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Abstract

Purpose—To accelerate denoising of magnitude diffusion-weighted images subject to joint rank 

and edge constraints.

Methods—We extend a previously proposed majorize-minimize (MM) method for statistical 

estimation that involves noncentral χ distributions and joint rank and edge constraints. A new 

algorithm is derived which decomposes the constrained noncentral χ denoising problem into a 

series of constrained Gaussian denoising problems each of which is then solved using an efficient 

alternating minimization scheme.

Results—The performance of the proposed algorithm has been evaluated using both simulated 

and experimental data. Results from simulations based on ex vivo data show that the new 

algorithm achieves about a factor of 10 speed up over the original Quasi-Newton based algorithm. 

This improvement in computational efficiency enabled denoising of large data sets containing 

many diffusion-encoding directions. The denoising performance of the new efficient algorithm is 

found to be comparable to or even better than that of the original slow algorithm. For an in vivo 

high-resolution Q-ball acquisition, comparison of fiber tracking results around hippocampus 

region before and after denoising will also be shown to demonstrate the denoising effects of the 

new algorithm.

Conclusion—The optimization problem associated with denoising noncentral χ distributed 

diffusion-weighted images subject to joint rank and edge constraints can be solved efficiently 

using an MM-based algorithm.
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INTRODUCTION

Low signal-to-noise ratio (SNR) is a major concern for high-resolution quantitative diffusion 

imaging (1). Many denoising methods have been proposed to enhance the SNR for diffusion 

imaging, either working with the complex data (e.g., (2, 3)) or with the magnitude data (e.g., 

(4–11)). Although denoising complex data can generally be advantageous (e.g., less 

computational challenge and easier characterization), it is desirable to effectively denoise 

magnitude data for a number of practical reasons (such as less storage usage, easier data 

management and free of phase artifacts (12)).

In a recent paper (13), we presented a new magnitude image denoising method for diffusion 

MRI that integrates noncentral χ noisy data model (14–16) with a low-rank image sequence 

model (17–21) and a joint edge constraint (2). The method uses a Quasi-Newton (i.e., L-

BFGS) (22) based algorithm to solve the underlying nonlinear optimization problem and its 

long computational time is a limiting factor for processing large data sets (e.g., 3D high-

resolution diffusion-weighted image volumes).

This note presents a new fast algorithm for solving the nonlinear optimization problem 

associated with magnitude image denoising in the presence of rank and edge constraints. 

The algorithm is based on a recently proposed efficient quadratic majorize-minimize (MM) 

method (23). It decomposes the original denoising problem into a series of constrained 

“Gaussian denoising” problems, each of which can be solved very efficiently using an 

alternating minimization scheme, significantly reducing the computation time (around 10-

fold acceleration overall). We demonstrate here the improved performance of the new 

algorithm using both simulations based on ex vivo data and in vivo experimental data. The 

new algorithm will enhance the practical utility of joint rank and edge constrained 

magnitude image denoising.

THEORY

Problem Formulation

We represent a series of noisy magnitude diffusion-weighted images (DWI) by a matrix Y ∈ 

ℝM × Q, in which each column is an image frame, M is the number of voxels in each frame, 

and Q is the number of images, and the corresponding noise-free images by X ∈ ℝM × Q. It 

is well established that magnitude images obtained from sum-of-squares reconstruction 

follow a noncentral χ distribution, of which Rician distribution is a special case for single 

coil reconstructions (24). With the data distribution, the magnitude image denoising problem 

can be formulated as the following penalized maximum likelihood estimation problem
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[1]

where X̂ ∈ ℝM × Q contains the denoised images, L(·) denotes the negative log-likelihood 

function, and R(·) is a regularization functional used to incorporate prior information, n is 

the number of coils and σ is the noise standard deviation. As proposed in (13), when an 

explicit rank constraint is imposed on X, the joint rank and edge constrained noncentral χ 

denoising problem can be formulated as

[2]

where U ∈ ℝM × r and V ∈ ℝr × Q are two rank r matrices (r < Q, r ≪ M) such that X = UV, 

