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Soil water availability represents one of the most important selective agents for plants in nature and the single greatest
abiotic determinant of agricultural productivity, yet the genetic bases of drought acclimation responses remain poorly
understood. Here, we developed a systems-genetic approach to characterize quantitative trait loci (QTLs), physiological traits
and genes that affect responses to soil moisture deficit in the TSUxKAS mapping population of Arabidopsis thaliana. To
determine the effects of candidate genes underlying QTLs, we analyzed gene expression as a covariate within the QTL model
in an effort to mechanistically link markers, RNA expression, and the phenotype. This strategy produced ranked lists of
candidate genes for several drought-associated traits, including water use efficiency, growth, abscisic acid concentration
(ABA), and proline concentration. As a proof of concept, we recovered known causal loci for several QTLs. For other traits,
including ABA, we identified novel loci not previously associated with drought. Furthermore, we documented natural variation
at two key steps in proline metabolism and demonstrated that the mitochondrial genome differentially affects genomic QTLs
to influence proline accumulation. These findings demonstrate that linking genome, transcriptome, and phenotype data holds
great promise to extend the utility of genetic mapping, even when QTL effects are modest or complex.

INTRODUCTION

Traits that drive adaptation in ecological and agricultural systems
are typically affected by the allelic state at many loci, the
environmental conditions, and the interaction of genes with the
environment (Falconer and Mackay, 1996; Mackay, 2001). Eluci-
dation of how genes and environments interact to produce complex
phenotypes is a long-standing problem and “grand challenge” in
modern biology as well as crop breeding (Araus et al., 2002, 2008;
Rockman, 2012; Heslot et al., 2014). Among the most ecologically
and agriculturally important environmental factors is variation in soil
moisture availability, which has driven the evolution of morphological
and physiological traits (Stebbins, 1952; Axelrod, 1972; Juenger,
2013) and directly affects agricultural productivity (Condon et al.,
2004; Cattivelli et al., 2008; Richards et al., 2010).

Plants have evolved complex, diverse, and often highly inducible
responses to soil moisture variation (Chaves et al., 2003; Chaves
and Oliveira, 2004; Heschel and Riginos, 2005; Bogeat-Triboulot
et al., 2007; Harb et al., 2010; Rosenthal et al., 2010; Pinheiro and
Chaves, 2011; Mir et al., 2012). For example, drought-adapted

genotypes may avoid cellular dehydration through plasticity of
many traits, including stomatal conductance (Chater et al., 2011),
root and shoot growth (MacMillan et al., 2006), leaf wilting or rolling
(Kadioglu and Terzi, 2007), and phenology (Heschel and Riginos,
2005; Sherrard and Maherali, 2006). Upon exposure to drought,
many plants accumulate high levels of the stress hormone abscisic
acid (ABA). ABA-mediated signaling is important for the regulation
of various drought-responsive traits, including stomatal conduc-
tance, gene expression (Cutler et al., 2010), and accumulation of
the compatible solute proline.
Many plants accumulate high levels of proline upon exposure to

drought. In Arabidopsis thaliana, expression of D1-PYRROLINE-5-
CARBOXYLATE SYNTHETASE1 (P5CS1) is strongly induced by
abiotic stress (Szabados and Savouré, 2010; Sharma et al., 2011).
P5CS1 catalyzes the probable rate-limiting step in stress-induced
proline biosynthesis. Conversely, expression of PROLINE
DEHYDROGENASE1 (ProDH1), which encodes a mitochondrion-
localized proline catabolism enzyme, is repressed by stress in
many plant tissues. It is thought that induction of P5CS1 and
repression of ProDH1 expression is important to suppress proline
turnover and maximize the accumulation of proline for osmotic
adjustment (Leprince et al., 2015). However, other studies have
suggested that continued mitochondrial proline catabolism also
contributes to drought resistance by balancing cellular redox
status and maintaining a favorable ratio of oxidized versus re-
duced NADP (Sharma et al., 2011).
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DNA sequence variation in both nuclear and cytoplasmic (mito-
chondrial and plastid) genomes may underlie variation in drought
response, including proline and ABA accumulation. For example,
biosynthesis of the carotenoid precursors of ABA as well as the
rate-limiting carotenoid cleavage reaction catalyzed by the 9-cis-
expoxycartenoid dioxygenase family of enzymes occur in the
chloroplast. While nuclear genes encode the enzymes involved in
ABA biosynthesis (Milborrow, 2001; Finkelstein, 2013), the later
steps of ABA biosynthesis occur in the cytoplasm. Likewise, proline
catabolism occurs in mitochondria but is catalyzed by nucleus-
encoded enzymes. It is not established whether proline or ABA
metabolism can be influenced by sequence variation of mitochon-
drion- or plastid-encoded genes.

