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Autonomic cardiorespiratory activity changes across sleep stages. However, it is unknown to what extent it is affected by
between- and within-subject variability during sleep. As it is hypothesized that the variability is caused by differences in subject
demographics (age, gender, and body mass index), time, and physiology, we quantified these effects and investigated how they limit
reliable cardiorespiratory-based sleep staging. Six representative parameters obtained from 165 overnight heartbeat and respiration
recordings were analyzed. Multilevel models were used to evaluate the effects evoked by differences in sleep stages, demographics,
time, and physiology between and within subjects. Results show that the between- and within-subject effects were found to be
significant for each parameter. When adjusted by sleep stages, the effects in physiology between and within subjects explained more
than 80% of total variance but the time and demographic effects explained less. If these effects are corrected, profound improvements
in sleep staging can be observed. These results indicate that the differences in subject demographics, time, and physiology present
significant effects on cardiorespiratory activity during sleep. The primary effects come from the physiological variability between
and within subjects, markedly limiting the sleep staging performance. Efforts to diminish these effects will be the main challenge.

1. Introduction

Polysomnography (PSG) is the gold standard and common
practice for the objective analyses of overnight sleep architec-
ture (displayed by a so-called hypnogram) and sleep-related
disorders such as insomnia/parasomnia, sleep-disordered
breathing, and rapid-eye-movement (REM) sleep behavior
disorder [1]. With PSG, sleep stages are manually scored
on continuous 30s epochs based on electrophysiological
signals including electroencephalogram (EEG), electromyo-
gram (EMG), and electrooculogram (EOG) according to the
Rechtschaffen and Kales (R&K) rules [2] or the more recent
guidelines of the American Academy of Sleep Medicine
(AASM) [3]. PSG recordings are usually acquired in a
sleep laboratory that requires a lot of manual labor for
visual scoring. It is costly and uncomfortable for subjects

and therefore not suited for long-term monitoring. These
disadvantages motivated sleep researchers and clinicians to
devote more attention to alternatives such as cardiac and
respiratory activities, allowing for unobtrusive sleep staging
with minimal discomfort to subjects [4-8].
Cardiorespiratory activity has been proven to associate
with the autonomic sympathetic and parasympathetic (or
vagal) nervous systems in humans, which relates to sleep
stages [9-13]. For example, the sympathetic activation of
the heart usually translates to an increased spectral power
of heart rate variability (HRV) in the low-frequency band
between 0.04 and 0.15Hz and the vagal activity (primarily
caused by respiratory sinus arrhythmia) is associated with the
spectral power in the high-frequency band between 0.15 and
0.4 Hz [14]. During REM sleep, the high-frequency spectral
power increases while the low-frequency spectral power
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decreases, when compared with non-REM (NREM) sleep and
wakefulness [15]. Furthermore, the respiratory volume and
frequency are more regular during NREM sleep than during
REM sleep and wakefulness [9]. Irregular respiration patterns
occurring during wakefulness are usually caused by body
movements or alternation of ventilation control manipulated
by some external factors; during REM sleep they can be
related to muscle atonia or subcortical structures with a
possible involvement of the bizarre content of dreams [16, 17].

In addition to sleep stages, the cardiorespiratory activity
can be influenced by between-subject variability with respect
to (1) subject demographics such as age, gender, and body
mass index (BMI) [18-20] and (2) internal physiology such
as response of autonomic regulation, metabolic function, and
subcortical arousals [21-23]. Note that, for simplicity, here
we consider BMI as a demographic. Other factors, which
differ from subject to subject and within subjects, such as
conscious breathing control and external sleep environment
(e.g., noise and temperature), can also cause variations in
autonomic response during sleep [24-27]. Furthermore, the
autonomic activity appears to change during the course of the
night as a function of time and the ratio of NREM and REM
sleep in a sleep cycle [13, 28]. These changes would also be
reflected in changes of cardiorespiratory activity throughout
the night within subjects. Additionally, the daytime activity
and any stressful events may change the sleep architecture and
consequently affect autonomic control of cardiorespiratory
activity during the night [29-31]. It is however not clear to
which extent each of these effects can explain the variations
in cardiorespiratory activity during sleep.

In regard to automatic sleep staging with autonomic car-
diorespiratory activity, parameters are usually derived from
cardiac and respiratory signals on a 30 s epoch basis [2, 3].
Due to the existence of between-subject (i.e., interindividual)
and within-subject (i.e., intraindividual) variability effects,
the correct identification of sleep stages based on the car-
diorespiratory parameters seems challenging, in particular
when a subject-independent model is used (i.e., when a
model is derived from a set of subjects and used to identify
sleep stages for other new subjects).

The aim of this fundamental study was to quantita-
tively investigate the effects of between- and within-subject
variability on cardiorespiratory activity during sleep and to
evaluate how they are limited to reliable cardiorespiratory-
based sleep staging results.

2. Materials and Methods

2.1. Subjects and Protocol. A total of 165 healthy subjects
participating in the SIESTA project [32] were included in this
study. The subjects were monitored over a period of three
years from 1997 to 2000 in seven different sleep laboratories
located in five European countries. The subject demographics
(mean + standard deviation (SD)) including age, gender,
and BMI are given in Table 1. The protocol was approved
by local ethics committees of all sleep laboratories involved
and all subjects provided a written informed consent. The
subjects fulfilled the following criteria: no significant medical
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TABLE 1: Subject demographics and sleep statistics (n = 165).

Mean + SD Range
Gender (77 men and 88 women)
Age,y 5.8 +19.4 20-95
BMI, kg~m72 24.6 £ 3.5 17.0-35.3
Total recording time, h 78 £0.5 6.0-9.3
Wake, % 227 £13.2 1.2-78.6
REM sleep, % 13.6 +5.3 0-26.5
Light sleep, % 52.3+10.0 15.6-72.1
Deep sleep, % 114 £ 6.6 0-28.5

disorders, no reported symptoms of neurological, mental,
medical, or cardiovascular disorders, no history of drug
abuse or habituation (including alcohol), no psychoactive
medication or other drugs (e.g., beta blockers), no shift
work, and usually retirement to bed between 22:00 and 24:00
depending on their habitual bedtime [32].

2.2. PSG Recordings. For each subject, single-night full PSG
recordings were obtained. Each recording consists of at least
16 channels including EEG (C3-M2, C4-Ml, Ol-M2, O2-
M1, Fpl-M2, and Fp2-Ml), EMG (chin and leg), EOG (2
leads), electrocardiogram (ECG, single-channel, modified V1
lead), nasal airflow, respiratory effort (abdominal and chest
wall with respiratory inductance plethysmography), snoring
(microphone), and blood oxygen saturation [32]. Only the
ECG signals, sampled at 100 Hz, 200 Hz, or 256 Hz depending
on the equipment setup of each sleep laboratory, and the
respiratory (chest) effort signals, all sampled at 10 Hz, were
used in this study.

Each PSG recording was visually annotated in 30 s epochs
as nighttime wake, REM sleep, and one of the NREM sleep
stages S1-54 by two independent raters according to the R&K
rules. In case of disagreement, the consensus annotations
between the two raters were obtained. For the analysis in
this study, we considered four stages: wake, REM sleep, light
sleep (merging S1 and S2), and deep sleep or slow wave sleep
(merging S3 and S4). Table 1 presents some sleep statistics of
the recording nights.

