDH-

deficient tumors (16). Recently, SSTR expression with positive [68Ga]-DOTATOC PET/CT 

was also shown in patients with undifferentiated Epstein-Barr virus-related nasopharyngeal 

cancer (40). This also indicates that a loss in tumor differentiation is not necessarily 

combined with a loss in SSTR expression.

In the current guidelines, which do not yet take PET imaging with [68Ga]-DOTA-peptides 

into consideration, [18F]-FDG is recommended as first-line functional imaging of SDHB-

related PHEO/PGL (20). However, our results indicate that [68Ga]-DOTATATE PET/CT 

may have an incremental diagnostic value in the detection of disease sites, which could have 

an impact on patient care. Therefore, we believe that future guidelines may modify the 

recommendations in favor of using [68Ga]-DOTA-peptides, especially if confirming results 

from a larger number of patients, sporadic PHEO/PGL patients, and other PHEO/PGL 

genotypes are made available.

In clinical settings such as the evaluation of treatment response after systemic radionuclide 

therapy or chemotherapy, the use of [68Ga]-DOTATATE PET/CT is still unclear and has to 

be evaluated. In clinical settings of doubtful CT/MRI results, [68Ga]-DOTATATE might 

also be helpful, although potential false positive results could occur. The more specific 

functional imaging studies like [18F]-FDOPA and [18F]-FDA PET/CT seem to harbor a 

higher risk for false negative results. Last, [18F]-FDOPA PET/CT and especially [18F]-FDA 
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PET/CT are of limited availability, whereas for [68Ga]-DOTATATE PET/CT, we believe 

broader clinical availability can be expected in the future.

Our study was subject to certain limitations, including the relatively small number of 

patients and possible bias related to our chosen reference test. Based on this imaging 

comparator, combined positive findings in functional and/or anatomical imaging studies on 

one hand cannot fully exclude false positive results (e.g., possible positive lesions in [68Ga]-

DOTATATE PET/CT, [18F]-FDG-PET/CT, and/or CT/MRI related to inflammation or 

possible positive lesions in [68Ga]-DOTATATE PET/CT, [18F]-FDOPA PET/CT, and/or 

CT/MRI related to different neuroendocrine tumors). On the other hand, true positive 

findings, which only appear in one imaging modality, e.g. CT/MRI, would have been 

counted as false positive in our setting.

In conclusion, although [18F]-FDG PET/CT is currently recommended as the functional 

imaging technique of choice in SDHB-related PHEOs/PGLs and our study is subject to 

certain limitations, we believe that our results may indicate a preference for [68Ga]-

DOTATATE PET/CT in these patients, particularly in the detection of progressive 

metastatic disease, additional disease sites, and even early detection of metastatic disease. 

[68Ga]-DOTATATE PET/CT can also be used to help determine the eligibility of patients 

for PRRT, a new and hopefully soon to be available treatment option. The utility of [68Ga]-

DOTATATE PET/CT in other genotypes, sporadic PHEO/PGL, or for treatment monitoring 

should be evaluated soon.
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TRANSLATIONAL RELEVANCE

Patients with succinate dehydrogenase subunit B (SDHB) mutation-related 

pheochromocytoma/paraganglioma (PHEO/PGL) are known to suffer from aggressive 

tumor behavior that has a very high likelihood of metastasis. This work focuses solely on 

the performance of [68Ga]-DOTA(0)-Tyr(3)-octreotate ([68Ga]-DOTATATE) PET/CT in 

patients with metastatic SDHB-related PHEOs/PGLs and demonstrates the superiority of 

[68Ga]-DOTATATE PET/CT in the detection of metastatic lesions in these patients, 

compared to all other and currently recommended functional imaging modalities. Our 

results may suggest modifying the functional imaging algorithm for these patients, 

dependent on the clinical setting, which currently places [18F]-fluoro-2-deoxy-D-glucose 

([18F]-FDG) PET/CT as the gold standard. Furthermore, our results indicate that peptide 

receptor radionuclide therapy or treatment with so-called “cold” somatostatin receptor 

analogs, long-awaited remedies, could be used as new and promising therapeutic options 

for patients with metastatic SDHB-related PHEOs/PGLs.

Janssen et al. Page 13

Clin Cancer Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Identified lesions (positive columns) and missed lesions (negative columns) for CT/MRI, 

[18F]-FDG, [68Ga]-DOTATATE, [18F]-FDOPA, and [18F]-FDA PET/CT.
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Figure 2. 
24-year-old female patient with metastatic paraganglioma and SDHB mutation, first 

diagnosed with left carotid body tumor, lung and bone metastases in 2011. [68Ga]-

DOTATATE PET (A) demonstrated additional lung and bone lesions (arrows), compared to 

[18F]-FDG PET (B) and [18F]-FDOPA PET (C). [18F]-FDA PET (D) and [123I]-MIBG 

scintigraphy (not shown) were negative.
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Table 1

Individual patient characteristics.