Quantitative trait locus (QTL) mapping and global gene expres-
sion analyses are useful methods to assess the genetic basis of
traits involved in drought adaptation (McKay et al., 2008; Hall et al.,
2010; Juenger et al., 2010; Des Marais et al., 2012; Schmalenbach
et al., 2014; El-Soda et al., 2015). In particular, the genomic per-
turbation of experimental crosses utilizes recombination to break
up linkage disequilibrium and allows causal inference of how vari-
ation at a given locus leads to phenotypic variation. One of the
goals of QTL mapping is the identification of the polymorphisms
underlying heritable physiological variation. While broadly utilized
for this goal, linkage-based QTLs do not provide a framework to
distinguish among candidate genes without further fine-mapping
and/or reverse genetics (Rockman, 2012). The most common
method to define candidates underlying a QTL is to search for
physically proximate genes with annotations or gene ontology re-
flecting the trait of interest (Al-Shahrour et al., 2005). While some-
times successful in model organisms, this approach may inhibit the
discovery of new genes or candidates in species without annotated
reference genomes.

Recently, several studies have combined gene expression and
phenotypic trait QTL mapping in experimental populations (Chen
et al. 2010; reviewed in Hansen et al., 2008; Cubillos et al., 2012).
Through analysis of colocalization between differentially expressed
genes and phenotypic trait QTLs, it is possible to produce lists of
candidate genes (Swamy et al., 2013); however, the researcher is
often left with long and unwieldy lists of candidates without
direction regarding which genes to pursue further. Several
approaches have been developed in mouse and human model
systems to solve this problem by ranking candidate genes
underlying QTL regions through the joint analysis of genome-wide
transcript abundance data with trait and genotype data of QTL
studies (Schadt et al., 2005; Drake et al., 2006; Farber et al.,
2009).

Candidate gene effect analyses often seek to identify causation
among predictor variables, such as genotype or gene expression
polymorphism, and the phenotypic trait response variable (Al-
Shahrour et al., 2005) and have been used as a post-hoc method to
find candidate genes under QTL peaks. For example, by assessing
the correlation structure of traits, transcripts, and alleles, causal
inference testing (CIT) can be used to determine the statistical
significance of potential candidate genes (Millstein et al., 2009).
However, post-hoc tests of candidate genes like CIT take QTL
candidate regions out of the multiple-QTL model in which they
were generated and, in doing so, assume that additive and epistatic
effects of other loci and covariates (e.g., sex, cytoplasm, or

environment) do not affect the QTL peak. The power of multiple-
QTL mapping is to incorporate all these variables simultaneously.
As such, much of the power to determine the effects of genes
underlying a QTL peak may be lost through current post-hoc
approaches.
In QTL mapping, when a covariate explains residual variation,

it can increase the researcher’s ability to define uncorrelated
QTL peaks (Zeng, 1993; Broman and Sen, 2009). However, the
opposite is also true. Correlated covariates can absorb QTL-
specific variance, reducing the peak height and power to detect
a local QTL (Supplemental Figure 1). Li et al. (2006) used this
approach to infer causality among correlated phenotypic traits
through structural equation modeling. In short, if using trait X as
a covariate reduces the LOD score of a QTL for trait Y so that
there is no longer statistical support for the QTL for trait Y, then
X causes Y (Li et al., 2006). This methodology is commonly used
to infer causality among phenotypic traits via partial regressions
and directed networks (Broman and Sen, 2009; Neto et al.,
2010). Here, we extended this approach to define the effect of
candidate gene expression on the focal phenotypic trait. To do
so, we iteratively refit multiple QTL models for physiological
phenotypes (trait Y) with gene expression phenotypes (trait X)
(of each candidate gene) as an additive covariate.
We used this approach in the context of a large-scale QTL