2.3. Data Preparation. The ECG and respiratory effort signals
of all subjects were preprocessed before computing the
parameters used for analyses. The baseline wander of the ECG
signal was removed with a linear phase high-pass filter using
an 1.106 s Kaiser window with a 0.8 Hz cutoff frequency and
a 30 dB side-lobe attenuation [33]. The resulting signal was
normalized with regard to mean and amplitude and a low-
complexity precise QRS complex localization algorithm [34]
was used to locate the R peaks in the signal. The resulting
heartbeat or RR intervals were resampled at 4 Hz using a
linear interpolator. To compute the cardiac parameters in the
frequency domain, the power spectral density (PSD) of the
resampled RR intervals was estimated with an autoregressive
model, where the order was adaptive and automatically
determined by the Akaike’s information criterion (AIC) and
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was limited to 15 [35]. Using the AR model instead of a Fourier
transform was because the Fourier-based approaches may
have limitations such as poor spectral resolution and leakage
[36], which would be sensitive to estimating the PSD of the
RR interval series having a relatively low sampling rate. After
that, the spectral power in the low-frequency band and the
high-frequency band can be calculated. Note that ectopic RR
intervals longer than 2s, shorter than 0.3s, or shorter than
0.6 times their previous value were discarded. The epochs
were treated as being “invalid” or missing if the coverage
was less than 50% (i.e., the sum of the detected RR intervals
within an epoch was less than half of the epoch length) since
the PSD for these epochs with too many missing heartbeats
(likely caused by body motion artifacts) could not be reliably
estimated.

The respiratory effort signal was first low-pass-filtered
using a 10th order Butterworth filter with a cut-off frequency
of 0.6 Hz to eliminate high-frequency noise. Afterwards, the
signal baseline was removed by subtracting the median peak-
to-trough amplitude estimated over the entire signal. The
respiratory peaks and troughs were detected by locating the
signal turning points based on sign changes of signal slopes.
Finally, we excluded incorrectly detected peaks and troughs
(1) in peak-to-trough or trough-to-peak intervals where the
sum of two successive intervals was less than the median of
all intervals over the entire recording and (2) with ampli-
tudes where the peak-to-trough difference was smaller than
0.15 times the median of the entire-night respiratory signal
[37].

2.4. Cardiorespiratory Parameters. We analyzed six car-
diorespiratory (two respiratory and four cardiac) parameters.
The respiratory parameters were the mean breathing rate
or respiratory frequency (BR) and the standard deviation
of breathing rates (SDBR). For cardiac activity, the time-
domain parameters included the mean heart rate (HR) and
the standard deviation of heartbeat intervals (SDNN). The
spectral-domain parameters included the spectral power of
heartbeat intervals in the low-frequency band (LF) and the
spectral power in the high-frequency band (HF). The LF
and HF were normalized by dividing them by the total
spectral power minus the power in the very-low-frequency
(VLE 0.003-0.04 Hz) band [14, 38]. This resulted in their
expressions in a normalized unit (nu) instead of the absolute
unit (ms?®). The normalization can minimize the effect on
the LF and HF values caused by the changes in total spectral
power. And the normalized LF and HF represent the relative
power in each frequency band in proportion to the total
power minus VLF power, emphasizing the controlled and
balanced behavior of the two aspects (i.e., sympathetic and
parasympathetic activities) of the autonomic nervous system
[14].

All the six parameters have been widely used for the
task of cardiorespiratory-based sleep staging [6, 37, 39-41].
A logarithmic transformation was applied to BR, SDBR, HR,
and SDNN to correct for nonsymmetry in the frequency
distributions. Measurement units are therefore expressed in
natural logarithmic Hz (In-Hz) for BR and SDBR, natural

logarithmic beats per minute (In-bpm) for HR, and natural
logarithmic millisecond (In-ms) for SDNN.

2.5. Descriptive Statistics. Values of the cardiorespiratory
parameters (mean + SD) measured from subjects with differ-
ent demographics (gender, age, and BMI) and time of night
are presented. We considered different cohort sets includ-
ing three age groups: young (20-39y), middle (40-69y),
and elderly (>69y), and three BMI groups: underweight
(<18.5 kg-m_z), normal weight (18.5-25 kg-m_z), and over-
weight (>25 kg-m ). In addition, total sleep time was divided
into four periods: 0-90 min, 90-180 min, 180-270 min, and
>270 min. Significance of difference between groups was
tested with the analysis of variance (ANOVA) F test.

2.6. Multilevel Analysis. Traditional statistical methods such
as repeated measures ANOVA (rANOVA), repeated mea-
sures multivariate ANOVA (rMANOVA), and multiple
regression analysis (MRA) are often used to analyze longi-
tudinal data. However, they might not be appropriate since
they expect uncorrelated and independent observations or
they cannot model variables in different levels [42]. In regard
to the nature of multiple dependent variables, a more gen-
eralized multilevel (regression) analysis [43] takes structural
variables with fixed and random effects measured at multiple
hierarchical levels into account. Compared with the tradi-
tional methods, multilevel analysis has several advantages
[43, 44]. First, it serves to deal with incomplete data while
ANOVA-based methods handle that by simply deleting all
subjects with missing measures. Second, it concerns data with
a hierarchical structure and thus allows for meta-analysis of
explanatory variables with effects on different levels simulta-
neously while MRA usually considers variables at the same
level. Third, it is able to quantify the variability explained
only within levels. To these matters, we applied multilevel
models to statistically evaluate the effects of between- and
within-subject variability on the cardiorespiratory parame-
ters. Under a variety of names used by different authors,
multilevel models are also known as mixed models, random
effects models, and hierarchical linear models [43].

Due to the presence of its advantages, multilevel analysis
has been widely deployed in many areas such as psychophys-
iology [42], sociology [45], biology [46], and medicine [47].
In the field of sleep study researchers have applied multilevel
models for investigating daily associations (within-subject
and daily variability) between sleep and effect [48]; stress-
dependent within-subject variability in sleep duration and
sleep fragmentation [49]; age and between-subject variability
in reaction time performance with sleep restriction [50];
relationship between self-reported and PSG-measured sleep
times [51]; between-subject variability in “sleep need” and
“vulnerability to sleep loss” [52]; circadian variation of
cardiac autonomic activity [53]; and habitual traffic noise
effect on respiratory sinus arrhythmia during sleep [54].
To the authors’ knowledge, analyzing between- and within-
subject effects on cardiorespiratory activity during sleep
(across sleep stages) based on multilevel models has not been
studied.



2.6.1. Between- and within-Subject Effects. On the one hand
the between-subject variability effects of cardiorespiratory
activity can be linked to physiology and subject demograph-
ics (age, gender, and BMI). On the other hand, cardiorespi-
ratory activity may change depending on the time of night
within subjects [13]. This time effect can also vary between
subjects. Most multilevel models assume homogeneity or
equality of variance for each prediction variable, whereas this
might not hold for the time effect. Therefore, it is hypoth-
esized that the time effect also changes along with subject
demographics. This can be evaluated by “cross-interactions”
between time and demographic variables. Here we did not
take into account the influences from the differences in sleep
environment, daytime energy expenditure, and other factors
or behaviors such as stress, smoking, and personality. These
influences, if existent, were assumed to be conveyed by the
physiological variability. Additionally, in our previous work
[55], there were no effects on the cardiac activity found
between different laboratories based on the same data. For
this reason, we disregarded the laboratory factor during our
modeling procedure.

