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Plant circadian clocks that oscillate autonomously with a roughly 24-h period are entrained by fluctuating light and temperature
and globally regulate downstream genes in the field. However, it remains unknown how punctual internal time produced by the
circadian clock in the field is and how it is affected by environmental fluctuations due to weather or daylength. Using hundreds of
samples of field-grown rice (Oryza sativa) leaves, we developed a statistical model for the expression of circadian clock-related
genes integrating diurnally entrained circadian clock with phase setting by light, both responses to light and temperature gated
by the circadian clock. We show that expression of individual genes was strongly affected by temperature. However, internal time
estimated from expression of multiple genes, which may reflect transcriptional regulation of downstream genes, is punctual to 22
min and not affected by weather, daylength, or plant developmental age in the field. We also revealed perturbed progression of
internal time under controlled environment or in a mutant of the circadian clock geneGIGANTEA. Thus, we demonstrated that the
circadian clock is a regulatory network of multiple genes that retains accurate physical time of day by integrating the perturbations
on individual genes under fluctuating environments in the field.

INTRODUCTION

Plants gain energy from sunlight via photosynthesis in the daytime
and risk injury or death from photoinhibition or drought. Consid-
ering the large variations in intensity and limited hours of sunlight
as the sole source of energy, preparation for diurnal cycles of solar
radiation is critical. Circadian clocks allow plants to anticipate daily
changes in the environment that affect their growth and fitness
(Dodd et al., 2005; Yerushalmi and Green, 2009). Plants also ad-
just the timing of flowering and fruit production based on photo-
periodism, a function recognizing daylength. The circadian clock
contributes to the photoperiodic control of flowering by producing
internal time, which may not be directly affected by a rapidly
changing external environment. It has been implied that gating,
which is internal time-dependent sensitivity to light signals, can
confer diurnal regulation of the expression of genes involved in
photoperiodic flowering. For example, two flowering time genes in
rice (Oryza sativa), a short-day plant, Early heading date 1 (Ehd1)
and Grain-number, plant height, and heading-date 7, are acutely
induced by light signals, with the gating conferred by the circadian
clock, of which the rice ortholog of the Arabidopsis thaliana gene
GIGANTEA (GI) is a component (Itoh et al., 2010; Izawa et al.,
2011; Itoh and Izawa, 2013). GI has been shown to be a key
controller of the global transcriptome in rice under fluctuating field
conditions. In Arabidopsis, flowering is induced under long-day
conditions via CONSTANS (CO), which is transcriptionally activated

by GI (Suárez-López et al., 2001). Expression of a rice ortholog
of CO, Heading date 1 (Hd1), is also regulated by GI, but the
Hd1 regulation of flowering is bifunctional; Hd1 represses
flowering under short-day conditions and induces it under
long-day conditions (Yano et al., 2000; Izawa et al., 2011). Both
Ehd1 and Hd1 regulate rice florigen genes, Hd3a and Rice FT-
like 1 (Itoh and Izawa, 2013). In addition, it has been shown that
Hd3a expression depends on the subtle differences in day-
length of <30 min under the laboratory conditions (Itoh et al.,
2010). Thus, daylength measurement might depend on punc-
tuality (small error) and precision (small variance of error) of the
circadian clock relative to physical time. Therefore, it is im-
portant to know the punctuality and precision of the circadian
clock in the field to elucidate the photoperiodic control of
flowering in rice under natural conditions.
In Arabidopsis, interlocked transcriptional negative-feedback

loops, mainly consisting of CIRCADIAN CLOCK ASSOCIATED1
(CCA1), LONG ELONGATED HYPOCOTYL (LHY), TIMING OF CAB
EXPRESSION1 (TOC1), the PSEUDO RESPONSE REGULATOR
(PRR) gene family, and CCA1 HIKING EXPEDITION, constitute the
core autonomous oscillator of ;24-h period of the plant circadian
clock (Nagel and Kay, 2012; Pokhilko et al., 2013).
The circadian clock synchronizes to the light/dark diurnal cycles

of the external environment; this synchronization is termed en-
trainment. In Arabidopsis, light stimuli for entrainment are per-
ceived by photoreceptors, such as phytochromes, cryptochromes,
ZEITLUPE (ZTL), and FLAVIN BINDING KELCH F-BOX1 (FKF1),
and are transduced to the core oscillator via At-GI, At-PRR5,
At-PRR7, and At-PRR9 (Franklin et al., 2014). To elucidate the
mechanisms of light entrainment, phase response curves (PRCs) to
light pulses have been obtained for various organisms (Pfeuty et al.,
2011). The PRCs for both Arabidopsis (Covington et al., 2001) and
rice (Sugiyama et al., 2001) show some advance in the morning and
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some delay in the evening for luciferase promoter reporters
regulated by the circadian clock. It has been proposed that
the circadian clocks are entrained to solar time, in which a
day is defined by the interval between two successive cul-
minations (Pittendrigh and Daan, 1976; Geier et al., 2005;
Yeang, 2013).

The circadian clocks are also entrained by hot/cold diurnal
cycles, where the temperature signals are transduced by At-PRR7,
At-PRR9, EARLY FLOWERING3 (ELF3), and At-ZTL in Arabidopsis
(Franklin et al., 2014). Thus, signaling pathways leading to the
entrainment of the circadian clock by light and temperature have
common components (Franklin et al., 2014), while the specific
molecular components for temperature entrainment are not yet
known.

In Arabidopsis, many genetic components have been identified
by screening for mutants with changes in periods and amplitudes
of oscillation of circadian clock-regulated genes under constant
light or temperature conditions after entrainment by light/dark or
hot/cold diurnal cycles. However, the amplitudes of rhythmic gene
expression are often strongly reduced under constant conditions,
implying that the observed characteristics may be different from
those in the field. Thus, molecular functions of the clock compo-
nents should be examined also under diurnal environmental
cycles (Izawa, 2012), where plants evolved. For example, hypo-
cotyl growth of Arabidopsis is regulated by light and phytohor-
mone signaling gated by the circadian clock and shows different
peaking time under an 8-h-light/16-h-dark cycle from those under
continuous light; the circadian clock components At-CCA1, At-
LHY, At-ELF3, At-ELF4, and At-PHYTOCLOCK1 (PCL1) contrib-
ute to the gating of light and phytohormone signaling (Nozue
et al., 2007; Michael et al., 2008; Nusinow et al., 2011). Light
signals are transmitted via At-PHYTOCHROME B and PHYTO-
CHROME-INTERACTING FACTOR4 and 5 (Nozue et al., 2007).
The diurnal variation in hypocotyl growth is regulated at least
partially through repression of phytohormone signaling by both
the circadian clock and light (Michael et al., 2008). However, the
circadian clock is markedly robust against genetic perturbations
under environmental diurnal cycles in Arabidopsis. A few mutant
lines, such as elf3 (Hicks et al., 1996) and lhy cca1 (Alabadí et al.,
2002; Mizoguchi et al., 2002) and double mutants of At-PRR7 and
At-PRR9, At-PRR5, or At-TOC1 (Yamashino et al., 2008) exhibit
significant changes in circadian oscillation of expression of key
rhythmic genes under diurnal cycles of light or temperature.