analysis of drought physiology in Arabidopsis. The experimental
population consisted of recombinant inbred lines (RILs) derived
from a cross between the KAS-1 and TSU-1 ecotypes. These
accessions originated from environments with very different
water availability and differed in their water use efficiencies
(McKay et al., 2003). Furthermore, strong ecological differenti-
ation between TSU and KAS has been documented in life history
(Lovell et al., 2013) and survival in drought conditions (McKay
et al., 2008). To test which traits respond to drought and the
genetic loci underlying this response, we conducted a quantita-
tive genetic analysis of 39 total phenotypic traits related to
drought adaptation, 18 of which had significant multiple-QTL
models. Candidate genes were defined separately for each QTL-
phenotypic trait combination as those genes within the
QTL confidence interval with cis-acting transcript abundance
QTLs (cis-eQTLs). We then applied our covariate method to
assess the effects of each candidate gene on the local QTL peak
morphology. We demonstrated the utility of this approach by
recovering known causal genes underlying QTLs and developed
ranked lists of candidate genes for each individual QTL. Finally,
we combined the candidate gene search with observed epistatic
and additive effects to document how known proline metabolism
genes interact with newly discovered effects of mitochondrial
natural variation to regulate proline accumulation in response to
drought.

RESULTS

Quantitative Genetics of Drought Physiology

Utilizing a population of 341 KAS-1 3 TSU-1 RILs, we examined
the effects of a progressive drought treatment on a series of
traits, including transcript abundance, metabolites, physiology,
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growth, and performance. Our experimental soil moisture treatment
reduced soil water potential to 22 MPa (Figure 1). This low mois-
ture level approximates water deficits often experienced by both
wild and crop plant species.

We measured 39 total phenotypic traits. Twelve phenotypic
traits were measured in both well-watered and reduced water
potential treatments (Table 1). These were related to growth,
biomass partitioning, as well as key drought physiology traits. We
also calculated and mapped QTLs for plasticity, which can also
be considered a quantitative character (Falconer and Mackay,
1996). To assess plasticity for phenotypic traits measured in both
environments, we calculated the RIL-specific difference between
quantile normalized breeding values in wet and dry conditions.
We quantified two leaf-level responses to drought stress only in
the dry environment: change in leaf width (rolling) and leaf length
(wilting). Finally, we examined days to flowering (FT) for each RIL,
using previously reported data (Lovell et al., 2013).

As expected, drought stress had a substantial effect on most
measured phenotypic traits (Table 1). Growth traits responded
particularly strongly. Leaf area was reduced by ;50% in the dry
treatment, and shoot fresh mass in the dry treatment was only
25% of that in the wet treatment (Figures 1B and 1C). For several
phenotypic traits, including growth rate, the degree of plasticity
was strongly positively correlated with treatment-specific breeding
values (Figure 1D). Physiological traits also exhibited strong stress
responses. Leaf tissue concentrations of the compatible solute,
proline, and carbon isotope ratio (d13C), a measure of whole-plant,
integrative water use efficiency (WUE), were 25.12-fold (t = 251.5,
P < 0.001) and 1.24-fold (t = 236.4, P < 0.001) higher in dry
conditions, respectively. The aqueous concentration of the
drought-responsive hormone ABA was significantly higher in
the dry treatment (t = 9.51, P < 0.001).