To evaluate the between- and within-subject effects, we
constructed a multilevel model with two levels (level two:
subject; level one: time or epoch) for a given cardiorespiratory
parameter y. The model predicts/estimates the values of the
parameter based on a set of variables including sleep stages,
age, gender, BMI, and time of night. For the parameter value
y,;; in the ith epoch of the night (i = 1,2,..., N with a total
of N epochs) from subject j (j = 1,2,..., M where M is the
total number of subjects), the two-level regression model with
associated coefficients is given by

Model #1:
Yij = Bo + o + Z (ﬁs + P‘sj) it (/3t + .utj) time;;
+egij + Paage; + By gender; + 5, BMI;

+ Prq (time x age), + By, (time x gender),,

@
+ Py (time x BMI);;
Hoj 0 Q
with | g [ ~N| [0],[ Q| |, eq; ~ N(0,9,),
nutj 0 Qt

in which f; is the fixed intercept, y4; is the random effect
with variance Q) indicating the between-subject variability in
physiology (independent of sleep stages or corrected by sleep
stages), and e;; is the (random) residual term with variance
Q, quantifying the within-subject physiological variability
(independent of time). s represents sleep stages (s = wake,
REM sleep, light sleep, and deep sleep), where wake, REM
sleep, light sleep, and deep sleep are all dummy/binary
variables (1 or 0 indicating “yes” or “no”). This means that
the multinomial sleep stage information is expressed by the
sum of the four dummy sleep stage variables where only one
is nonzero (=1) for each epoch. Hence, the term } (8, +
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ugj)s;; specifies the sleep stage of epoch i from subject j
with its fixed effect B and random effect p;, where Q
reflects the between-subject physiological variability in sleep
stage s. The demographic variables age (y), gender (dummy
variable: 0 = man and 1 = woman), and BMI (kg-m_z),
respectively, correspond to the fixed effects 3, B, and f3,
varying between subjects. The variable time;; (min) expresses
the relative time of epoch i (time,»j = i/2) from subject j,
B, is the fixed time effect corresponding to linear changes
over time within subjects, y; is the random time effect
with variance (), indicating the variability of time effect
between subjects, and S, f3,,, and f3,;, are cross-interactions
specifying the fixed age-, gender-, and BMI-related time
effects, respectively. Note that the variances from the random
effects (including residuals) were assumed to be drawn from a
normal distribution with zero mean. Here the normality was
visually checked using a heuristic Quantile-Quantile (Q-Q)
plot method since the commonly used numerical normality
tests are not appropriate on large-sized samples [56].

2.6.2. Centering Effect. Intuitively, the mean value of a specific
cardiorespiratory parameter over the entire night may differ
from subject to subject, which might be due to the physio-
logical variability between subjects at the general mean level.
Cronbach [57] proposed a model that regards an additional
predictor indicating the between-group centering effect in
real applications, allowing for expressions of parameter values
as deviations from the group means. In this study, the model
with centering (physiological) effect for a given parameter can
be expressed as

Model #2:

Yij = Bo+ o + Z (ﬁs + #sj) it (/3t + //‘tj) time;;
S

+ ﬁjj +eg;j + ﬂuagej + ﬁggenderj + f,BMI;

+ Py (time x age),; + By, (time x gender),,

. 2)
+ Py, (time x BMI);;
Hoj 07 T
with | p | ~N| [0],] Q| |, ej ~N(0,Q,),
Hj 0 Q

where y; is the variable that gives the within-subject mean
value over the entire night for subject j and its associated fixed
slope f3, corresponds to the between-subject centering effect.
This effect is meant to reflect the physiological difference
between subjects at the (individual) overnight mean level.
Here the estimation of the overnight mean value was assumed
to be independent of sleep stage composition (percentages
of sleep stages) over the entire night. To a certain degree,
the demographic effects were expected to be conveyed by the
centering effect. Therefore, the model without the centering
term (Model #1) should be used for exploring the actual
demographic effects with a single model.
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TABLE 2: Description of the seven explanatory effects (with exclusion of sleep stage effects) on cardiorespiratory activity considered in this

study.

Effect

Description

Overall between-subject effect
Demographic effect
Centering (physiological) effect
Between-subject time effect
Between-subject physiological effect

Overall within-subject effect
Within-subject time effect
Within-subject physiological effect

Cross-interaction effect
Demographic-related time effect

Fixed effect, variability in age, gender, and BMI between subjects
Fixed effect, variability in overnight mean level between subjects
Random effect, variability in time of night between subjects
Random effect, variability in physiology between subjects

Fixed effect, variability in time of night within subjects
Random effect, variability in physiology within subjects

Fixed effect, demographic-related variability in time of night

2.6.3. Model Estimation and Optimization. The multilevel
modeling was implemented using the MLwiN software (Cen-
tre for Multilevel Modeling, the University of Bristol, UK),
where an iterated generalized least square (IGLS) algorithm
is issued for the model estimation, that is, the estimates of
regression coeflicients and their variances [58]. The model
goodness-of-fit can be evaluated by the deviance (measured
by —2-log-likelihood) obtained during the modeling proce-
dure.

A Wald Z-test was used to statistically examine the
significance of the effects, testing the null hypothesis that
a coefficient equals zero [43]. For each estimated model
coeflicient or variance y corresponding to a specific effect, the
Wald Z statistic is computed as the square of the estimated
coefficient divided by its standard error (SE):

2
Y
z SE2 ()’ (3)
The acceptance or rejection of the null hypothesis can be
tested with a Chi-squared (y*) test with one degree of
freedom (df).

The models described in (1) and (2) are “full” models
and need to be optimized by excluding the effects with
coeflicients statistically not different from zero (tested with
the Wald statistic). Differences between models are assessed
by comparing model deviances using a x* statistic (i.e.,
likelihood ratio test) with df = 2. This paper only presents
the results of the optimized models that are manipulated by
significant effects.

2.7. Explanations of Variance. 1t is of particular interest in
interpreting how much the model variance is explained by
different variables or effects. As described in Table 2, a total of
seven explanatory effects for each cardiorespiratory param-
eter were considered in this study. Raudenbush and Bryk
[59] proposed an approach by using the squared multiple
correlation R* to derive the proportion of variance modeled
by means of explanatory variables with corresponding effects
(proportion of variance explained, PVE). This approach
examines the residual variances in a sequence of models.

Suppose that the full model under consideration for a given
parameter is Model #2, given by (2). A sequence of seven
models (Models A-G) can be established in a certain order
that serves to compute the PVE of each effect. The detailed
procedure of doing this is described in the Appendix.

2.8. Between- and Within-Subject Effects in Sleep Staging

2.8.1. Sleep Staging Algorithm. Linear discriminant (LD) has
been shown to be an appropriate algorithm in classifying
overnight sleep stages based on cardiorespiratory activity in
many studies [6, 41]. In this work we adopted an LD classifier
to perform automatic sleep staging. Overall accuracy and
the Cohen’s Kappa coefficient of agreement [60] were used
to evaluate the classifier’s performance. Additionally, sleep
statistics including the percentages of wake, REM sleep, light
sleep, and deep sleep were calculated. In order to verify
the classification performance, the subjects were randomly
divided into a set of 82 subjects used to train the classifier and
a set of the other 83 subjects for testing.

2.8.2. Comparison of Correction Schemes. The objective was
to examine how much the between- and within-subject
effects on the cardiorespiratory activity would restrict the
performance in classifying sleep stages (wake, REM sleep,
light sleep, and deep sleep) and then estimating the sleep
statistics. For comparison, we analyzed three different “cor-
rection” schemes (CS) based on the optimized Model #2
with estimated model coefficients to correct (or predict) the
values for each parameter. The corrected values were then
used to perform sleep staging. The sleep staging using the
original measured values without any corrections served as
the baseline scheme (BS).