Furthermore, experiments under controlled diurnal cycles of
light or temperature could be insufficient to understand molec-
ular functions of the circadian clock components in an evolu-
tionary context because plants may evolve to use correlations
among internal time produced by the circadian clock, light, and
temperature in the field. Under natural conditions, solar radiation
and ambient temperature generally increase and decrease grad-
ually and peak around noon. Cloudy and rainy weather causes
rapid fluctuations of diurnal patterns within the range of diurnal and
seasonal trends. The onset and peak of solar radiation precedes
those of the ambient temperature on both daily and seasonal time
scales. Such correlations between external environments can be
used by genetic regulatory networks. For instance, Escherichia coli
can use high temperature as a sign of low oxygen concentration
because it evolved under conditions of a negative correlation

between temperature and oxygen resulting from its migration
between mammal intestines and the outside world (Tagkopoulos
et al., 2008). Plants might also use correlation between environ-
mental stimuli to achieve proper function of their circadian clocks.
However, correlations among external environments or between
the phase of the circadian clock and external environments are
disrupted in the controlled environments; thus, experiments un-
der natural environments are necessary.
To evaluate the state of the circadian clock (internal time) from

expression of multiple genes, the molecular-timetable method
was developed for mammals (Ueda et al., 2004) and applied to
plants as well (Kerwin et al., 2011). In this method, diurnal ex-
pression patterns of multiple circadian-regulated genes are mod-
eled as cosine curves of various peak phases. The internal time of
a sample is evaluated by searching a phase when the expression
of the multiple genes coincides with the model output. However,
the method has a drawback in that it is difficult to use genes with
diurnal expression patterns other than a cosine curve even if their
rhythmicity is strong, and major components of the circadian clock
such as PRR95, PRR73, and GI often show diurnal expression
patterns deviating from cosine curves (Izawa et al., 2011). Thus, to
evaluate internal time from components of the circadian clock, it is
necessary to develop a method applicable to genes of any diurnal
expression pattern.
Using time sequences of transcriptome data, we previously

performed genome-wide statistical modeling to dissect the effects
of external environmental factors on expression of individual genes
(Nagano et al., 2012). Although this modeling enabled the selection
of only one factor (among six distinct environmental factors) that
contributed most to the expression of each gene, it could be
flawed in cases where gene expression is simultaneously affected
by multiple environmental stimuli such as light and temperature.
The outline of this study (Supplemental Figure 1) is as follows.

We built a new statistical model of individual gene expression
integrating the effects of a diurnally entrained circadian clock
with a fixed amplitude and phase entrained by solar radiation,
two distinct environmental factors, solar radiation and ambient
temperature gated by the circadian clock, and development and
growth depending on accumulating responses to ambient tem-
perature. We revealed that temperature strongly affect expression
of circadian clock genes. By virtue of this new model, we esti-
mated the expression dynamics of 25 circadian clock-related
genes in the leaves of field-grown rice at 10-min intervals over an
entire crop season. We then estimated internal time produced by
the circadian clock based on the relationship between physical
time of day and expression of multiple genes using a newly de-
veloped Bayesian method that enables us to utilize genes of any
diurnal expression pattern and quantified the punctuality and
precision of internal time versus physical time of day. Although the
expression of individual circadian clock-related genes was strongly
affected by fluctuations of light and temperature, we found that the
expression of a group of 16 circadian clock-related genes encoded
information on physical time of day with a punctuality of 22 min
under fluctuating field environments through the entire crop sea-
son. We revealed that this monitoring of internal time could be
a good indicator to evaluate the behavior of the circadian clock
even under controlled environments. We also found some down-
stream genes regulated by both a normal circadian clock in the
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wild type and the perturbed circadian clock in a circadian clock
mutant, osgi, and identified distinct regulation of downstream
genes by distinct groups of circadian clock genes in both the wild
type and osgi.

RESULTS

Modeling the Expression of Individual Genes Regulated by
Fluctuating Light and Temperature Stimuli

To estimate the expression of individual genes, we developed a
statistical model, which combined five factors: (1) circadian clock,
i.e., an internal clock with fixed amplitude and phase entrained by
solar radiation (Roenneberg et al., 2010); (2) gated light response,
i.e., a response the sensitivity of which to solar radiation is reg-
ulated by the circadian clock; (3) gated temperature response; (4)
development, the developmental stage defined as an accumu-
lating response to ambient temperature; and (5) genotype (Figure
1A). It is of note that, here, we adopted 24 h as the free-running
period in darkness in this model since we would like to focus on
phase setting of circadian clocks by light under natural diurnal
conditions. We denote model outputs corresponding to the ob-
served data used for training the model as “estimation” and those
corresponding to validation data not used for the training as
“prediction.” To prevent overfitting to training data, which results
in poor prediction performance for validation data, we removed
unnecessary terms and initial values for each gene based on
a likelihood ratio test (Supplemental Figure 2). In comparison with
our previous model (Nagano et al., 2012), this model required
higher computational cost for parameter optimization. Thus, we
had to focus on only dozens of genes involved in a single bi-
ological trait and selected the circadian clock as the single target
trait in this work. We first chose microarray probes for 25 rice
orthologs of Arabidopsis genes for circadian clock components
(Supplemental Figure 3) (Murakami et al., 2007) and light receptors
(denoted hereafter as “clock-related genes”; see Supplemental
Tables 1 to 3 for genes analyzed in each figure and table). Here,
the genetic analysis of the osgimutant (Izawa et al., 2011) led us to
hypothesize that these orthologs contain major circadian clock
components in rice. As training data, we used previously obtained
transcriptome from 461 leaf samples of rice grown in a paddy field
in Tsukuba, Japan, collected under various conditions (time of
day, weather, and developmental stage) from June to September
2008 (the same data as used in Nagano et al., 2012). See
Supplemental Tables 4 to 6 for transcriptome data sets analyzed
in each figure and table. Estimation performance of the model was
evaluated using adjusted R2, which is the fraction of variance
explained by the model considering the number of parameters in
the model. Most new models fitted the training data well (adjusted
R2 > 0.5 for 21 out of the 25 clock-related genes; Figure 1B), as
shown for GI (Figure 1C; Supplemental Figure 4A) and LHY
(Supplemental Figure 5A). Furthermore, prediction performance
was evaluated for validation data (108 samples in 2009; these data
were also used in Nagano et al., 2012) using R2, which is the
fraction of variance explained by the model without considering
the number of parameters, and was found to be >0.5 for 16 out of
the 25 genes (Figure 1B; Supplemental Figures 4B and 5B).

Models for some genes such as ELF4_chr.3 showed negative R2,
which indicates worse prediction performance than a model
composed of just a constant value, that is, the average of the
observed gene expression. This worse performance may be be-
cause the variations in observed expression of such genes were
small and, thus, contribution of random noise in gene expression
became relatively large. As expected from our previous report
(Nagano et al., 2012), prediction performance for samples under
controlled light/dark environment (26 samples) was also worse
than the estimation performance for most of the genes even using
this new model (Supplemental Figure 6A). However, when com-
pared with our previous models (Nagano et al., 2012), the esti-
mation (Supplemental Figure 6B) and prediction (Supplemental
Figure 6C) performance for most of the 25 genes for the data from
the fields were improved.

Characteristics of the Response of Circadian Clock-Related
Genes to Environmental Stimuli in the Field

We analyzed response of the gene expression to environmental
stimuli from composition of terms and behavior of each term in
the model. For example, in GI, the troughs of diurnal oscillation
were often high in June and September compared with July to
August, which is mostly explained by the gated temperature
response (Figure 1C). The gated temperature response showed
negative response to temperature, with the gate opening from
midnight to morning (Supplemental Figure 4A). Therefore, the
variations in trough expression level were likely to be determined
by variation of temperature from midnight to morning. By con-
trast, the contribution of gated light response, development, and
genotype were little, as reflected in the range of the re-
sponses and that clock term was removed. Compared with
GI, seasonal variations of trough expression level for LHY
were smaller, which might be determined by the contribution
of circadian clock, which has an invariant amplitude, and by
less contribution of gated temperature response (Supplemental
Figure 5A).
Generally, the gated temperature response term remained for

all 16 genes with high prediction performance (R2 > 0.5). The
term corresponds to a response to ambient temperature, where
the sensitivity is regulated temporally by the circadian clock. This
term also contributed most to the variation of 11 genes among them
(Figure 2A). These results are consistent with our previous work,
where the gated temperature response affected the largest number
of genes when we evaluated light, temperature, and other envi-
ronmental factors separately for the same data (Nagano et al., 2012).
We also estimated internal time of individual gene for the cir-