We observed significant negative genetic correlations between
physiological and growth rate traits, especially in drought con-
ditions (Table 2). The extent and direction of phenotypic plasticity
to drought was also strongly correlated among growth traits
(Supplemental Table 1; Figures 1C and 1D). Negative response
correlations were observed between partitioning ratios (shoot:root
ratio, root mass ratio), while root and shoot growth responses were
positively correlated. Among physiological responses, only a
strong negative correlation between WUE and proline response
was significant (Supplemental Table 1), a pattern potentially driven
by similar hormone signaling across these traits. Finally, the rela-
tively weak signal of genotype*environment interactions (GxE;
Table 1), except for proline concentration, indicated that physio-
logical divergence between TSU and KAS was largely constitutive.

Multiple-QTL Modeling

To define genomic regions associated with drought physiology, we
implemented a stepwise model selection approach (Manichaikul
et al., 2009) within the QTL mapping package R/qtl for all 39 traits
(Broman et al., 2003). QTL mapping was conducted on the
breeding values for each trait within each environment (nwet =13,
ndry = 14) and the plasticity estimate for each of the 12 traits
measured in both environments.

Single-trait multiple-QTL modeling revealed 36 significant
QTLs across 18 of the 39 traits (Table 3, Figure 2; Supplemental

Table 2). Strong QTL peaks were found for several traits on
proximate chromosome 4 (Chr4) and distal Chr2. The Chr4 QTL was
previously cloned as FRIGIDA for WUE (wet) and FT (Lovell et al.
2013); however, this marks the first documentation of colocalized
QTLs for proline, root mass ratio (RMR), WUE plasticity, and wilting
phenotypes at the same region. The QTL hot spot on Chr2 was
centered on an extremely strong peak for proline (dry treatment,
24.9% variance explained) but also included single QTLs for WUE
(dry), water content (dry), leaf rolling (dry), and proline plasticity. While
correlations among traits with colocalized QTLs were generally weak,
several pairs of traits were strongly correlated, including FT-WUE
(wet) (r = 0.34, P < 0.0001; Supplemental Figure 2) and proline (dry)-
WC (dry) (r = 20.35, P < 0.0001; Supplemental Figure 2B).
Aside from the FRIGIDA region, WUE QTLs also colocalized

with those for FT on distal Chr4, proximate Chr5, and distal Chr5
(Figure 2; Supplemental Figure 3). In general, allelic variation
underlying each QTL peak produced a parallel response of WUE
and FT, as indicated by similar QTL profiles across the genome
for each trait (Supplemental Figure 3A). For three-quarters of the
pleiotropic QTLs, the KAS allele conferred later FT and higher
WUE (Supplemental Figure 3B). However, for the pleiotropic FT/
WUE QTL on distal Chr5, the KAS allele was associated with
earlier FT and lower WUE (Supplemental Figure 3B).
We found plasticity QTL for proline, WUE, leaf area, and shoot

growth rate (Table 3). The QTL peaks for these traits largely
aligned with the strongest QTL peaks for either the wet (WUE) or
dry main-effect phenotype. In these cases, we observed “weak”
interactions, where the magnitude but not the direction of the
QTL effect changed with the environment.
Since this population used reciprocal crosses, we were able to

evaluate the effects of the cytoplasmic genomes. Adding cyto-
plasm as a factor improved model fit and was therefore retained in
multiple QTL models for 12 of the phenotypic traits (Supplemental
Table 2). In particular, there was a strong additive effect of cyto-
plasm on proline (10.6% of the total variation; Supplemental
Tables 2 and 3; Figures 3A and 3B); however, for other phenotypic
traits, cytoplasm generally explained little of the total variance
(Supplemental Table 2). We tested the significance of QTL-cyto-
plasm epistasis post-hoc by iteratively fitting an interaction term
between cytoplasm and each QTL in the final multiple-QTL model
for each phenotypic trait where cytoplasm was retained in the
model (Supplemental Table 4). This interaction was significant,
improved model fit and was added to the model for two QTLs:
plasticity of growth rate QTL 4@60 and WUE (dry) 3@58 (QTL
identifier follows: phenotypic trait “QTL” Chr@cM position;
Supplemental Figure 4). Interestingly, the WUE QTL 3@58
broadly colocalized with proline QTL 3@44, another QTL with
a strong, albeit additive, effect of cytoplasm (Figure 3B).
QTL-QTL epistasis was found in only two phenotypic traits,

proline and FT (Table 3; Supplemental Table 3). Proline was strongly
increased in lines with KAS alleles at QTL 3@44, but TSU alleles at
the main effect QTL 2@74 (Figure 3C). The latest FT phenotype was
conferred by KAS alleles at both FT QTLs 4@3 and 4@62.