(i) The first correction scheme (CS1) predicts the param-
eter values with subtraction of all the fixed effects
independent of sleep stages, such that

CSI:

Yij = toj t+ Z (/35 + P‘sj) Sij + phyjtimey; + egy;. (4)
S



(ii) The second correction scheme (CS2) corrects the
parameter values by subtracting all the (sleep stage
independent) fixed effects and all the between-subject
random effects, such that

CS2:

Vij = Zﬁssij + €pij- (5)

(iii) The third correction scheme (CS3) excludes all the
(sleep stage independent) fixed effects and the within-
subject effect to correct the parameter values, such
that

CS3:

Vij = toj + Z (/55 + .usj) Sij + pyjtime;;. (6)

Note that, again, the exclusive aim of analyzing these correc-
tion schemes in the present study was to evaluate in what
aspect and how far the cardiorespiratory parameters can
be improved for sleep staging instead of really performing
sleep staging. In other words, we intended to answer the
question, what sleep staging performance can be achieved if
we can eliminate the effects caused by the between- or within-
subjects variability? Investigating methods of estimating the
fixed coefficients and random variances without knowing
sleep stages was not addressed in this study.

3. Results

3.1. Descriptive Results. Figure 1 compares the skewness of the
parameters with and without transformation using natural
logarithms. It indicates that the four parameters BR, SDBR,
HR, and SDNN need to be log-transformed since they were
of skewed distribution and their skewness values largely
decreased after performing the log-transformation. Table 3
shows the values (mean + SD) of the six cardiorespiratory
parameters BR, SDBR, HR, SDNN, LE and HF analyzed
in this study for different cohort sets in different genders,
age groups, BMI groups, time periods, and sleep stages. The
values significantly differed across different groups for all the
cohort sets (ANOVA F-test, P < 0.001).

3.2. Multilevel Modeling. In comparison with the F-test, the
multilevel regression models enable a more adequate and
thorough statistical analysis. With the multilevel Model #1,
the estimated coeflicients and variances for all the parameters
are shown in Table 4. As a result of removing the insignificant
variables (tested using the Wald Z-test with P > 0.05) except
for the constant intercept and sleep stage variables, the model
was optimized. The table indicates that the demographics
significantly influenced the cardiorespiratory activity from
different aspects. Upon a closer look, it is found that the
breathing rate, BR, for the healthy subjects with a higher
BMI was significantly higher than the subjects with a lower
BMI (0.0111n-Hz per kg-m™2, P < 0.01) at the baseline of
-1.458 In-Hz, whereas its variation SDBR remained the same.
For cardiac activity, the mean heart rate HR of women was
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FIGURE 1: Skewness comparison of cardiorespiratory parameters
with and without natural logarithm transformation, indicating that
BR, SDBR, HR, and SDNN should be log-transformed.

higher than men (0.042In-bpm, P < 0.05) at the baseline
of 4.221In-bpm while its variation SDNN were lower than
men (—0.247 In-ms, P < 0.0001) at the baseline of 4.8231In-
ms. SDNN were also negatively correlated to subject age
(=0.009 In-ms pery, P < 0.0001) and BMI (-0.025In-ms per
kg-m ™2, P < 0.01). With the spectral analysis of HRV, men had
an LF power increased by 0.045 nu (P < 0.05) but a lower HF
power of 0.052nu (P < 0.01) compared with women during
bedtime sleep. The HF power slightly decreased along with
the increase in age (—0.002 nu pery, P < 0.05). These results
are consistent with previous work [18, 61, 62].

Most of the analyzed parameters were found to be time-
variant (i.e., they were modulated by time of night) with
an exception of breathing rate (Table 4). For instance, the
heart rate HR dropped down gradually along with the time
progression over the night (-0.00011n-bpm per min, P <
0.0001) at the baseline of 4.221In-bpm while the variation
in heartbeat intervals SDNN increased (0.001 In-ms per min,
P < 0.0001) at the baseline of 4.823In-ms, confirming the
findings reported previously [63]. This time modulation
varied from subject to subject because of the presence
of significant variance €, (P < 0.0001), referring to the
random time effect. The time was also modulated by some
demographic variables (such as age for SDNN and BMI for
SDBR, LE, and HF). We note in the table that there appeared
to be significant between-subject physiological effects for all
parameters (P < 0.0001), measured by the random variances
of sleep stage variables. These variances seemed approxi-
mately homogeneous across sleep stages for BR and HR but
were clearly different for their variations SDBR and SDNN.
Figure 2 illustrates an example that compares the parameter
values (estimated by multilevel regression based on Model #1)
changing along with time between two subjects with different
demographics. It shows that the fixed time and demographic
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TABLE 3: Values (mean + SD) of the six cardiorespiratory parameters in different cohort sets.
Cohort set Respiratory parameters Cardiac parameters
(n =165) BR, In-Hz SDBR, In-Hz HR, In-bpm SDNN, In-ms LE nu HE nu
Gender
Man -1.20 £ 0.24 -3.67 £0.75 413 +0.15 374 +0.77 0.42+0.23 0.47 £0.23
Woman -1.22 + 0.23 -3.81+0.76 4.16 + 0.16 3.49+0.71 0.39 £0.22 0.50 £ 0.23
Age
Young -1.24 + 0.24 -3.85+0.74 411+ 0.16 3.94+£0.63 0.36 £ 0.20 0.56 £0.22
Middle -1.20 £ 0.24 -3.71+0.78 415+ 0.16 3.52 £ 0.69 0.45+0.23 0.45 +0.23
Elderly -1.18 £ 0.20 -3.70£0.71 417 +0.13 3.39+0.81 0.38 £ 0.24 0.45+£0.22
BMI
Underweight -1.24 £ 0.14 —4.00 £ 0.66 411+ 0.12 4.01+0.53 0.36 £ 0.18 0.56 +0.19
Normal -1.23+0.23 -3.77 £ 0.74 4.14 £ 0.16 3.72+0.73 0.41+0.22 0.48 +0.23
Overweight -118 + 0.24 -3.70 £ 0.77 415+ 0.15 3.46 £0.75 0.39+0.23 0.48 £0.23
Time of night
0-90 min -1.22 + 0.22 -3.81+ 0.80 4.16 + 0.15 352+0.73 0.39£0.22 0.50 £ 0.23
90-180 min -1.21+0.22 -3.85+0.75 4.17 +0.15 358 +0.74 0.42+0.23 0.46 £ 0.23
180-270 min -1.20+£0.23 -3.77 £ 0.77 415+ 0.16 3.61£0.77 0.41+0.23 0.48 +0.23
>270 min -1.21+0.24 -3.66 + 0.72 412+ 0.15 3.67 £ 0.75 0.40 £ 0.22 0.49 +0.23
Sleep stage
Wake -1.16 £ 0.23 -3.25+0.62 4.19 +0.15 3.61£0.78 0.42+0.24 0.44 +0.23
REM sleep -1.18 £ 0.22 -3.44 + 0.52 415+ 0.16 3.64+£0.76 0.45+0.23 0.42£0.22
Light sleep -1.23+£0.23 -3.89£0.73 413 +£0.15 3.64+0.73 0.40 + 0.22 0.49+£0.23
Deep sleep -1.24+0.23 -4.29 +0.71 414 +0.15 3.45+0.72 0.33+0.21 0.57 £ 0.21

Note: In, natural logarithm; nu, normalized unit; young, 20-39 y; middle, 40-69 y; elderly, >69y; underweight, <18.5 kg-m™2; normal weight, 18.5-25 kg-m™2;
overweight, >25 kg-mfz; light sleep, S1and S2 stages; deep sleep, S3 and S4 stages. For all the parameters, values between each cohort group were significantly
different (F-test, P < 0.001) but this may be imprecise since subject demographics, time of night, and sleep stages were possibly not independent.

effects were generally larger than the differences between
sleep stages.