cadian clock entrained to solar radiation in the model for the 16
clock-related genes for which the model showed high prediction
performance. The models for some genes lack the explicit circa-
dian clock term. For example, the models for LHY-like chr.2, FKF1,
and GI have the gated temperature term, but not the circadian
clock term (Figure 2A). These results suggest that these genes are
affected mainly by temperature fluctuations but not by direct
regulation by the circadian clock. However, the gated temperature
response or the gated light response term intrinsically includes the
circadian clock, which gates the light or temperature response
(see Figure 1A for the model structure). Thus, we were able to
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monitor the variation of the internal time of individual gene (defined
by the state variable w) relative to physical time of day for all 16
genes. The entrainment of the circadian clock is implemented in
the model as change in progress rate of the internal time of in-
dividual gene in response to solar radiation. The period of the
circadian clock in darkness was set to be 24 h, and we did not
consider constant shortening or lengthening of period to 24 h by
light (see Methods). We found that the seasonal variation in
physical time of day at subjective noon (when internal time of in-
dividual gene is at noon) was <30 min and was not affected by

seasonal changes in daylength of >3 h during the entire crop
season in 2008 for most of the 16 genes (Figure 2B). Even if we
consider the threshold for light detection by rice leaves in the field
(Nagano et al., 2012), the seasonal variation of subjective noon
cannot be relevant to seasonal changes in daylength.
In this model, the sensitivity to solar radiation, which depends

on the internal time of individual gene and affects the entrain-
ment of circadian clocks, is represented by circadian integrated
response characteristic (CIRC; Roenneberg et al., 2010), which
is determined according to the phase response curve obtained

Figure 1. Structure and Performance of the Gene Expression Model.

(A) Structure of the model. Observed variables (except for genotype) are in green, response processes in blue, and terms in pink.
(B) Estimation and prediction performance of the model for clock-related genes. R2, the fraction of variance explained by the model relative to variance
of the data, was used as an index of fit for each gene model. Estimation performance was obtained with the same training samples (n = 461) as in (C).
The black line indicates points where R2 values for estimation and prediction are equal. Prediction performance was obtained from validation samples
(n = 108) collected in a different year. The genes are listed in order of rhythmicity evaluated as mutual information between the estimated gene
expression and time of day (Supplemental Figure 3).
(C) The GI model as an example of estimated gene expression, inputs to the linear model, and observed gene expression. The shaded time interval is
expanded in Supplemental Figure 4A. Nip, ‘Nipponbare’; N8, ‘Norin 8.’
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from phase progress or delay of the circadian clock in response
to light of short duration. CIRC switches from negative to pos-
itive at midnight of internal time of an individual gene and from
positive to negative at noon of internal time of an individual
gene. When the model is provided with a specific range of pa-
rameters and diurnal cycle of light, the internal time of individual
genes in the model is autonomously entrained so that the
integral of positive and negative phase responses to light is
counterbalanced according to the CIRC every day. Further-
more, asymmetry of positive and negative sensitivity and dead
zone (no response) around noon is also incorporated in CIRC,
which enables various types of entrainment to the fluctuating
daily environments (Pittendrigh and Daan, 1976; Geier et al.,
2005).

The small seasonal variation of internal time of individual genes
was also seen in gate on radiation, gate on temperature, and
CIRC. Considering the case of GI as a typical example, <20%
daily change (100 to ;120%) in progress rate of internal time of
GI was observed around dawn during the crop season, resulting
in;30 min range of advance (1.2 to;1.7 h) in the internal time of
GI relative to physical time (Supplemental Figure 7A). The prog-
ress rate of internal time and the advance in internal time of in-
dividual genes is a response to radiation according to the CIRC.
The small day-to-day variation against large fluctuations of radi-
ation under various weather conditions (Supplemental Figure 7A)
can be attributed to the low sensitivity of CIRC to radiation in the
daytime (Supplemental Figure 7B). The small seasonal variations
of internal time of individual genes against changes in seasonal

daylength were attributed to the switch from positive to negative
CIRC in the daytime (Supplemental Figures 7A and 7B).

Bayesian Inference Decoding Internal Time on the Basis of
Expression of Circadian Clock-Related Genes in the Field

The internal time of individual genes is estimated from expres-
sion of a single gene with a model of the circadian clock. The
parameters in the model of the circadian clock were estimated
separately for each gene, which might have produced an un-
likely consequence: different phase setting of circadian clock for
each gene. Since the circadian clock is a network of regulation
among multiple genes, we would be able to decode internal time
from the expression of multiple genes. Therefore, we next esti-
mated internal time from multiple genes composing the circa-
dian clock based on the relationship between physical time of
day and expression and quantified the punctuality and precision
of internal time versus physical time of day. Because of rapid
fluctuations in solar radiation and ambient temperature, data
from several hundred samples cannot include all of temporal
gene expression during the entire crop season. However, our
new model with high predictive performance enables us to in-
terpolate temporal gene expression accurately (i.e., with small
error) with high time resolution, once we have corresponding
data for both solar radiation and ambient temperature. There-
fore, we estimated temporal gene expression at 10-min intervals
based on the improved model using temporal data on solar
radiation and ambient temperature from May to September 2008

Figure 2. Analysis of the Expression Model for the Genes with High Prediction Performance.

(A) Contribution of each term to the estimation. The SD of each term relative to that of the observation is shown. Letters preceding gene names
correspond to those in Figure 1B. Only the 16 genes with the highest prediction performance (R2 for prediction >0.5; Figure 1B) are shown. The model of
ELF3_chr.1 (data not shown) was considered unrealistic because the SDs of the gated light response and development terms were >10 times that of the
observation.
(B) Relationship between daylength and physical time of day when internal time of individual genes is at noon. Points for each day are connected along
the lapse of date. Daylength was based on the astronomical estimate at the longitude, latitude, and altitude where the samples were taken (National
Astronomical Observatory of Japan, http://eco.mtk.nao.ac.jp/cgi-bin/koyomi/koyomix_en.cgi). The internal time that corresponded to noon of physical
time of day for most genes was earlier than 12:00 h because sensitivity to solar radiation is higher for the progress in the morning than that for the delay
in the evening in those models, as indicated by asymmetry in response q > 1 (Supplemental Table 10; see Equation 5 in Methods). With the higher
sensitivity for progress in the morning, the progress and the delay are counterbalanced when noon of internal time is set at earlier than 12:00 h of
physical time.
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and data for transplanting date in 2008. We then calculated the
relationships between time of day and the expression of each gene
as empirical probability distributions for the 25 clock-related genes
as two dimensional heat maps (Figure 3A; Supplemental Figure 1),
which should reflect the effect of all fluctuations in solar radiation
and ambient temperature during the entire crop season on ex-
pression of each gene.

We then performed Bayesian inference of time of day on the
basis of gene expression by calculating the posterior probabil-
ities of time of day having the observed expression. In this way,
we were able to narrow down the range of times of day by
calculating the product of the posterior probabilities of time of

day for multiple genes. An example of such an approach for
a pair of genes (PCL1 and GI) is shown in Supplemental Figure
8A. Apparently, the performance of time inference varied among
the gene combinations used. Thus, we first selected the 20
genes for which expression was most dependent on physical time
of day from among the 25 clock-related genes (Supplemental
Figure 3) to reduce the number of gene combinations to a practi-
cal range. We then searched for a gene combination (2 to 20
genes) with the best performance from among 1,048,575 all
possible combinations of the genes (Figure 3B). The expected
value of the posterior distribution of time of day (the mean of time
of day weighted with the posterior probabilities) is denoted here as

Figure 3. Inference of Internal Time from the Expression Data of Circadian Clock-Related Genes.