and R(·) absorbs the joint edge constraint (2,13). Specifically, we have

[3]

where In(·) is the nth-order modified Bessel function of the first kind, H(·) is an edge-

preserving penalty function, Ωm is the neighborhood of the mth voxel (defined as the 

adjacent voxels along all spatial dimensions) and {wq} are coefficients weighing the 

contributions from different image frames to the joint edge penalty (2). In addition, the first 

summation term in this equation corresponds to the negative log-likelihood L(·) while the 

second summation corresponds to the regularization term R(·). Eq. [3] is a challenging 

computational problem due to nonconvexity and the repeated evalution of complicated 

functions such as the modified Bessel functions. We next describe a new efficient algorithm 

to solve this problem.

An MM-Based Algorithm

According to the MM theory (25, 26), if an upper bound (also referred to as the majorizer) 

can be obtained for an objective function, the original minimization problem can be 

transferred into a series of subproblems (usually in a simpler form) in which the majorizer is 

updated and minimized iteratively. Based on the derivations in (23), it can be shown that 

L(·) in Eq. [3] can be upper bounded/majorized as

[4]

where  contains the voxel intensities at the current iteration. C(i) is a constant that 

depends on X(i) and Y but is independent of U and V (detailed derivation of C(i) can be 
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found in the Appendix). Therefore, we can transfer the original optimization problem into a 

series of problems defined as

[5]

where

[6]

This is essentially a Gaussian denoising (least-squares) problem subject to the original rank 

and edge constraints, but with the modified noisy data. This problem can then be solved 

using the following alternating minimization scheme:

1. Compute the weighting coefficients {lmp} as described in (13) for the edge 

constraint;

2. With a fixed V̂(k), solve the following U-subproblem:

where D is a finite difference operator, W a diagonal matrix with {lmp} on its 

diagonal and  the qth column of V̂(k). More specifically, this is a quadratic 

problem and thus equivalent to solving

with Ω being a diagonal matrix with {wq} on its diagonal. This system of linear 

equations can then be solved by efficient iterative algorithms such as linear 

conjugate gradient (CG);

3. With a fixed Û(k), solve the following V-subproblem:

which is again equivalent to solving
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4. Repeat 1 – 3 until a certain convergence criterion is met or a given number of 

iterations is reached.

Once the problem in Eq. [5] is solved, Eq. [6] can be used to update the majorizer again and 

these two steps can be iterated until a certain convergence criterion is met. In our 

implementation, we terminated the Gaussian denoising iterations when the relative ℓ2-norm 

of the successive change in Û is less than 10−5 and repeat the majorizer computation and the 

Gaussian denoising step 10 times. We found that after 10 iterations the changes in the 

majorizer were negligible. A detailed derivation of the majorizer in Eq. [4] is given in the 

Appendix.

METHODS

Experiments Based on Ex Vivo Data

The performance of the proposed algorithm has been evaluated using simulations based on 

ex vivo experimental data. Specifically, simulated noisy Rician distributed data (n = 1) were 

generated from a high SNR and high-resolution ex vivo whole pig brain DWI data set 

available online (27). The original DWI series has 64 3D volumes, including 61 diffusion 

directions at b = 4009 mm2/s and three volumes at b = 0. Each 3D volume has a size of 128 

× 128 × 70 (see (27) for other detailed information on the data). The constrained denoising 

as described by Eq. [3] was applied to process the entire 3D noisy series simultaneously 

with n =1 and r = 12, using the original L-BFGS-based algorithm (13) and the new MM-

based algorithm, respectively. Diffusion tensor parameters were then estimated from the 

original high SNR images, the noisy images and the denoised images using the standard 

least-squares method (28). The results from the original high SNR images were treated as a 

gold standard for performance comparison.