With the addition of the centering variable to Model
#1, we have Model #2 and the estimated regression coeffi-
cients after model optimization (Wald Z-test at P < 0.05,
for each coeflicient) are shown in Table 5. As stated, this
model included the between-subject physiological effect at
the overnight mean level (i.e., centering effect), resulting in
an obvious reduction of the random variance in each sleep
stage compared with Model #1. This indicates that regardless
of sleep stage the between-subject variability in physiology
can be reflected, to a certain degree, by the difference of
the mean value over night. Besides, centering the parameter
values per subject slightly influenced the time effect in both
fixed and random parts. In comparison with Model #1, a lower
deviance using Model #2 was obtained for all the parameters
(P < 0.0001) as shown in Tables 4 and 5, indicating a better
goodness-of-fit on the parameters using the model with the
centering variable.

Normality of the variances was tested and suggested
using the Q-Q plot method for all models. For example,
the Q-Q plots of the residual variances Q, (in Model #1)
for all the parameters are shown in Figure 3, suggesting

that the variances were approximately drawn from a normal
distribution.

3.3. Proportion of Variance Explained (PVE). To discover
which effects explained the variance and how much each
constituted we computed for each cardiorespiratory param-
eter the PVE for each effect by analyzing the estimated
variances of random intercept and residual in a sequence
of models (Models A-G in the Appendix). The variance
changes in the models with the inclusion of different effects
in a specific order are shown in Table 6, based on which
the PVE values were obtained in Table 7. Note that the
variances explained by sleep stages were not included in
PVE. For BR and HR, the between-subject centering effects
dominated the variances (55.26% for BR and 77.95% for
HR), indicating that the subjects behaved differently with
respect to their breathing rate and heart rate at the general
mean level throughout the whole night. We also see that
the variations in breathing rate and heart rate had a lower
centering difference between subjects (with PVE of 26.23%
for SDBR and of 39.06% for SDNN) compared with the
physiological variability within subjects (with PVE of 61.69%
for SDBR and of 40.87% for SDNN). This was also the case for
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TaBLE 4: Coefficients and their standard errors (SE) of the optimized multilevel model without the between-subject centering effect (Model
#1) for the six cardiorespiratory parameters analyzed in this study.

Respiratory parameters

Cardiac parameters

Model coef.
BR, In-Hz SDBR, In-Hz HR, In-bpm SDNN, In-ms LE nu HE nu
Fixed Coefficient (SE)
B —1.458 (0.087) -3.320 (0.032) 4.221(0.016) 4.823 (0.255) 0.464 (0.014) 0.535 (0.027)
Buvake Baseline Baseline Baseline Baseline Baseline Baseline
Brem 0.002 (O.OOS)NS —0.205 (0.026) —0.028 (0.001) —0.104 (0.027) 0.030 (0.007) —0.037 (0.007)
ﬁlight —0.035 (0.008) —0.611 (0.026) —0.061 (0.001) —0.052 (0.021) —0.027 (0.006) 0.039 (0.006)
Bacep ~0.044 (0.010) ~0.997 (0.033) ~0.055 (0.001) —0.249 (0.026) ~0.096 (0.008) 0.106 (0.008)
B, ~0.009 (0.002) ~0.002 (0.001)
B, 0.042 (0.021) —0.247 (0.069) —0.045 (0.018) 0.052 (0.017)
B, 0.011 (0.004) —0.025 (0.011)
B, 0.001 (0.0004)  —0.0001 (0.2¢ — 4) 0.001 (0.0002) 0.0004 (0.0001)  —0.0004 (0.0001)
Bia —1.0e = 5(0.3e — 5)
Big
B —2.8¢ -5 (L3¢ —5) ~1.7¢ - 5(0.5¢—5) 17e—5 (0.5¢ — 5)
Random Coefhicient (SE)
Q
Qe 0.030 (0.003) 0.159 (0.018) 0.018 (0.002) 0.224 (0.025) 0.018 (0.002) 0.014 (0.002)
Qpemt 0.029 (0.003) 0.171 (0.020) 0.019 (0.002) 0.280 (0.031) 0.022 (0.002) 0.018 (0.002)
Qlight 0.030 (0.003) 0.219 (0.024) 0.020 (0.002) 0.256 (0.028) 0.019 (0.002) 0.017 (0.002)
Qeep 0.031 (0.003) 0.257 (0.029) 0.020 (0.002) 0.324 (0.036) 0.020 (0.002) 0.017 (0.002)
Q, 12¢-7(01e—7) 6.6e—7(0.8¢—7) 35e—8(0.4e—8) 72¢—7(08¢—7) 5.0e—8(0.6c—8) 4.6e—8(0.5¢—8)
Residual
Q, 0.019 (0.0001) 0.290 (0.001) 0.003 (0.00001) 0.230 (0.001) 0.033 (0.0001) 0.033 (0.0001)
Deviance -150487 217253 -398075 186380 -75029 —74306

Note: In, natural logarithm; nu, normalized unit; NS, not significant. The statistically significant effects (Wald Z-test, P < 0.05), the fixed constant intercept

Bo» and sleep stage intercepts f3; are presented.

LF and HF powers in the spectral domain of HRV as shown
in Table 7. As a result, the overall between-subject variability
had more influence on breathing rate (PVE of 66.58%) and
heart rate (PVE of 86.25%) while less on their variations (PVE
of 37.94%, 58.66%, 33.62%, and 35.13% for SDBR, SDNN,
LE and HE resp.) compared with the overall within-subject
variability. In general, the variances explained by the effects
in physiology between subjects (including the effect at the
overnight mean level and random effect) and within subjects
accounted for 83.83-97.16% of the total variance for different
cardiorespiratory parameters.

Specifically, a relative larger percentage (13.7%) of the
demographic effect can be found on SDNN compared with
the other parameters. The PVE of between-subject physio-
logical variability (in the random part) ranged from 2.27%
to 7.62% depending on the parameters. For the time effect,
the PVE in the fixed part (0.01-1.32%) reflecting the linear
changes of parameters over time within subjects was smaller
than in the random part (1.58-2.74%) with the indication of

different changes over time between subjects. In general, the
time effect accounted for much less of the total variance than
most other effects. Finally, although the cross-interactions
existed between time and demographics for BR, SDNN, LF,
and HE, the proportion of variance they explained was very
small (<0.20%).