(A) Probability density distributions between physical time of day and expression of the 25 clock genes based on the variation during an entire crop
season in 2008. The genes are listed in order of rhythmicity (Supplemental Figure 3).
(B) Time inference process, evaluation, and optimization of performance. Observed variables are in pink and the inference processes in blue. See
Supplemental Figure 8A.
(C) Estimation and prediction of internal time using the gene combination with the best estimation performance (i.e., the lowest mean absolute error in
estimation). Posterior probability density of internal time is plotted against time of day sampled. Each blue (training sample for estimation; n = 461) or
turquoise (validation sample for prediction, n = 125) line corresponds to a single sample. Among the training samples, samples obtained at 10-min
intervals at 04:00 to 06:00 and 17:00 to 20:00 are included. Ranges of internal time with zero posterior probability density for those samples are
represented as areas with dense blue lines at the bottom of the 3D space. Thick black diagonal line at the bottom of the 3D space indicates the
correspondence between internal time and time of day sampled.
(D) Performance of the gene combination with the least L-criterion for each number of genes per combination.
(E) Probability of correct prediction of the sampling order for all possible pairs from 48 sequential samples collected at 1-min (or 2-min) intervals (based
on the data in Supplemental Figure 8E).
(F) Contribution of each gene to the estimation performance. Improvement in the L-criterion by inclusion of the gene in the gene combinations is shown.
Right ends of the horizontal bars, maximum values; right ends of the boxes, 75% quantile; vertical bars in the boxes, median; left ends of the boxes,
25% quantile; left ends of the horizontal bars, minimum values. Genes are listed in decreasing order of median improvement. Asterisks indicate
significant improvement (P < 0.05 by the Wilcoxon signed-rank test with random permutation and Bonferroni correction; Supplemental Table 7).
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“internal time.” We denote internal time obtained from the data
used for computing relationships between time of day and the
gene expression as “estimation” and internal time obtained from
other data as “prediction.” “Error” denotes the difference between
internal time and physical time of day sampled. The estimation (or
prediction) performance was evaluated using the L-criterion,
which was originally devised as an index of predictive perfor-
mance estimated solely from the training data (Laud and Ibrahim,
1995). The gene combination with the best predictive performance
contained 16 genes (Figures 3C and 3D); the mean of absolute
values of error was 22 min for estimation from the training data
(461 samples collected in 2008) and 24 min for prediction from the
validation data (125 samples collected in 2009 and 2010). The
means of raw values of estimation and prediction error were 5 6
28 min and 86 26 min (circular mean6 SD; Batschelet, 1965; Zar,
1999), respectively (Supplemental Figure 8B). No systematic and
significant error was observed against solar radiation, ambient
temperature, or daylength when sampled or developmental stage
measured as days after transplanting (Supplemental Figure 8C).
These results demonstrate that the internal time inferred from
multiple gene expression relative to physical time of day is pro-
gressing punctually and thus constantly even in the field.

When the number of clock-related genes in a gene combi-
nation was limited to five, 1644 combinations showed a pre-
diction error of <30 min (Supplemental Data Set 1). Even with
only two genes, the best combination (PCL1 and GI; Supplemental
Figure 8D) showed an average error of 38 min for estimation and
44 min for prediction (Figure 3D). These results strongly suggest
that certain downstream genes can exhibit diurnal expression at
punctual and precise timing when they are directly regulated by
such combinations of clock-related genes.

To evaluate the resolution of two distinct time points in sequential
sampling, we determined the internal time from independent leaf
samples obtained at 1-min intervals (including a pair of samples
collected with a 2-min interval) for a 49-min period in 2008 (48
samples in total, data in this study; Supplemental Figure 8E) and
examined whether the predicted sampling order according to the
internal time was correct among all possible pairs of 48 samples
(Supplemental Figure 8F). The sampling order was correctly pre-
dicted with >95% probability for intervals between sample collec-
tion of at least 15 min (Figure 3E). This indicates that the internal
time conferred by the expression of clock-related genes progresses
to a significantly distinguishable state on a time scale of 15 min
even under fluctuating external environments in the field.

To reveal the contribution of each clock-related gene to this
time inference using temporal gene expression dynamics of
circadian clock-related genes during the crop season with high
time resolution, the improvement in estimation performance
conferred by each gene was evaluated by using the L-criterion
for combinations of two to eight genes from among the 25 clock-
related genes (Figure 3F; see Methods for the details). Sixteen of
these genes significantly (P < 0.05 with Bonferroni correction)
improved the L-criterion based on the Wilcoxon signed-rank test,
where the null distribution was calculated for each gene by ran-
dom permutations (Figure 3F; Supplemental Table 7). As ex-
pected, genes whose expression were more dependent on time
of day, such as PCL1 (Supplemental Figure 3), contributed most
to the median improvement in the L-criterion. Genes with large

seasonal (or day-to-day) variation of expression from midnight to
dawn, as seen in the broad ranges of expression with non-zero
relative probability density in the heat maps, such as GI, PRR37,
and PRR73 (Figure 3A), also contributed significantly. The expres-
sion dynamics of these genes during daytime may contribute to
stable time progression of the circadian clocks during daytime and
thus confer the temporally proper regulation of downstream genes.
The variation in expression observed from midnight to dawn may
result from the variation in temperature (Figure 2A), according to
which the downstream genes may be temporally regulated.

Progression of Internal Time under a Controlled
Environment

The progression of internal time is likely to be different under
controlled environment (in a growth chamber) versus field con-
ditions since light intensity and ambient temperature gradually
increase from sunrise and then decrease to sunset with daily
fluctuations in the fields (the lowermost panel of Supplemental
Figure 7A), whereas light intensity is almost constant during the
light period and ambient temperature rapidly increases and de-
creases at the beginning and the end of the light period, re-
spectively, under the controlled environment. We determined the
internal time under a controlled light/dark environment, using
a combination of 15 genes with the best estimation performance
for the training data (see Methods). The mean error throughout
a day between the controlled and field environments became
smallest (;3.5 min) when the time of lights-on was set to mean of
sunrise time during the crop season for the training data (zero
error in this case is shown as a black line in Figure 4). When the
time of the lights-off was set to sunset time (zero error in this case
is shown as a blue line in Figure 4), the mean error in a day be-
came 45.1 min. This indicates that state of the circadian clock at
lights-on in the growth chamber is similar to that at sunrise for the
growth condition applied. Even when setting the time of lights-on
to sunrise time, a significant time advance of ;2 h after lights-on
and a time delay just before lights-off were observed under the
controlled environment in comparison with the field environment
(Figure 4; Supplemental Figure 8G). Light intensity around lights-
on and lights-off is likely to be stronger for the controlled envi-
ronment than that around sunrise or sunset in the field because
the light intensity acutely increases to maximum and decreases to
darkness under the controlled environment. Therefore, the prog-
ress after lights-on and the delay before lights-off observed in
gene expression under the controlled environment are consistent
with CIRC assumed in the gene expression model, which would
cause an advance in the morning and a delay in the evening in
response to more light intensity in the controlled environment
around lights-on and lights-off. The fact that such changes in time
progression were not observed in rice grown in the field (Figure
3C) indicates that global diurnal gene expression regulated by the
circadian clock differs under controlled and field environments.

Perturbed Progression of Internal Time in a Circadian Clock
Mutant in the Field and Prediction of Downstream Genes

In the rice circadian clock mutant osgi, diurnal expression pat-
terns of many clock-related genes were perturbed (Supplemental
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Figure 9A), in line with a previous report (Izawa et al., 2011), and
time of day information was lost (Supplemental Figure 9B). When
probability density of expression along time of day was calculated
by a smoothing spline model (see Methods for details) using 212
pairs of osgi and wild-type samples obtained in the fields in 2008
and 2009 (Supplemental Table 5) and gene combinations were
optimized separately for osgi and the wild type (Supplemental
Figure 10A), the punctuality of time inference in osgi was found to
become worse in comparison with that of the wild type (Figure
5A). When probability density of expression was calculated and
gene combination was optimized only for the wild type (Supplemental
Figure 10B), time progression in osgi resulted in more severely
impaired predictive performance (Figure 5B). The pattern of al-
tered time progression in osgi based on probability density of ex-
pression along time of day for the wild type depended on the gene
combinations used for monitoring of internal time (Supplemental
Figures 10C to 10E).