In addition to comparing the denoised DWI images and the estimated diffusion parameter 

maps qualitatively, two error metrics were also calculated. One is the relative ℓ2 error 

(denoted as RE) calculated for a representative image frame as

where I0 is the gold-standard and Î is the noisy or denoised images. The other metric is the 

root-mean-squared-error for the estimated fractional anisotropy (FA) values (denoted as FA-

RMSE) calculated as

where FA and  are FA maps from the noise-free images and noisy/denoised images, 

respectively, and M1 is the number of voxels extracted from the brain region for computing 
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the RMSE. The first metric is a good indicator for image quality and the latter is a good 

indicator for diffusion parameter estimation accuracy. The regularization parameter (λ) was 

chosen such that the FA-RMSE was minimized compared to the gold standard. Both 

algorithms were implemented in Matlab (R2012b; The Mathworks, Natick, MA) on a 

workstation with a 3.47 GHz dual-hex-core Intel Xeon processor X5690, 96 GB RAM and 

Linux operation system.

In Vivo Experiments

In vivo human brain diffusion MRI data were acquired at the Center for Imaging of 

Neurodegenerative Diseases at the University of California, San Francisco. The participants 

were recruited with written consent prior to the study. The data were acquired on a Siemens 

Skyra 3T scanner (Siemens Medical Solutions, Erlangen, Germany) with a 16-channel 

receiver head coil. The diffusion-weighted imaging sequence was single refocused spin-echo 

EPI with 128 diffusion encoding directions at b = 1500 s/mm2 in addition to 15 b = 0 s/mm2 

images evenly interleaved with the DWI volumes. The rest of the imaging parameters were: 

TR/TE = 3500/86 ms, field-of-view (FOV) = 192 × 192 mm2, matrix size = 128 × 128, 26 

axial slices covering the medial temporal lobe with no gap (resulting in 1.5 mm isotropic 

resolution). A factor of two parallel acceleration and a factor of 6/8 phase partial Fourier 

acquisition were used and GRAPPA reconstruction with sum-of-squares coil combination 

was applied. The total acquisition time was eight and a half minutes. Note that although 

theoretically the reconstructed noisy magnitude images do not exactly follow a noncentral χ 

distribution, it has been shown that the noncentral χ likelihood is still an accurate model for 

magnitude data obtained by GRAPPA reconstruction (24), which justifies the usage of the 

proposed denoising formulation. For this large data set with so many diffusion directions, 

the original algorithm would take about 10 to 20 hours to finish denoising if applied to the 

entire data set. Therefore, to simplify the comparison, we randomly selected one b = 0 image 

and 40 diffusion directions from the original data and applied the constrained denoising to 

this smaller data set with n = 16 and r = 12, using the L-BFGS-based algorithm and the 

proposed MM-based algorithm, respectively. The regularization parameter was selected 

based on visual inspection of both the denoised DWIs and FA maps to avoid oversmoothing.

The improved processing efficiency offered by the new algorithm allows us to apply the 

constrained denoising to larger data sets with many more diffusion directions. We have 

processed the entire data sets with all the 128 diffusion-encoding directions using the new 

algorithm and compared the fiber tracking results before and after denoising. The orientation 

distribution function (ODF) reconstruction and the fiber tracking were done using the 

MRtrix software package (29).

RESULTS

Simulations Based on Ex Vivo Data

Figure 1 shows some representative results from the simulation study based on ex vivo data. 

As expected, denoising significantly improves the quality of the DWIs and the estimated FA 

maps. In this study, the new algorithm produced denoised DWIs and FA maps comparable 

to those from the original algorithm. However, the new algorithm took significantly less 
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time (2760 sec) than the old algorithm (46491 sec), and obtained even slightly lower RE and 

FA-RMSE (also shown in Fig. 1). This improvement is consistent with the plots shown in 

Fig. 2, which compare the RE and FA-RMSE for the two algorithms at different noise 

levels.

To further illustrate the significant gain achieved by the proposed algorithm in terms of 

tradeoff between computational efficiency and performance, we compare the RE changes 

over time and iteration for the two algorithms. As shown in Fig. 3, although the proposed 

algorithm has a slightly lower empirical convergence rate (Fig. 3a) than the original L-

BFGS-based algorithm, it requires much simpler computations per iteration. Thus overall, 

the proposed algorithm is able to achieve a lower RE in much less time compared to the 

original algorithm (Fig. 3b).