3.4. Sleep Staging Results. The results of sleep staging are
presented in Table 8, where different schemes (BS and CS1-
CS3) were compared. We observe that the correction by
means of the between- and/or within-subject effects for the
parameters generally enabled performance improvement in
sleep staging (by comparing the results of CS1-CS3 with BS).
In particular, correcting the parameters by the fixed effects
(demographics, time, and their cross-interactions) indepen-
dent of sleep stages (CS1) resulted in a significantly increased
Kappa of 0.29 + 0.11 and a significantly increased accuracy
of 60.4 + 8.8% (Wilcoxon test, P < 0.00001) compared with
the baseline without any correction (Kappa of 0.19 + 0.10 and
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FIGURE 2: Anexample of multilevel regressions of the six cardiorespiratory parameters for a man (age: 24y, BMI: 21.3kg:-m ) and a woman
(age: 70y, BMI: 28.6kg-m™>) using coefficients estimated through Model #1 excluding the random coefficients and residual term. The
regression variables included age, gender, BMI, time, and time x age, time x gender, time x BMI, and sleep stages: wake, REM sleep, light

sleep, and deep sleep.

accuracy of 55.8 + 9.8%). In addition, if we further correct the
variability of the parameters evoked by the between-subject
random effects (CS2), the sleep staging results significantly
increase to a Kappa of 0.35 + 0.09 and an accuracy of 62.9 +
7.8% (Wilcoxon test, P < 0.00001), where the SD of results
over subjects is simultaneously reduced. On the other hand,
if the within-subject variability is corrected (CS3), the sleep
staging performance is markedly improved (at a Kappa of 0.72
+ 0.23 and an accuracy of 83.5 + 14.4%) (Wilcoxon test, P <
0.00001), but the SD would increase because this correction
scheme focused on reducing effects within subjects rather
than those between subjects. Similarly, as shown in Table 8,
correcting the parameters could help obtain a more accurate
estimation of sleep stage composition.

4. Discussion

The results of demographic and time of night effects found
in this study are consistent with the findings reported in
previous work [18, 61-63]. For example, Brandenberger et al.
[18] suggested that, compared with young subjects, older
subjects have a marked fall in HRV without sleep stage
dependent variation due to the withdrawal in vagal activity
(and increased sympathetic activity) generally associated
with decreased sleep quality. Also, “periodic breathing” that
often interrupts the normal breathing pattern for the elderly
is the major trigger for HRV fluctuations through autonomic
efferents, which can induce substantial modification in HRYV,
possibly leading to the unseen age effect in overall breathing
rate and its variation. It has been reported that gender affects

cardiac dynamics where women have relatively greater HF
cardiac fluctuations than men, while this is not apparent for
respiratory activity [62]. However, this effect was later found
to be sleep stage dependent that can only be observed during
wakefulness and REM sleep because the predominant loss
in vagal activity is often associated with the disruption of
homeostasis for men with increased physiological vulnera-
bility or “stress” [61]. Therefore, a modified multilevel model
expressing gender differences relying on sleep stages should
be investigated in future work. In addition, the autonomic
change (e.g., decreased sympathetic and increased vagal
activity) over time throughout the night has been shown to
be associated with circadian influences [13, 63] and “sleep
pressure” [64]. No significant or weak correlation was found
between BMI and autonomic nervous regulation [19, 65].

It should be noted that the model used to facilitate the
interpretation of the demographic effects (Model #1) should
not include the (between-subject) centering variable. This
is because the demographic differences usually correspond
to the autonomic changes at the overnight mean level.
Due to the inclusion of the centering effect in Model #2,
it came as a surprise that some demographic variables
still had significant effects (see Table 4), which contradicts
our expectation that their effects on the cardiorespiratory
activity are fully manifested by the parameter mean val-
ues. The cause is that the percentages (or composition)
of sleep stages were not exactly the same for all subjects.
Therefore, the demographic differences were only partially
explained by the centering variable and the unexplained part
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TaBLE 5: Coefficients and their standard errors (SE) of the optimized multilevel model with the additional between-subject centering effect
(Model #2) for the six cardiorespiratory parameters analyzed in this study.

Respiratory parameters

Cardiac parameters

Model coef.
BR, In-Hz SDBR, In-Hz HR, In-bpm SDNN, In-ms LE nu HE nu
Fixed Coeflicient (SE)
B -0.098 (0.079)™  —0.012 (0.017)™ 0104 (0.028)  —0.060 (0.047)°  —0.018 (0.034)"° 0.131(0.030)
B 0.973 (0.011) 0.884 (0.020) 0.993 (0.007) 0.979 (0.011) 0.936 (0.012) 0.923 (0.011)
Bieake Baseline Baseline Baseline Baseline Baseline Baseline
Brem 0.002 (O.OOS)NS —0.199 (0.025) —0.027 (0.004) —0.104 (0.027) 0.030 (0.007) —0.037 (0.007)
ﬁlight —0.035 (0.008) —0.606 (0.026) —0.062 (0.004) —0.052 (0.020) —0.027 (0.005) 0.039 (0.006)
Bacep —0.044 (0.010)  —0.992 (0.033) —0.054 (0.004) —0.248 (0.026) ~0.096 (0.008) 0.105 (0.008)
B, —0.002 (0.001)  —0.0001 (0.5¢ — 4) 0.0004 (0.0001)  0.0002 (0.0001)
B, —0.024 (0.012)
B, 0.005 (0.001) ~0.004 (0.001)
B, 0.0003 (0.0001)  —0.0001 (0.2¢ —4)  0.001 (0.0001) 0.0004 (0.0001)  —0.0004 (0.0001)
B —1.0e - 5(0.1e - 5)
By 0.0001 (0.5¢ — 4)
B —1.8¢—5(0.5e—5) 17e-5(0.5e—-5)
Random Coeflicient (SE)
Q
(O 0.012 (0.001) 0.093 (0.011) 0.004 (0.0004) 0.094 (0.011) 0.006 (0.001) 0.005 (0.001)
Quent 0.014 (0.002) 0.099 (0.011) 0.003 (0.0003) 0.095 (0.011) 0.007 (0.001) 0.006 (0.001)
Qg 0.006 (0.001) 0.061 (0.007) 0.002 (0.0003) 0.044 (0.005) 0.004 (0.001) 0.003 (0.0004)
Qe 0.010 (0.001) 0.131 (0.015) 0.003 (0.0003) 0.087 (0.010) 0.006 (0.001) 0.006 (0.001)
Q, 1lle—7(01e-7) 6.7¢—7(0.8¢—7) 35e—8(04e—8) 7le—7(0.8¢—7) 4.8¢—8(0.6e—8) 4.3¢e—8(0.5¢—38)
Residual
Q, 0.019 (0.0001) 0.290 (0.001) 0.003 (0.00001) 0.230 (0.001) 0.033 (0.0001) 0.033 (0.0001)
Deviance -151084 216873 —398866 185774 -75617 -74903

Note: In, natural logarithm; nu, normalized unit; NS, not significant. The statistically significant effects (Wald Z-test, P < 0.05), the fixed constant intercept

Bo» and sleep stage intercepts f3; are presented.

depends on the difference of sleep stage composition between
subjects.

It is important to note that since some effects were
correlated with each other, the order in the procedure of
constructing the sequence of models (see the Appendix)
must be specifically determined. This aimed at precisely
quantifying the proportion of variance explained by each
effect. The procedure should follow the way that the
model with fixed effects (e.g., demographic effects) that are
explainable by other effects should be first addressed and
the model with random effects should be included later
[43].