Pt. # Sex SDHB mutation
Age
(d)

Age
(s) LOP

Hyper
secretion TTM LOM Treatment

1 m
c.725G>A,

p.Arg242His 20 34 R skull None 12 B RT skull

2 f
c.688G>T,

p.Arg230Cys 22 25 L carotid body None 0 B, Lu, Me Res primary

3 m
c.418G>T,

p.Val140Phe 10 20
Aortic

bifurcation
NE, NMN,

DA 0 B, A/P Res primary

4 m
c.689G>A,

p.Arg230His 52 52 R para-adrenal NE, NMN 0 B
RT skull

Res primary

5 f
c.343G>T,
p.Arg115X 32 43 Urinary bladder NE, NMN 3 B, Lu, A/P

Res primary,
CVD

6 f
c.689G>A,

p.Arg230His 28 50 L carotid body None 20 Lu, Li
Res primary,

CVD

7 f
c.136C>T,
p.Arg46X 19 24

R glomus
jugulare None 0 B, Ne

Res primary, RT
skull

8 m
c.200+33G>A,

p.Glu228Glyfsx27 47 59 L para-adrenal DA, MTT 3
Me, Ne,

A/P Res. primary

9 m
c.136C>T,
p.Arg46X 45 46

urinary
bladder NE, NMN, 0 Lu, B Res primary

10 m
c.136C>T,
p.Arg46X 25 37 R mediastinal None 0 Lu

Res primary,
CVD

11 m c.72+1G>T 54 60 R para-adrenal NE, NMN 0
Lu, Me,
A/P, B

Res primary ,
MIBG

12 f Exon 1 deletion 49 55
Aortic

bifurcation NE, NMN, DA, MTT 0 Ne, Me, A/P
Res primary,

MIBG

13 m
c.330_331del,

p.Leu111SerfsX7 10 23 L adrenal NE, NMN 0
B, Lu, Ne,

A/P, Li Res primary

14 m
c.268C>T,
p.Arg90X 11 26 R adrenal None 8 B, Lu, Ne

Res primary,
MIBG

15 m Exon 1 deletion 34 41 R para-adrenal
NMN, DA,

MTT 5 Me, B Res primary

16 m
c.137G>A,
p.Arg46Gln 19 36 L pelvis

NE, NMN,
DA, MTT 13

B, Lu, Ne,
A/P

Res primary,
MIBG, CVD

17 f

c.541-2A>G,
splice site
mutation 36 54 L carotid body

NE, NMN,
DA, MTT 8 B Res primary

Abbreviations: Age (d), age at diagnosis; age (s), age at study; A/P, abdomen/pelvis; B, bones; CVD, chemotherapy with CVD; DA, dopamine; f, 

female, L, left; LOM, location of metastases; LOP, location of primary; Lu, lungs; m, male; Me, mediastinum, MIBG, 131I-MIBG treatment; Mtt, 
methoxytyramine, Ne, neck; NE, norepinephrine; NMN, normetanephrine; no, number; Pat., patient; R, right; Res, surgical resection; RT, 
radionuclide therapy; TTM, time to metastases (years).
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Table 2

Number of identified lesions in [68Ga]-DOTATATE, [18F]-FDA-, [18F]-FDOPA-, [18F]-FDG-PET/CT, and 

CT/MRI compared to lesions identified by the imaging comparator.

Lesions [68Ga]-DOTATATE [18F]-FDG [18F]-FDOPA [18F]-FDA CT/MRI

All compartments 285/289 248/289 175/285 148/285 245/289

Mediastinum 65/65 57/65 39/65 39/65 55/65

Lungs 62/63 45/63 45/63 18/63 62/63

Abdomen 43/43 40/43 31/43 19/43 33/43

Liver 5/5 3/5 4/5 0/5 5/5

Bone 95/98 91/98 41/94 57/94 82/98
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Table 3

Detection rate (%) and 95% CI (%) for [68Ga]-DOTATATE, [18F]-FDA-, [18F]-FDOPA-, [18F]-FDG-

PET/CT, and CT/MRI.

Detection rate [68Ga]-DOTATATE [18F]-FDG [18F]-FDOPA [18F]-FDA CT/MRI

All compartments 98.6 (96.5 to 99.5) 85.8 (81.3 to 89.4) 61.4 (55.6 to 66.9) 51.9 (46.1 to 57.7) 84.8 (80.0 to 88.5)

Mediastinum 100 (94.4 to 100) 87.7 (77.6 to 93.6) 60.0 (47.9 to 71.0) 60.0 (47.9 to 71.0) 84.6 (73.9 to 91.4)

Lungs 98.4 (92.5 to 99.7) 71.4 (59.3 to 81.1) 71.4 (59.3 to 81.1) 28.6 (18.9 to 40.7) 98.4 (91.5 to 99.7)

Abdomen 100 (91.8 to 100) 93.0 (81.4 to 97.6) 72.1 (57.3 to 83.3) 44.2 (30.4 to 58.9) 76.7 (62.3 to 88.7)

Liver 100 (56.5 to 100) 60.0 (23.1 to 88.2) 80.0 (37.6 to 96.4) 0% (0.0 to 43.5) 100 (56.5 to 100)

Bone 96.9 (91.4 to 99.0) 92.9 (86.0 to 96.5) 43.6 (34.0 to 53.7) 60.6 (50.5 to 69.9) 83.7 (75.1 to 89.7)
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