Candidate Gene Analysis

Our candidate gene discovery method used a three-step ap-
proach to determine the effect of gene expression on the peak
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QTL LOD score. First, all genes with significant gene expression
polymorphism were extracted (for each QTL interval) by including
only genes with significant cis-eQTLs (mapped in a recent study
using the same gene expression data set; Lowry et al., 2013).
Second, we ran QTL scans in which expression of each gene was
iteratively added (and subsequently removed) as an additive
covariate to the previously generated multiple-QTL model. This
allowed us to determine the relative effect of transcript abundance
of each gene on the focal QTL peak height. Finally, we ran
a permutation test (10,000 permutations) for all genes in each QTL
to determine significance of the effect (Figure 4).
The WUE QTL 4@4 was previously cloned, and the phenotypic

variation resulted from DNA sequence variation that caused an
expression polymorphism at FRIGIDA. Within the WUE QTL 4@4
confidence interval, there were 92 genes. Our candidate selection
approach returned FRIGIDA (AT4G00650) as the strongest can-
didate gene for WUE. We tested the significance of the estimates
by permuting the gene expression covariate data and rerunning
the QTL scans. This test resulted in an empirical P = 0.0057 for
FRIGIDA (Figures 4A and 4B). For the pleiotropic FT QTL 4@3,
FRIGIDA was the second strongest candidate. While not the
strongest in the list, FRIGIDA had a significant effect on the FT
QTL 4@3 LOD score (P = 0.01).
The proline QTL 2@74 contained 239 genes, many more than the

WUE QTL 4@4. This QTL colocalized with a well-documented
sequence polymorphism in the proline biosynthesis gene, P5CS1
(AT2G39800), described by Kesari et al. (2012). We ran the same
covariate screening process with the proline QTL 2@74, with the
additive effect of cytoplasm included in the model. Incorporation of
cytoplasm effects into candidate selection resulted in three genes
with significant gene expression covariate effects, including P5CS1
(Figures 4C and 4D, Table 4; Supplemental Table 5; P > 0.001).
These results provided a proof of concept that our method could
discover causal genes in moderately large QTL regions.
To explore the utility of this method, we conducted covariate

candidate gene scans for all QTLs with intervals spanning <25
centimorgans (cM), including 20 main effect QTLs and two
epistatic QTL regions. For the two epistatic QTLs, with significant
interactive effects but small main effects (FT QTL 4@63 and proline
QTL 3@50), gene expression polymorphism was defined by the
interactive effect between gene expression at the local and inter-
acting QTLs. We then ranked these lists of potential candidates by
the relative proportion of the LOD score absorbed by the gene
expression covariate (Table 4; Supplemental Table 5). Overall, we
screened 652 genes, 169 of which had an empirical q-transformed
P < 0.1. Mean gene expression was highly elevated across
significant candidate genes relative to those without significant
effects (t527.5 = 9.87, P < 0.0001).
Several of the candidate genes produced from our methods

had particularly interesting gene annotations. The strongest
candidate for the FT QTL5@15 was AT5G17880 (CSA1), which

Figure 1. Physiological Effects of the Experimental Drought on Leaf
Growth.

(A) Soil moisture release curve. Closed circles represent measurements
of soil water potential across a range of soil water content. The open
circle shows mean soil moisture at the end of the dry-down treatment.
These data were used to estimate water potential for the dry-down
treatment.
(B) Isolated overhead image of a genotype (KT207) in drought (left) and
well-watered (right) conditions. The images have the same scale and
color adjustments.