In Tables 4 and 5, it can be seen that the time vari-
able was able to explain variance at the subject level due
to the significance of the random time effect. First, the
slope of cardiorespiratory activity changing over time might
depend on sleep stages (or their transitions) and thus
might not be with a continuous linear trend. A method

of handling the sleep stage dependency is to use a model
that contains the cross-interactions between sleep stages
and time; but for the influence of sleep stage transitions,
it is suggested to regard the night as different segments
without any sleep stage transitions. Second, the random time
effect could likely be due to the difference in autonomic
control or changes in sleep architecture between subjects
by other factors such as daytime activity, work stress, and
response to the sleep environments during sleep. This was not
addressed in this study and it merits further investigation.
On the other hand, the cross-interactions between time
and demographics (in particular, BMI) explained some total
variance at both subject and epoch levels. Although the
amount and proportion of variance explained by the time-
related effects seem much smaller than some other effects
as shown in Table 7, they are still statistically unequal for
different subjects and are relatively large compared with the
differences between sleep stages for some parameters such as
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FIGURE 3: Q-Q plots of residual variance Q, of the multilevel models (Model #1) for the six cardiorespiratory parameters. These plots suggest

approximate normal distributions of the residual variances.

LF and HE especially at the end of the night, which can be
observed in Figure 2.

Regarding the quantified between- and within-subject
effects, they were found to be statistically significant and they
explained a relatively large portion of the total variance as
we expected. In fact, several factors in addition to internal
physiology may also explain some of the total variance
within subjects in cardiorespiratory activity such as body
movements, body position, sleep environment, conscious
breathing control, and even daytime activity. However, we did
not answer which of these effects takes place in this work and
this should be studied in the future.

When evaluating the performance of sleep staging
using the cardiorespiratory parameters, Model #2 should be
regarded as the preference. For each parameter, although
the estimate of its overnight mean value for each subject
was not completely accurate (due to the difference of sleep
stage composition between subjects), correcting it can still
result in a reduction of the physiological variability between
subjects to a great extent. As a consequence, the sleep staging
results can be improved. Table 6 confirms that the centering
effect actually constituted a large proportion of the total
variance. Moreover, Figure 2 illustrates that the variations
of the parameters caused by demographic and time effects
were somewhat comparable with or even larger than the
differences between sleep stages, leading to difficulty in
separating sleep stages. With respect to the capability of

the parameters in classifying sleep stages, Table 5 shows that,
for example, SDBR had a larger difference between sleep
stages compared with the other parameters while BR had
no difference between REM sleep and wakefulness. This
indicates that the intrinsic separation of sleep stages should
vary between the parameters that express different aspects of
the autonomic activity.

Table 8 indicates that the between- and within-subject
variability conveyed by the cardiorespiratory activity limited
the sleep staging performance. To improve it, the correction
scheme CS1 seems potentially applicable from a practical
point of view because the fixed effects are usually prior
information that is independent of sleep stages or they can
be estimated from the training data before performing sleep
staging. However, realizing CS2 and CS3 requires either infor-
mation of sleep stages (which appear practically unknown
and need to be identified) or estimation of random variances
(which are hardly predictable for new subjects). Therefore,
the challenge will be on how to diminish the random effects
caused by either between-subject variability or within-subject
variability when sleep stages are unknown. For instance,
normalizing the parameter values based on their variation
or distribution throughout the night for each subject might
allow for reduction of the between-subject random effect in
physiology to some extent. Incorporating more explanatory
variables in the model that are independent of sleep stages
and are able to explain some variance of the model would help
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TABLE 6: Variances of a sequence of models (Models A-G in the appendix) with different effects for computing their PVE for the six
cardiorespiratory parameters analyzed in this study.

Models A—G with different effects Respiratory parameters Cardiac parameters
(see the appendix) BR,In-Hz SDBR,In-Hz HR,Inbpm SDNN,In-ms LEnu  HEnu
Model A:
baseline model
Q, 0.0229 0.3306 0.0043 0.2626 0.0354 0.0356
Q, 0.0328 0.1389 0.0192 0.2997 0.0151 0.0156
Dev —-125045 232926 —-348717 202249 —66487 —65952
Model B: Model A + within-subject time effect
(fixed)
Q, 0.0228 0.3284 0.0040 0.2600 0.0353 0.0355
Q, 0.0328 0.1393 0.0191 0.2999 0.0150 0.0155
Dev —125109 232056 —357783 200926 —-66724 -66131
Model C: Model B + demographic effect (fixed)
Q, 0.0228 0.3284 0.0040 0.2600 0.0353 0.0355
Q, 0.0308 0.1329 0.0183 0.2230 0.0147 0.0136
Dev -125120 232048 -357790 200877 -66730 —66152

Model D: Model C + centering effect (fixed)

Q, 0.0228 0.3284 0.0040 0.2600 0.0353 0.0355
Q, 0.0001 0.0098 0.0001 0.0033 0.0003 0.0002
Dev -126064 231624 —-358718 200200 -67367 -66850
Model E: Model D + demographic-related time
effect (fixed)
Q, 0.0227 0.3284 0.0040 0.2597 0.0352 0.0354
Q, 0.0001 0.0098 0.0001 0.0033 0.0003 0.0002
Dev -126393 231624 —358718™¢ 200027 —67718 -67206
Model F: Model E + between-subject time effect
(random)
Q, 0.0210 0.3157 0.0034 0.2476 0.0343 0.0346
Q, 0.0003 0.0097 0.0001 0.0041 0.0003 0.0002
Q, l.le-7 7.3e -7 3.6e-8 71le -7 52e-8 4.5¢ -8
Dev -136185 226933 -380964 194316 —-70913 -69899

Model G: Model F + between-subject
physiological effect (random)

Q, 0.0186 0.2896 0.0029 0.2298 0.0328 0.033
Q, 0 0 0 0 0 0
Q, 1.0e -7 6.7¢e -7 35e—-8 7le -7 4.8¢ -8 43e—-8
Dev -151084 216874 —398866 185774 —-75617 —74903

Note: In, natural logarithm; nu, normalized unit; Dev, model deviance; Ne, no effect. All the models include fixed (f3;) and random (y) intercepts, and sleep-
stage-dependent variables (wake, REM, light, and deep) with their coefficients. The models were optimized by excluding the effects with their coefficients
statistically equal to zero (Wald Z-test, P > 0.05) and the variances presented in the table were all statistically significant (Wald Z-test, P < 0.01).
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TABLE 7: Proportion of variance explained (PVE, %) accounted for by different effects for the six cardiorespiratory parameters analyzed in
this study.

Effect Respiratory parameters Cardiac parameters
BR SDBR HR SDNN LF HF

Overall between-subject effect

Demographic effect 3.55% 1.37% 3.36% 13.69% 0.63% 3.70%

Centering (physiological) effect 55.26% 26.23% 77.95% 39.06% 28.63% 26.41%

Between-subject time effect 2.74% 2.72% 2.67% 2.00% 1.87% 1.58%

Between-subject physiological effect 5.03% 7.62% 2.27% 3.91% 3.49% 3.44%
Overall within-subject effect

Within-subject time effect 0.01% 0.37% 1.32% 0.42% 0.16% 0.14%

Within-subject physiological effect 33.39% 61.69% 12.43% 40.87% 65.04% 64.54%
Cross-interaction effect

Demographic-related time effect 0.02% Ne Ne 0.06% 0.18% 0.19%

Note: In, natural logarithm; Ne, no effect. For each cardiorespiratory parameter, the sum of PVEs from all the effects is 100%, representing the total variance for
that parameter. The centering effect reflected some between-subject physiological variability (at the overnight mean level) that was assumed to be independent
of sleep stage composition over the entire night.

TaBLE 8: Comparison of sleep staging results (wake/REM sleep/light sleep/deep sleep) using different schemes in correcting the
cardiorespiratory parameters.