These results led us to an idea that transcriptome data con-
taining both a certain genetic perturbation such as osgimutation
and environmental fluctuations in the fields may encode infor-
mation of some regulatory genes linked with regulation of down-
stream genes. We first tried to extract such information from only
transcriptome data of the wild type with environmental fluctuations
in the fields but did not identify any such significant relationships
(data not shown). We then tried to identify the downstream genes
that are still under the control of a deficient circadian clock by osgi
in order to reveal some structures in the gene network of the rice
circadian clock from transcriptome data at the first step because
circadian clocks are often robust to genetic perturbations (Baggs
et al., 2009). We first chose 15 genes with the most marked
rhythmicity to reduce the computational cost (denoted hereafter

“core genes”; see Supplemental Tables 1 to 3). Then we searched
for their downstream genes (among all the genes on the microarray
platform), whose expression patterns in osgi were predicted based
on the observed relationship between expression of downstream
genes in the wild type and physical time, assigning the perturbed
progression of internal time inferred from any combinations of the
core genes in osgi as physical time (Figure 6A). Among the 1807
genes that were fairly rhythmic in the wild type (Supplemental
Figure 9B) and further showed significantly different expression
between osgi and the wild type, we were able to predict the ex-
pression of at least 68 downstream genes (Supplemental Table 8)
significantly from internal time inferred from 7258 distinct com-
binations of the core genes among all gene combinations of two
to eight genes out of 15 core genes (see Methods for details).
For the downstream gene with the best prediction performance
(Os03g0387900), progression of internal time was delayed in osgi
relative to the wild type from midnight to dawn but jumped at 6 to
7 AM to the internal time corresponding to noon and converged to

Figure 4. Time Progression under a Controlled Diurnal Environment.

Prediction errors of internal time were calculated relative to physical time
of day sampled. Green lines denote posterior distributions of errors, of
which expectations are denoted by green points. Time of day sampled
under the controlled environment was set so that lights-on time under
the controlled environment corresponded to the average time of sunrise
during the crop season. We also tried to set time of day so that the lights-
off time under the controlled environment corresponded to the average
time of sunset. Black and blue lines indicate the zero error line for the
former and the latter setting, respectively. Orange and black rectangles
indicate the light and dark periods, respectively.

Figure 5. Punctuality of Internal Time for the osgi Mutant.

(A) Punctuality of internal time encoded in a combination of clock-related
genes showing the best performance for the osgi mutant and the wild
type, respectively (see Supplemental Figure 10A for a scheme).
(B) Punctuality of internal time encoded in a combination of clock-related
genes with the best performance for the wild type (see Supplemental
Figure 10B for a scheme).
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the internal time of the wild type by noon (Figure 6B). For this best
gene, on the basis of the progression of internal time, we were
able to accurately predict a delay in the acute increase of gene
expression at dawn and occasional outlier expression after mid-
night in osgi relative to the wild type (Figure 6C). We also pre-
dicted gene expression of downstream genes in the wild type
(Supplemental Figure 11A) based on the relationship between
gene expression in osgi and physical time, assigning perturbed
internal time for the wild type inferred from the combination of
core genes that gave the most accurate internal time for osgi as
physical time (Figure 6A; Supplemental Figure 11B). Since this
resulted in poorer performance, we concluded that osgi-based
internal time was not appropriate to search for such downstream
genes.

To quantify the contribution of each core gene to the pre-
diction of expression of downstream genes in osgi (Figure 7A),
we next calculated statistical significance of the contribution
based on the Wilcoxon signed-rank test with random permuta-
tion (Figure 7B). This contribution implies that the core gene is
likely to regulate each downstream gene together with OsGI and
other core genes in the combination. Using principal component
(PC) analysis of the obtained P values (Figures 7B to 7D), we
classified the downstream genes by the core genes that likely to
regulate them. We then found that downstream gene regulation by
a group of core genes including ELF3_chr.1 is mutually exclusive

with regulation by LHY-like_chr.2, whereas regulation by PRR73,
PRR37, and PRR59 is mutually exclusive with that by PRR1 and
PCL1 (Figures 7C and 7I). As expected, variations in the PC scores
(Figure 7D), which should reflect variations of core genes regu-
lating each downstream gene, corresponded to variations in
progression of internal time in osgi (Figure 7E), variations of phase,
and the diurnal pattern of the relative expression in the wild type
(Figure 7F), that in osgi (Figure 7G), and the difference between
osgi and the wild type (Figure 7H). Thus, a significant relationship
between the expression dynamics of the core genes and that of
the downstream genes, identified on the basis of genetic pertur-
bations in osgi and environmental fluctuations, shows possible
regulation of the specific downstream genes by those groups of
core genes (Figure 7I). However, it is necessary to evaluate these
relationships by further genetic analysis in the future.

DISCUSSION

We demonstrated that the progression of the plant circadian
clock as a whole system corresponds to physical time of day
and was not affected much by fluctuating external environments
in the field during the entire crop season, regardless of whether
estimation methodology was based on expression of individual
genes (Figure 2B) or multiple genes (Figures 3C and 3D). While
the time resolution of the circadian clock state was found to be

Figure 6. Identification of Downstream Genes of the Circadian Clock Using Perturbed Progression in the osgi Mutant.

(A) A scheme to find downstream genes regulated by core genes both in the wild type and osgi (Supplemental Table 8). Processes for time inference
from expression of the core genes are shown in blue and those for prediction of downstream gene expression are in green. The gene expression in osgi
was predicted by plugging in internal time in osgi (determined by a combination of core genes in osgi ) for physical time and inferring gene expression
based on the relationship between the physical time and expression of a downstream gene in the wild type.
(B) Time progression in osgi that most accurately explains the expression of downstream genes. The seven core genes were used for inference of
internal time.
(C) A downstream gene with the best prediction performance (Os03g0387900). Note that we can predict a delay in the acute increase at dawn and
occasional outlier expression after midnight in osgi relative to the wild type. The corresponding internal time for osgi is delayed from midnight to dawn
with occasional severity but jumps in the morning to catch up with the wild type by noon as shown in (B).
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15 min in the fields (Figure 3E), the progress rate of the circadian
clock is also constant (Figure 3C; Supplemental Figure 7). How-
ever, the expression of most individual clock-related genes was
strongly affected by both solar radiation and ambient temperature
(Figure 2A). It may seem contradictory that the external environ-
ment strongly affected the expression of each clock-related gene,
but did not affect the internal time of individual genes or the in-
ternal time estimated from the expression of multiple genes.
Since a significant contribution of the genes even with drastic
variations in expression from midnight till dawn and almost
constant expression in daytime (such as GI, PRR73, and PRR37;
Figure 3A) to the internal time (Figure 3F) was observed, the ex-
pression patterns of such circadian clock genes can retain partial,
but critical information on physical time of day. Thus, the plant

circadian clock as a network of regulations among genes may in-
tegrate perturbations from various factors such as daily fluctuations
of the external environments, developmental stage, and intrinsic
stochasticity of molecular processes to keep the progression of
internal time constant even under fluctuating environments. Com-
pared with studies using Arabidopsis, there is a lack of genetic
evidence for the molecular mechanisms of circadian clocks in rice.
However, we were able to demonstrate that the entire network of
transcriptional regulation of circadian clock-related genes is punc-
tually regulated under fluctuating field conditions in rice by a phys-
iological approach using statistical modeling and inference.
We also found that the internal time under a controlled envi-

ronment showed an advance in the morning and a delay in the
evening compared with that in the field (Figure 4). Such difference

Figure 7. Structure of Regulation by the Core Genes Revealed by the Perturbed Time Progression in osgi.