(C) Reaction norms for shoot fresh mass under different water availability
treatments.
(D) Dependence of the change in leaf area during the treatment on total
leaf area. For the wet treatment, r = 0.87, and for the dry treatment,
r = 0.06.
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has been found to cause variation in stem elongation in response
to a variety of environmental cues, including shading and red/far
red ratio (Faigón-Soverna et al., 2006). Furthermore, transgenic
lines of CSA1 have slight differences in FT. Indeed, we found that
TSUxKAS NILs with introgressions in this region showed variation
in shade avoidance traits (F3,25 = 6.031, P = 0.0031; Supplemental
Figure 5). In addition, one of the significant candidates for proline
QTL 3@50 was AT3G30775 (ProDH1). ProDH1 is a mitochondrion-
localized proline oxidase that is an especially strong candidate
because of the highly significant effect of both P5CS1 and the
cytoplasm at proline QTL 3@50 (Figures 3B and 3C).

While all significant candidates warranted further consideration,
we chose to examine two QTLs with candidates that were not

annotated for the focal phenotype. The most significant gene for
ABA QTL 2@16 was AT2G03140 (P < 0.0001; Table 4;
Supplemental Table 5), a chloroplast-localized protease. In-
terestingly, the second strongest candidate gene AT2G04380
(Supplemental Table 5) had a gene expression phenotype that
strongly covaried with AT2G03140 (Supplemental Figure 6),
indicating the possibility of multiple strong candidates within this
region. While there was substantial divergence between proteins
encoded by the parental alleles of AT2G03140 (0.5%; Supplemental
Table 5), both coding and untranslated region DNA sequences of
AT2G04380 were monomorphic between TSU-1 and KAS-1.
Combined, the stronger covariate effect and greater protein and
sequence polymorphismmade AT2G03140 a more likely candidate.

Table 1. Variance Component Estimates and Summary Statistics for the Phenotypic Traits Measured

Phenotype (Units or Calculation) Abbreviation Environment Mean SD VarEnv (%) VarRILxEnv (%)

Growth Leaf area (cm2) LA Wet, dry, plast. 18.40 9.160 66 1
Growth rate (LAharvest/LApretreatment) GR Wet, dry, plast. 5.44 7.660 72 NA
Relative GR [ln(LA)-ln(GR-LA)] RGR Wet, dry, plast. 0.07 0.090 71 NA
Leaf wilting (%) Wilt Dry 3.16 2.350 NA NA
Leaf rolling (%) Roll Dry 3.93 2.280 NA NA

Biomass Shoot fresh mass (g) SFM Wet, dry, plast. 0.68 0.490 72 2
Shoot dry mass (g) SDM Wet, dry, plast. 0.06 0.026 36 0
Root dry mass (g) RDM Wet, dry, plast. 0.01 0.004 5 0
Shoot:root ratio (SDM/RDM) SR Wet, dry, plast. 6.02 1.860 42 0
Root mass ratio [RDM/(RDM+SDM)] RMR Wet, dry, plast. 0.15 0.033 46 0
Grav. water content (SFM-SDM/SFM) WC Wet, dry, plast. 87.80 5.540 83 2

Physiology ABA conc. (mmol/g SDM) ABA Wet, dry, plast. 5.92 5.960 1 0
ABA (aqueous) (mmol/g SDM)* Wet, dry, plast. 0.72 1.100 35 0
Water use efficiency (d13C) WUE Wet, dry, plast. 229.80 0.890 76 1
Proline conc. (mmol/g SFM) Proline Wet, dry, plast. 93.60 102.500 85 4
Flowering time (days) FT Wet 23.70 4.580 NA NA

Genotype effects cannot be estimated for the growth rate traits because a single replicate was measured within each treatment. Environmental
contributions cannot be estimated for the single environment phenotypes, wilting, rolling, and FT. Those traits that were not used for QTL mapping are
indicated with an asterisk. SDM, shoot dry mass; SFM, shoot fresh mass.