In Vivo Experiments

Figure 4 shows a set of results from in vivo data. Representative DWIs and diffusion 

parameter (FA) maps from the original noisy data and denoised data from the L-BFGS-

based algorithm and the proposed MM-based algorithm are shown. As can bee seen, both 

algorithms offer similar reduction in noise and improvement in image quality. However, the 

new algorithm took approximately only 15 minutes of processing time while the old 

algorithm took around 4 hours.

Figure 5 compares the reconstructed ODFs and fiber tracking results around the 

hippocampus region from the 128-direction diffusion MRI data, before and after denoising. 

The denoising process was finished in slightly over an hour using the new algorithm. As can 

be seen, the effect of denoising is very noticeable. For example, the maxima of the ODFs 

around the hippocampus are better defined and the tracking results from the denoised data 

seem to reveal more perforant path fibers that were tracked from entorhinal cortex to 

hippocampus. Histological tract tracing would be desirable to confirm this observation.

DISCUSSION

The effectiveness of integrating noncentral χ likelihood model, rank and edge constraints for 

de-noising magnitude diffusion-weighted image series was demonstrated in (13). However, 

its long computational time for large data sets is a major practical limitation. The proposed 

MM-based algorithm effectively addresses this problem. The improved computational 

efficiency (i.e., better tradeoff between convergence rate and computation time per iteration 

as illustrated in Fig. 3) offered by the new algorithm can provide several additional benefits. 

First, it provides more flexibility for parameter tuning (e.g., selection of rank and 

regularization parameter); Second, it enables the use of more complex regularization 

functionals if needed. Furthermore, as shown in the derivation of the algorithm in the 

Appendix, the decomposition of the original problem into a series of regularized least-

squares problems opens up opportunities to adopt advanced Gaussian denoising methods for 

magnitude data denoising or to develop methods for direct estimation of diffusion 

parameters from noisy magnitude data (30).
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A key factor to improving computational efficiency in the proposed algorithm is the 

reduction in calculations involving the modified Bessel functions. In the original algorithm, 

one has to deal with intensive computations associated with the modified Bessel functions in 

each iteration updating U and V (and for solving the large-scale nonlinear programming 

problems repeatedly (13)), while in the proposed algorithm, only the majorizer computation 

is related to those functions. After majorization, the alternating between U and V only 

involves solving regularized linear least-squares problems which are computationally much 

simpler. Moreover, we have also observed that the computation time for solving the least-

squares problems is much shorter than that for the line search step during solving the 

nonlinear programming problems (to update U and V) which again involves intensive 

computations for the modified Bessel functions. We believe that this significantly improved 

efficiency offered by the MM algorithm leads to better convergence to the optimal solution 

of the original problem in Eq. [3] than the L-BFGS-based algorithm within a same period of 

time, which can be one main reason for the quantitative improvement observed. In addition, 

the MM-based algorithm also provided better numerical stability (by avoiding the nonlinear 

functions such as log(·) and In(·) when updating U and V) which also contributes to the 

better performance observed.

It is also worth noting that due to the nonconvexity of the original problem in Eq. [3], 

choosing a proper initial point to start the iterative algorithm is important. In this work, we 

initialized the entire algorithm as follows: (1) compute the first majorizer from the noisy 

data and obtain the modified data Ỹ; (2) apply SVD to Ỹ and choose the first r singular 

vectors to initialize U and V in Eq. [5]. After solving the problem in Eq. [5], we saved the 

current solutions Û and V̂ as a warm start for the next iteration. We have also experimented 

with alternative initialization schemes such as computing the first majorizer from filtered 

magnitude data or initializing the problem in Eq. [5] using the SVD Ỹ of each time, and 

found that they had negligible effects on the final results.

This paper has considered only spatially invariant noise variance, but the formulation in Eq. 