(A) A scheme for finding the structure of regulation.
(B) Contribution of 15 core genes to the prediction of expression of downstream genes. Bonferroni-corrected log10 P values for each core gene
determined by the Wilcoxon signed-rank test with random permutation are shown as a gray-scaled heat map. PC analysis was performed using the
log10 P values for 15 core genes with each downstream gene. The scores of each downstream gene on PCs 1 and 2 are indicated by the colors of the
circles above the heat map (as also shown in [D]). Small PC1 values are expressed as blue and large PC2 values green. The same labeling of colors are
used to distinguish the 68 downstream genes in (E) to (I).
(C) Loading of the log10 P values of each core gene on PC1 and PC2 scores of the downstream genes.
(D) Scores of PC1 and PC2.
(E) Progression of internal time with the best prediction performance for each downstream gene. The osgi time progression for a downstream gene is
shown as a polygonal line connecting the means of expectation of the internal time for each time of day sampled. The thick black line shows time
progression along physical time of day.
(F) and (G) Relative expression of predicted downstream genes in the wild type (F) and osgi (G). Log2 expression levels are standardized so that the
mean is 0 and SD is 1 for the wild type.
(H) Difference in the relative expression between the wild type and osgi.
(I) Significant relationships between groups of the core genes and downstream gene clusters based on PC analysis.
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between field and controlled conditions is implied in the PRCs
obtained by light pulses in many organisms (Pfeuty et al., 2011),
including rice (Sugiyama et al., 2001). The difference in tran-
scriptomes between controlled and field environments should be
taken into account, especially when knowledge on a trait and its
underlying mechanisms is limited to that under such controlled
environments. Running our model for lab conditions will be more
informative to assess the data from the labs when enough of such
data has been obtained.

We further revealed that time progression was severely dis-
turbed in the osgimutant in the field. The characteristic changes,
such as the jump in time progression around dawn in osgi, re-
main largely unexplored; our approach would be useful in elu-
cidating details of the action of each circadian clock gene under
diurnal conditions. We also demonstrated a statistical analysis
to find possible downstream genes in the genetic network with
GI as a hub gene and to assess the specific relationship be-
tween each downstream gene and several core genes of the
circadian clock.

The punctuality of internal time in this work outperformed the
body time estimates based on the mouse liver transcriptome
(Ueda et al., 2004), mouse blood metabolome (Minami et al.,
2009), and human blood metabolome (Kasukawa et al., 2012)
under controlled light/dark conditions (mean estimation error of
1.0, 1.0, and ;3 h, respectively). This may result from more
effective extraction of information on the internal time from gene
expression by our methodology compared with the previous
attempts. Otherwise, more accurate information may be en-
coded in gene expression of plants than in that of mammals.

The punctual and precise internal time enables prediction of
strong light and high temperature in the daytime, which correlate
to the internal time with some delay in a day, possibly resulting
in effective prevention of photoinhibition and drought damage,
although these effects have not been experimentally confirmed.
Instead, it is very likely that the punctuality and precision of internal
time can contribute to the photoperiodic control of flowering time
in rice. It has been shown that expression of both Ehd1 and its
downstream florigen gene shows a binary response to a change in
daylength from 13.5 to 13.0 h (Itoh et al., 2010). This detection of
a #30-min difference in daylength is easily achievable because
even distinct plants grown in the same field can distinguish
a 15-min difference at the transcriptional level (Figure 3E). Ac-
cording to the external coincidence model, which is supported by
several lines of strong molecular evidence in Arabidopsis and rice
(Itoh and Izawa, 2013; Yeang, 2013), the interaction of the external
light signal and the circadian clock is crucial for accurate recog-
nition of daylength changes (Pittendrigh and Minis, 1964). The
punctual time progression of the circadian clock in the field con-
firmed in this work strongly supports this model. However, we
cannot exclude that a distinct combination of circadian clock-
related genes may produce two distinct internal time progressions,
which are differently affected by subtle changes in seasonal
daylength; this would support the internal coincidence model
(Pittendrigh, 1972), another model of photoperiodic flowering.

Our approach can be used to determine the endogenous “time
of day” state in plants grown in the field at different latitudes and
longitudes and in plants grown under controlled environments
such as those in plant factories. The detection of internal time

may be used for the diagnosis of agronomic trait-related gene
expression in a time of day-dependent manner.
In conclusion, the circadian clock as a regulatory network of

multiple genes retains accurate and precise information related
to physical time of day under fluctuating field environments by
integrating perturbations from external and internal factors and
stochastic noise in gene expression. In-depth analyses using sta-
tistical modeling of the field transcriptome combined with circadian
clock-related experiments will enable us to further elucidate the
molecular mechanisms conferring the punctuality and precision of
the circadian clock under fluctuating field environments.

METHODS

All the analyses were performed using R, a language and environment for
statistical computing (R Core Team, 2013).

Plant Materials and Microarray Analyses

Rice plants (Oryza sativa cv Nipponbare, cv Norin 8, osgi mutant), growth
conditions, and acquisition of microarray data were previously described
(Izawa et al., 2011; Sato et al., 2011; Nagano et al., 2012) except those for
sampling at 1 min (2 min in part) intervals and those under a controlled
environment. See Supplemental Tables 4 to 6 for transcriptome data sets
analyzed in each figure and table. For 1-min (2-min) sampling (Figure 3E;
Supplemental Figures 8E and 8F), the youngest fully expanded leaf from
one rice plant (O. sativa cv ‘Norin 8’) was collected andmicroarray analysis
was performed as described (Nagano et al., 2012); the data have been
deposited in Gene Expression Omnibus (GEO) as GSE52120. For gene
expression modeling (Figures 1 and 2; Supplemental Figures 3 to 7 and
Supplemental Tables 9 to 12), training data for estimation have been
deposited in GEO as GSE21397, GSE36040, GSE36042, GSE36043,
GSE36044, and GSE18685 (wild type data only) and validation data for
prediction as GSE36777 (wild type data only). For time inference in the
wild type (Figures 3C and 3D; Supplemental Figures 8B to 8D and
Supplemental Table 7), data deposited as GSE39520 were also used for
validation. For analyses of osgi versus the wild type (Figures 5 to 7;
Supplemental Figures 9 and 10 and Supplemental Table 8), paired data with
the samesampling time havebeen deposited asGSE18685 andGSE36777.
For experiments performed under a controlled environment (Figure 4;
Supplemental Figures 6A and 8G), rice plants (O. sativa ‘Koshihikari’; n = 26)
were grown in a growth chamber under metal halide lamps (photosynthetic
photon flux density of 450 mmol m22 s21 or 5.88 kJ m22 min21) with a light
period from 08:00 until 22:30 at 28°C (24°C during the dark period). For 24-h
time series, the youngest fully expanded leaves were collected at 2-h in-
tervals 28 and 49 d after sowing, andmicroarray analysis was performed as
described (Nagano et al., 2012). Because the microarray platform for the
data collected under the controlled environment was different from that
used for the field samples, only probes common to both platforms were
considered. To reduce the effects of different numbers of replicated probes
for the same sequence in the two platforms, we averaged signals of the
replicated probes after transformation to log2 scale and assigned the same
value to all replicated probes in the microarray platform used for field
samples. The data were deposited as GSE54525.

Gene expression data for each probe processed by the Agilent protocol
were transformed to log2 scale. Then q-spline normalization (Workman
et al., 2002) was applied to distinct arrays. Probes were annotated on the
basis of RAP build 5 (Sakai et al., 2013); RAP build 3 (Ohyanagi et al., 2006)
was used for Hd1. For each probe on the Agilent array, rice coding se-
quences were searched using BLASTn for hits of >51 bp with a ratio
between theE-values of thebest hit and the secondbest hit of at least 1023.
If both criteria were met, the probe was annotated as corresponding to the
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locus that included the hit. Expression values of probes annotated to the
same locus were averaged.