Table 2. Genetic Correlations among Traits

LA SFM SDM RDM RMR ABA WUE Proline

Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry

LA Wet 0.25* 0.91* 0.19* 0.85* 0.18* 0.74* 0.10 20.07 20.02 20.33 20.07 0.02 20.05 -0.12* 0.11
Dry 0.22* 0.89* 0.28* 0.59* 0.20 0.55* 0.04 0.11 20.04 20.04 0.03 20.24* 0.04 20.04

SFM Wet 0.19* 0.90* 0.16* 0.80* 0.15 20.03 0.02 20.07 20.07 0.02 20.04 -0.14* 0.08
Dry 0.23* 0.69* 0.25 0.68* 0.16 0.20 20.03 20.05 0.01 20.29* 0.02 20.11*

SDM Wet 0.23* 0.71* 0.08 20.19 20.15 20.05 20.07 0.12* 20.04 0.00 0.14*
Dry 0.38* 0.61* 0.18 0.07 20.06 20.11 20.02 20.33* 20.02 0.13*

RDM Wet 0.33* 0.37* 0.20 20.34* 0.05 0.03 20.26* 20.13 0.07
Dry 0.30* 0.59* 20.16 0.29* 20.05 20.48* 20.03 20.20

RMR Wet 0.37* 0.05 0.13 20.07 20.31* 20.02 20.17
Dry 20.26 20.15 20.21 20.35* 20.10 20.24

ABA Wet 0.43* 20.05 0.00 20.08 0.11
Dry 20.04 0.02 20.05 0.08

WUE Wet 0.21* 0.17* 0.04
Dry 0.02 0.29*

Proline Wet 20.11

The asterisk (and bold) indicates a significant effect (P < 0.05). Data for ABA levels are ln-transformed to improve normality. Abbreviations are defined in
Table 1.
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Distal Chr5 contained a pleiotropic QTL for FT, WUE (wet), and
WUE (dry). The effects of this QTL onWUE in both conditions were
parallel, indicating that a single constitutive locus may have
caused the QTL. Of the 24 unique significant candidates among
these three traits, one gene was found in all three: AT5G55180
encoding a plasma membrane-localized O-glycosyl hydrolase that
had not been annotated for any physiological attributes. However,
members of the glycosyl hydrolase family of proteins are involved
in a diverse array of physiological functions in plants, including
drought responses (Bray, 2004), signaling, and development (Minic,
2008), which presents the possibility of pleiotropic gene action
across phenological and physiological traits.

Isolation of the Quantitative Trait Nucleotides in
Cytoplasmic Genomes

Since the multiple-QTL model for proline (dry) was strongly
influenced by an additive effect of cytoplasm (>10% variance
explained), we explored DNA sequence variation in the cytoplasmic
genomes. We downloaded high-depth resequencing of both
parental lines (Lowry et al., 2013). Sequence comparisons revealed
that the chloroplast genomes of TSU and KAS had identical DNA
sequences. However, 16 single-nucleotide polymorphisms (SNPs)
existed between the mitochondrial genomes. Of these SNPs, four
were in gene-coding regions of ATMG00050 (unknown function),
ATMG00070 (NADH DEHYDROGENASE SUBUNIT 9 [NAD-9]),
ATMG00510 (NAD-7), and ATMG00710 (unknown function)
(Supplemental Table 6). Interestingly, across a diverse panel of
Arabidopsis accessions (218 genotypes from the Salk Institutes
1001 genome resequencing project, http://signal.salk.edu/
atg1001/index.php), NAD-9 has two major haplotypes (I, 40%; II,
43%) that exist at relatively equal frequencies, a departure from

neutral expectations that instead suggests balancing selection at the
locus (Supplemental Figure 7). The other three candidate genes have
single dominant haplotypes with a small proportion of independent,
rare mutations (Supplemental Figure 7).
We verified the presence of the NAD-9 SNP through capillary

sequencing. The TSU-1 (a high proline accumulator) NAD-9 allele
differed from the allele common to KAS-1 (a low proline accu-
mulator) and the Columbia-0 reference. This result was consistent
with an effect of the KAS cytoplasm genotype in the RIL
population (Figures 3A and 3B). While SNPs in introns and un-
translated regions were found within several other mitochondrial
genes, the NAD-9 SNP is a missense mutation that caused valine
to be substituted for phenylalanine in the 19th codon.