PSG BS CS1 CS2 CS3

Overall performance

Accuracy, % — 55.8+£9.8 60.4 + 8.8 629 £78 83.5+14.4

Kappa coefficient — 0.19 £0.10 0.29+0.11 0.35+0.09 0.72+0.23
Sleep stage composition (percentage)

Wake, % 19.8 £12.5 199 +14.4 18.4 £ 4.9 20.6 £+ 6.4 19.7 £10.7

REM sleep, % 14.0£5.6 0.7+1.0 24+2.0 3.0£17 10.5+78

Light sleep, % 53.4 +10.7 74.7 £15.1 735+ 8.1 71.0 £8.2 59.9 +£12.0

Deep sleep, % 12.8 +72 4.7 £5.6 5752 54 +4.0 9.9+7.6

Note: BS, baseline with original parameter values without correction; CS1, with correction by fixed effects; CS2, with correction by fixed effects and between-
subject random effects; CS3, with correction by fixed effects and within-subject random effect (model residual). For CS2 and CS3, results were obtained when
assuming the sleep stages were known, which was usually not the case in practice. For accuracy and Kappa coeflicient, significance of difference between using
each correction scheme and BS was confirmed with a paired (two-sided) Wilcoxon signed-rank test, all at P < 0.00001.

better correct the parameters. Compared to the parameters Model A:

analyzed in this study, exploring new parameters with smaller A A " A

random variances (i.e., those that are less influenced by the Yij = Bo + Hoj * Zﬁs Sij + €gijp

between- or within-subject physiological variability) or addi- ) (A1)
tional information in separating sleep stages may improve with ng ~N (0, Qg), eoAij ~N (0, QeA) ,

the sleep staging variability performance. Nevertheless, we
argue that the performance of cardiorespiratory-based sleep
staging will always be limited unless the between- and/or
within-subject random variances are successfully explained
and corrected.

where s = wake, REM, light, and deep sleep and the total
variance ), consists of variance in two levels: the between-
subject variance Q) at the subject level and the within-subject
(residual) variance Q” at the time/epoch level. The percent-
age of the total variance taken by Qf, called intragroup

Appendix correlation coefficient (ICC) p [43, 59], is computed by
The sequence of models constructed to compute the PVE Q) Qb A
values for different effects is described in as follows. pP= = (A.2)

. . . Qtotal (Q? + ‘QOA) .
(i) The first model is the model with solely the constant
and random intercepts as well as the fixed sleep stage (ii) Let us then consider the model with fixed time effect

dependent variables. This baseline model can be written as at the first level
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Model B:

ﬁO + IMOJ + Zﬁs 1] + ﬁt tlme + eOz]
(A3)
with yg; ~ N (0,Q5), eg;; ~ N (0,07).
For the variance analysis of the time variable, instead of using
the original time stamps mentioned before (i.e., time; =
i/2), we use the shifted (centered) values computed as the
original time minus the mean value of the median time over
all subjects. This is because, for a longitudinal multilevel
analysis, time is an occasional variable within subjects and it
usually suffices a linear trend for the measurements since it
thus would explain part of total variance in both levels [43].
Actually, with and without shifting the occasion measures
do result in equivalent models with exactly the same model
coeficients (including residual) and deviance except for the
variance estimates of random effects. The variance estimates
obtained by shifting the time values are considered to be more
accurate and realistic [43]. To quantify the PVE constituted by
the fixed time effect, we exploit the relative variance reduction
of the baseline model in the two levels R® and R3, such that
PVE time_fixed — (1 ) RT + PRi
_pler-o) (-p)(9) - )
oo ors

(o2 -o0) + (o3 )]
Q

(A4)

total

Now we consider the subject-level fixed effects.
(iii) The model including demographic variables is as
follows:

Model C:
c,,C C C,. C , pC
¥ii = Bo T U T Zﬁs s;; + B, time;; T €ojj + B, age;
N
C C A5
+ B, gender; + B, BMI; (A5)
c
with [40] ~ N(O Q ), €gij ~ N(O,QE).

Similarly, the PVE explained by the between-subject demo-
graphic variables can be computed by

B_ AC B_ AC
PVEdemographic = [(Qe P ())-I— (QO o )] . (A.6)
total

The demographic variables only explain the variability
between subjects, so the variance change at the epoch level
should be approximately zero (QF — QS = 0).

(iv) Further, Model D is the model with the inclusion of
between-subject centering effect (expressing the physiologi-
cal difference between subjects at the overnight mean level),
given by

Computational Intelligence and Neuroscience

Model D:
D,. D— D
ﬁo T Hyj +Zﬁs s;j + By time;; + 3, Vit e

+ ﬁ];agej + ,B;Jgenderj + ﬂ?BMIj (A7)

with yg; ~ N (0,05), eq; ~ N (0,027),

from which the corresponding PVE is computed such that
[(oF -02) + (95 - 97)]

center —
Q

PVE (A.8)

total

(v) For the inclusion with cross-interactions that express
the demographic-related time effects, the model is as follows:

Model E:
E. B E E.. E— _ E
Yij = Bo +thoj + Zﬁs sij+ P time; + By + ey
S

+ Brage i+ ﬁEgender it B, BMI j

+ By, (time x age),; + ﬁfg (time x gender),, (A9)
+ By, (time x BMI),; ,
B E
with py; ~ (0 Q ) , e(,,] N (O, Qe) ,
and the proportion of cross-interaction variance is
QY- Q)+ (Q) - Qg
PVE, . = (07 - 90) + (97 - )] . (A.10)
Qtotal

In addition to the fixed part, we consider the random part
of some effects.

(vi) The model with additional random time effect is as
follows:

Model F:
ﬁo +["0]+Zﬁs ij (ﬁf+ﬂf])t1me1]+ﬁ57]

+ egij + ﬁgagej + ﬁzgenderj + ﬁgBMIj

+ By, (time x age) +B;, , (time x gender)

(A1)
+ By, (time x BMI),;,
F F
Uy 0] (&
with [ ‘;f]w([ ] : ) &~ N (0.9).
Hyj 0l 1oy

The computation of the PVE accounted for by the random
time effect can be accordingly obtained by

[(0F - 07) + (25 - )]
Qtotal .

PVE (A.12)

time_random —

(vii) Afterwards, the model with random effects for differ-
ent sleep stages (expressing the between-subject physiological
variability associated with each sleep stage in random part) is
then expressed as
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Model G:
Yij = :8(? + HoGj + Z (ﬁsG + ﬂsGJ) Sijt (ﬁtG + l‘g) time;;
+ [3’?71 + e(?ij + [j’aGagej + ﬁgGgenderj + ﬁbGBMIj

+ BS (time x age),; + ,BtGg (time x gender),,

(A13)
+ By, (time x BMI),
Ho; 01 [
with [l | ~N[ (o], [Qf| |, e ~N(0,0F).
G

In this model, the random variance QF not only explains the
variance in (0 and Q, but also reflects some variance of the
random time effect Qf Therefore, the proportion of variance
contained in QF to the total variance is as follows:

PVEbetwjubj,random
[(@F - 0F) + (a5 - aF) + (of - of)]
Qtotal '

(A.14)

Then the PVE of the random time effect to the total variance
should be corrected to

PVE

time_random
[(0F - 0F) + (9F - o7) - (oF - oF)]
Qtotal '

(A.15)

(viii) Finally, the remaining residual variance is assumed
to only associate with the physiological variability within
subjects and its proportion can be obtained such that

G
Qe
Qtotal

PVE (A.16)

within_subj_random —

Note that all these models are optimized by only keeping
the variables that do not statistically equal zero.
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