To evaluate rhythmicity of gene expression, we calculated mutual
information between time of day and gene expression. To calculate
mutual information, time of day and gene expression was discretized to
bins with equal frequency and then empirical mutual information was
calculated using R package “infotheo” (Meyer P.E; http://www.r-project.
org/). Among the 25 clock-related genes, Hd1 is often considered as
a flowering-time gene in rice but was included owing to its high mutual
information with time of day in this study. See Supplemental Tables 1 to 3
for genes analyzed in each figure and table.

Meteorological Data

Data from the nearest meteorological station belonging to the Japan
Meteorological Agency (Tateno, Tsukuba, 36°039N, 140°089E, altitude
25.2 m above sea level) were obtained. Global solar radiation (kJ m22

min21) and ambient temperature (°C) were transformed to relative scales
(0 to 1) by dividing by 100 and 50, respectively, and averaged over each
1-h interval. When data for finer time intervals were necessary to solve
ordinary differential equations, linear interpolation was applied.

The Model of Gene Expression Responding to Two
Environmental Variables

The model considers two environmental stimuli (solar radiation and
ambient temperature) equally. In addition, the major changes from the
previous model (Nagano et al., 2012) are (1) autonomous entrainment of
a circadian clock to solar radiation, (2) sigmoidal responses to environ-
mental changes with continuous variation of response characteristics
from linear to binary, (3) a development term reflecting the accumulating
effect of ambient temperature, and (4) removal of the interaction terms.

Gene expression (y) was approximated by a linear model composed of
clock (C), gated light response (L), gated temperature response (T), de-
velopment (D), and genotype (G) terms (Figure 1A, Equation 1), where the
coefficient of each term is represented byb followed by a specific subscript:

y ¼ bCCþ bLLþ bTT þ bDDþ bGG ð1Þ

The genotype term (G) indicates whether the cultivar was ‘Nipponbare’ (0)
or ‘Norin 8’ (1); other terms describe characteristic responses to the
environment by the following ordinary differential equations (ODEs).
Supplemental Tables 9 to 12 contain the search ranges of the parameters.
All parameters and variables except for observed solar radiation XL(t) and
the ambient temperature XT(t) are gene specific.

The clock term (C ) describes autonomous entrainment of the circadian
clock to solar radiation by the following differential equations, where the
state variable w indicates internal time of individual gene:

CðtÞ ¼ sinðw2pCÞ;CLðtÞ ¼ sinðw2pLÞ;CT ðtÞ ¼ sinðw2pT Þ ð2Þ

Equation 2 describes the output of the circadian clock (C, CL, and CT) with
different phases (pC, pL, and pT) for the clock term, a gate for the gated
light response term, and a gate for the gated temperature response term,
respectively.

dw
dt

¼ p

12
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Equation 3 describes the progress of the internal time of individual gene
(w) with a saturation response with gain aC to observed solar radiation
(XL(t)), gated by a CIRC (S(w); Roenneberg et al., 2010). When in darkness
(XL(t)=0), progress rate is constant and equals to p/12, which corresponds
to a 24-h period.

The maximum and minimum progress rates are twice as fast as
physical time and 0, respectively.

w9 ¼ arg ðcoswþ isinwÞ ð-p < w9#pÞ ð4Þ

SðwÞ ¼

8>>>>>>>>><
>>>>>>>>>:

q
1þ q

sin
�
w9

w

�
if 0 < w9 < wp;

1

1þ q
sin

�
w9

w

�
if 2wp < w9 < 0;

0 otherwise:

ð5Þ

Equation 4 transforms w to w’ confined within range of (-p, p], and Equation
5 gives CIRC S(w), where q is the asymmetry of sensitivity between
progress and delay and w (0.1# w# 1) is the width of the responsive time
interval. The mean period of the circadian clock without light stimulus was
estimated as 25.7 6 0.6 h for rice (Sugiyama et al., 2001). However, the
period without light stimulus does not critically affect the response to
changing daylength, compared with the width of the responsive time in-
terval and the asymmetry of sensitivity between progress and delay
(Pittendrigh andDaan, 1976; Geier et al., 2005). Therefore, in this model, the
period without light stimuluswas fixed to 24 h; at this value, the effect of the
period on tracking noon, dusk, and dawn is neutral.

The gated radiation response term (Equation 6) and the gated tem-
perature response term (Equation 7) have a common structure with dif-
ferent inputs (solar radiation and ambient temperature):

dL
dt

¼ 1

1þ exp
�
2 aL

�
1þgLCLðtÞ

2 XLðtÞ2bL

��2 kLLðtÞ ð6Þ

dT
dt

¼ 1

1þ exp
�
2 aT

�
1þgTCT ðtÞ

2 XT ðtÞ2bT

��2 kTTðtÞ ð7Þ

The first terms of Equations 6 and 7 describe sigmoidal responses to
observed solar radiation (XL(t)) and observed ambient temperature (XT(t)),
gated by the outputs of the circadian clock (CL(t) and CT(t)) with amplitudes
gL and gT, respectively (0<(1+ gL CL(t))/2 <1, 0<(1+ gT CT(t))/2 <1). The
sigmoidal response can describe a saturation responsewith gains aL and aT,
respectively, and intercepts bL and bT. The intercepts can guarantee some
constant response rates to L andT, respectively. The second termsdescribe
the decay of the gated responses with rates kL and kT, respectively.

The development term (Equation 8) is a simplified version of the gated
temperature term (Equation 7), where the decay and the gate are removed.
A sigmoidal response with gain aD and intercept bD confers a monotonic
accumulation of D, which is affected by fluctuations of observed ambient
temperature (XT(t)):

dD
dt

¼ 1

1 þ exp½2 aDfXT ðtÞ2bDg� ð8Þ

The initial values of the state variables (w, L, T, and D) of the ODEs were
defined as values at noon of the transplanting date. The initial value of the
internal time of individual gene (w; Equation 3) was set to 0 because the
autonomous entrainment became stable within 10 d for most of the genes
examined. For other ODEs, the initial valueswere included in the parameters.

Solution of the Differential Equations and Optimization of the Model
Parameters and Structure

To solve the system of ODEs, we used lsoda, a solver for ODEs im-
plemented in the R package deSolve (Soetaert et al., 2010), with the
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maximum time step set to 10 min and relative and absolute tolerances for
expression of 1026. To fit the model to the training data, a parameter set
with the least sum of squared residuals of gene expression was searched
with particle swarm optimization (Kennedy and Eberhart, 1995) for non-
linear parameters and QR decomposition for coefficients of the linear
model. Particle swarm optimization was implemented in the R package pso
(C. Bendtsen; http://www.r-project.org/) andQRdecomposition as the “lm”

function in R. Particle swarm optimization was performed with the number
of particles set to 10 times that of nonlinear parameters and a maximum of
5000 iterations. It took 15 to 30 h on a nodewith 16 cores (twoCPUs of Intel
Xeon E5-2670) for the parameter optimization of a model with specific
combination of terms for a single gene. Unnecessary inputs to the linear
model and the initial values were removed based on a likelihood-ratio test
(Supplemental Figure 2), which is an F-test based on sumof squared errors,
number of parameters, and number of observations for the models. See
Supplemental Tables 9 to 12 for the estimated parameters of the final
model.

Probabilities of Expression as a Function of Physical Time of Day

We used the new model to calculate daily gene expression at 10-min
intervals for a sampling period that included 357 Nipponbare samples
collected during the crop season in 2008 (Figure 3A). We used only the
Nipponbare data because the transplanting date was earlier than that of
‘Norin 8’ and the samples covered the longest time period during the crop
season. To obtain probabilities of expression level dependent on time of
day during the crop season in 2008, first we calculated probabilities for
each day at each grid point of 10 min intervals for time of day and 0.2
intervals for expression level. The dependence of probability on expression
level for time of day was modeled as normal distribution, with means at the
estimated gene expression and constant variance. The variance was es-
timated from residuals at time points when gene expression was observed.
To obtain probabilities of expression level during the entire crop season, we
averaged the probabilities for each day at each grid point.