[3] and the proposed algorithm can readily be extended to incorporate spatially varying 

noise variances (13), with slight changes in computing the majorizer (σ → σm) and 

modification of the least-squares term in Eq. [5] (to a weighted least-squares form). Note 

that in this case, accurate estimation of the spatially varying variance is necessary to ensure 

the denoising performance (10, 11,31). Extension to spatially correlated noncentral χ 

distributions is however nontrivial and would require more careful examinations (23).

CONCLUSION

An MM-based algorithm is proposed for efficient denoising of magnitude images subject to 

rank and edge constraints. The algorithm will enhance the practical utility of constrained 

denoising, especially in high-resolution diffusion imaging with a large number of diffusion 

encoding directions.
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APPENDIX

Derivation of the majorizer for L(·) in Eq. [2]

Given the noncentral χ likelihood function

and

where tn(·) denotes the hypergeometric function, Γ(·) denotes the Gamma function and a = 

y/σ2, it is shown in (32) that tn(x) is strictly log-convex in x. Accordingly, In−1 (ax)/xn−1 = 

(a/2)n−1tn(ax)/Γ(n) is strictly log-convex in x. Therefore
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is strictly concave in x. Furthermore, since v(x) is differentiable, it can be upper-bounded as 

follows (23):

where

and xi corresponds to a specific intensity at the current iteration. Accordingly, the negative 

log-likelihood, −logp(y|x) = −log(yn/σ2) + (x2 + y2)/2σ2 + v(x), can be majorized as

where c(i) = −log(yn/σ2) + y2/2σ2 + v(xi) − v′(xi) xi is a constant independent of x which is to 

be optimized. As a summation of −logp(y|x), L(·) can then be majorized as

The constant C(i) results from a summation of c(i) (over the indices m and q). As shown in 

the derivations above, C(i) is independent of U and V. Therefore, it can be ignored for 

solving the regularized least-squares problem (Eq. [5]) once the majorizer has been 

computed.
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Figure 1. 
Representative DWIs (top row), FA maps (middle row) and color-coded FA maps (bottom 

row) for one slice from an ex vivo data set. The color encodes the orientations of the 

primary eigenvectors of the estimated diffusion tensors: red for left-right, green for anterior-

posterior and blue for superior-inferior. Different columns correspond to results from the 

gold standard, noisy data, denoised data generated by the L-BFGS-based algorithm and the 

proposed algorithm, respectively. The numbers in red letters are the FA-RMSEs for different 

results.
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Figure 2. 
Relative errors for a representative DWI image (a) and the FA-RMSEs for one slice (b) at 

different noise levels, for the noisy data, denoised data generated by the L-BFGS-based 

algorithm and denoised data generated by the proposed algorithm. The x-axis denotes the 

noise standard deviation (σ).
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Figure 3. 
Empirical convergence curves for the original L-BFGS-based algorithm and the proposed 

algorithm. The curves show the relative error changes with respect to the number of 

outermost iterations (a) and time (b). Note that each iteration for the proposed algorithm 

includes a majorization and a minimization (solving the regularized least-squares problem) 

steps, while each iteration for the original algorithm includes an alternation between 

updating U and V (13). Note also that due to the processing time consideration only five 

outermost iterations were run for the L-BFGS-based algorithm which already suffices for 

the demonstration purpose.
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Figure 4. 
Representative DWIs (a) and estimated FA maps (b) from an in vivo data set. The images 

correspond to results from the noisy data (left column), denoised data generated by the L-

BFGS-based algorithm (middle column) and denoised data generated by the proposed MM-

based algorithm (right column).
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Figure 5. 
Reconstructed ODFs (a,b) and fiber tracking results (c,d) around the hippocampus region 

from a data set with 128 diffusion-encoding directions. The results from the noisy data (left) 

and the denoised data (right) are compared. Two regions near the hippocampus (HPC) and 

the entorhinal cortex (ERC) are identified by red boxes in (a) and (b) to highlight the 

denoising effects.
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