To compare estimation optimized separately for osgi and the wild type
(Figure 5A), we obtained a smoothing spline model (rather than the model
of environmental response) separately for the wild type (cv ‘Norin 8’) and
osgi from the paired samples to estimate the expression levels at a given
time of day irrespective of sampling date. Cubic splines with a cyclic
border (Wood, 2011) were used as the smoothing spline. The estimations
of expression levels were obtained at each grid point of time of day. The
probabilities at each grid point of expression level and time of day were
then calculated as described above.

To estimate the probabilities of expression of downstream genes in
osgi as a function of time of day irrespective of sampling date, we also
used smoothing splines as described above. Only the data for the wild
type (cv ‘Norin 8’) from the paired samples of ‘Norin 8’ and osgiwere used
to estimate the probabilities.

Bayesian Inference of Time of Day

Posterior probabilities of time of day conditional on expression level of
genes used for inference were obtained based on Bayes’ rule, assuming
uniform prior probabilities, as:

PðtjxÞf∏
n

i¼1
PðxijtÞ ð9Þ

where xi is expression of one of n genes used for the inference, P(xi | t) is
the probability of expression as a function of time of day, and x is a vector
of expression levels of all genes in a gene combination used for the in-
ference. First, probabilities of time of day for the observed expression level
were calculated at 2.5-min intervals, using a linear interpolation of the
relative probabilities (Supplemental Figure 8A). The probabilities were

then collected for all the genes used for the inference, and the probability
product of them at each grid point of time of day (right hand side of
Equation 9) was calculated. To obtain posterior probability (left-hand side
of Equation 9), the probability product, which is in a relative scale, was
normalized so that integration over 24 h by the trapezoidal rule gave
a value of 1 to meet the definition of probability.

The SD for the circular variable s in an hour (Batschelet, 1965; Zar, 1999)
was calculated as show in Equation 10:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∑
n

i¼1

cos
p ti
12

n

�2

þ

�
∑
n

i¼1

sin
p ti
12

n

�2
vuuuuut ; s ¼ 12

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð12 rÞ

p
ð10Þ

where ti is the inferred internal time (h) for the i th sample out of n samples.
The L-criterion, which is an index of predictive performance estimated

solely from the training data, is defined as the length of a vector composed
of the error (otherwise, the difference between observed data andmean of
the posterior distribution) and SD of the posterior distribution (Laud and
Ibrahim, 1995).

For inference of internal time for samples collected under the con-
trolled environment (Figure 4; Supplemental Figure 8G), one of the probes
detecting OsLHY-like_chr.4 (Os04g0583900) was absent in the micro-
array platform. Thus, OsLHY-like_chr.4 was removed from the 20 most
rhythmic clock-related genes, and a combination of genes with the least
L-criterion for estimation of the training data was searched separately. As
a result, a combination of 15 genes was obtained, where just OsLHY-
like_chr.4 was absent from the 16 genes (Figure 3C) searched from all 20
most rhythmic clock-related genes.

Wilcoxon Signed-Rank Test with Random Permutation

The tests for the contribution of clock-related genes to the time inference
performance (Figure 3F; Supplemental Table 7) and to the prediction
performance of gene expression in osgi for each downstream gene (Figure
7B; Supplemental Table 8) were based on the estimation (or prediction)
performances evaluated using the L-criterion. The null hypothesis was that
the L-criterion of a gene combination with the tested gene is not less than
that of the corresponding gene combination without the tested gene. The
null distributions of the W-statistic in the Wilcoxon signed-rank test for all
tested gene combinations were generated on the basis of 10,000 (Figure
3F; Supplemental Table 7) or 100,000 (Figure 7B; Supplemental Table 8)
paired samples, each consisting of a gene combination without the tested
gene and the corresponding combination with a randomly added gene.
These null distributions were approximated to a normal distribution, and the
cumulative probability of the lower tail was calculated as the P value. None
of the null distributions significantly deviated from normality (P > 0.05,
Kolmogorov-Smirnov test) in the test of the time inference performance
(Supplemental Table 7). For the test of the prediction performance of gene
expression in osgi, one combination consisting of a core circadian clock
gene and a downstream gene out of 1020 combinations was deviated from
normality (P < 0.05, Kolmogorov-Smirnov test), which was not significant
after Holm’s correction for multiple comparison.

Search for Downstream Genes

Downstream genes that follow the perturbed progression of internal time
in osgi were searched on the basis of the prediction performance of gene
expression in osgi. The gene expression in osgiwas predicted by plugging
in internal time in osgi for physical time and inferring gene expression
based on the relationship between physical time and expression in the
wild type (Figure 6A). The internal time for each osgi sample was obtained
for 22,803 gene combinations (all combination of two to eight genes out of
15 core genes). Predictions of gene expression in osgi were obtained for
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the 1807 genes that were most rhythmic in the wild type (Supplemental
Figure 9B) and that showed significantly different expression between
osgi and the wild type. For each of 41,205,021 combinations (22,803
combinations of core genes 3 1807 genes), the predictions of gene
expression in osgi were obtained as a probability distribution, and the
prediction performance was evaluated with the L-criterion for gene ex-
pression in osgi (Figure 6A).

To identify a relationship between the core genes and a rhythmic gene
statistically, we first scaled L-criteria for predicted gene expression in osgi
divided by the SD of the observed gene expression, searched the genes
with the average scaled L-criteria for 13 time points of <0.5, and found 68
genes out of the 1807 rhythmic genes. Since these 68 genes were well
predicted, these genes were considered to be strictly regulated by the
circadian clocks in both the wild type and osgi (even when the circadian
clocks were impaired in osgi ).

We further assessed statistical significance of the relationship by
testing whether the prediction performance of gene expression in osgi
occurred by chance using a random permutation test for the L-criterion,
where the null hypothesis was that the L-criterion was not less than that
for the prediction of gene expression in osgi for random permutation of
observed gene expression and physical time of day sampled. The null
distribution of the L-criterion was obtained from 10,000 samples of
randomly permuted observed expression data of the downstream gene.
The null distributions were approximated by a normal distribution, and the
cumulative probability of the lower tail was calculated as the P value. None
of the null distributions deviated significantly from normality (P > 0.05,
Kolmogorov-Smirnov test). The Bonferroni correction for the 41,205,021
tests was applied to the P values. The values for all 68 downstream genes
were found to be significant (P < 10230), where those L-criterion were
unlikely to be obtained by chance.

Principal Component Analysis

To reveal the structure of regulation of the downstream genes by the 15
core genes, we performed PC analysis of the log10 P values of theWilcoxon
signed-rank test with random permutation. For all 68 downstream genes,
15 log10 P values of the Wilcoxon signed-rank test for each core gene were
calculated. For each core gene, the log10 P values were first centered and
scaled to have an average of 0 and SD = 1.0. Using 15 set of the stan-
dardized log10 P values, PC analysis classified all downstream genes using
the R function “prcomp.” The core genes with an absolute loading of >0.3
were considered to contribute to the PCs. The cumulative proportion of
variance explained by PC1 and PC2 was 0.52. The PC1 and PC2 scores of
a downstream gene were determined from a vector of the normalized log10

P valuesof the core genes projected onto a pair of orthogonal axes that give
the best and second best explanations for the variation of the normalized
log10 P values. Thus, the PC scores should correspond to a classification
of the core genes contributing to the prediction of expression for each
downstream gene in osgi. The loadings of PC analysis are coefficients
of the normalized log10 P values of each core gene used to calculate the PC
scores of the downstream genes and indicate their contribution to the
classification by each PC axis and its direction.

Accession Numbers

Sequence data from this article can be found GEO under the following ac-
cession numbers: GSE52120, GSE21397, GSE36040, GSE36042, GSE36043,
GSE36044, GSE18685 (wild type data only), GSE36777 (wild type data only),
GSE39520, GSE18685, GSE36777, and GSE54525.
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