DISCUSSION

Drought adaptation involves multivariate and often correlated evo-
lution of physiological, developmental, and life history phenotypes.
Underlying these physiological responses are diverse patterns of
sequence and gene expression variation. Comparisons of gene
expression and physiological traits have revealed a complex genetic
basis of drought responses (Liu et al., 1998; Shinozaki et al., 2003;
Des Marais et al., 2012). By exploiting the causal connections
between environmental variation and the genotype-phenotypemap,
here, we present candidate genes for constitutive and plastic
responses to soil moisture reduction in the context of QTLmapping.

Genetic Architecture of Drought-Responsive Traits

Our soil moisture reduction treatment imposed drought stress
on the TSU-KAS RIL mapping population (Figures 1A and 1B)

Table 3. Multiple-QTL Model Statistics

Trait Treatment Formula %Var P Value pLOD

RGR Wet y ; cytoplasm + 3@54 7.754 0.016 2.418
WUE Wet y ; cytoplasm + 3@18 + 3@65 + 4@4 + 4@42+ 5@37 +

5@89
34.301 <0.001 8.621

FT Wet y ; cytoplasm + 1@84 + 4@3 + 4@62+ 5@15+ 5@72
+4@3*4@62

70.998 <0.001 63.283

LA Dry y ;1@32 + 3@90 3.974 0.121 0.493
RDM Dry y ; cytoplasm + 3@33 14.674 0.281 0.438
RMR Dry y ;3@19 + 4@1 35.884 0.029 1.419
GR Dry y ; cytoplasm + 3@4 1.965 0.360 0.818
RGR Dry y ;1@12 + 3@30 6.003 0.043 0.207
Wilt Dry y ;4@2 7.251 0.006 0.469
Roll Dry y ; cytoplasm + 2@74 9.765 0.005 2.259
WUE Dry y ;2@74 + 3@58 + 5@84 6.222 0.088 1.118
ABA Dry y ;2@16 (+ 2@16*cytoplasm) 4.349 0.034 1.324
Proline Dry y ; cytoplasm + 2@74 + 3@50 + 4@3 + 2@74 *3@50 44.165 <0.001 21.949
WC Dry y ; cytoplasm + 2@87 7.731 0.017 0.130
LA Plasticity y ; cytoplasm + 1@3 + 3@27 10.124 0.011 0.327
GR Plasticity y ; cytoplasm + 3@4 + 4@60 (+ 4@60*cytoplasm) 5.065 0.151 1.056
WUE Plasticity y ; cytoplasm + 4@4 12.718 0.001 0.178
Proline Plasticity y ; cytoplasm + 2@74 18.199 <0.001 7.629

Degrees of freedom, percentage of variance explained by the model, and P values derived from x2 tests were generated by fitting the QTL model with
ANOVA. The penalized whole-model LOD score (pLOD) was derived from stepwise model selection, where models that increase pLOD are retained.
Significant interactions between the cytoplasm and QTLs were indicated in the formula; statistics for the interactions are reported in Supplemental Table 4.
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and induced physiological responses across many phenotypic
traits (Table 1). For example, all lines increased proline concen-
tration in drought conditions. Increased proline may contribute to
osmotic adjustment and cellular redox balance (Szabados and
Savouré, 2010; Verslues and Sharma, 2010), traits that may
confer improved cellular dehydration tolerance.

Even though our experimental design was able to detect loci
that explained as little as 1.8% of the total phenotypic variance
(Table 3), for the majority of constitutive traits and plasticity esti-
mates, we found no QTLs. The low number and small-effect sizes
of QTLs determined in our analysis were indicative of a genomic
architecture of drought-responsive traits that was decisively
polygenic. While loci of small effect were the most common
observation, there were several genomic regions that explained
a very large proportion of phenotypic variance. In particular, the FT
QTL 4@3 (FRIGIDA), RMR QTL 3@18, and proline QTL 2@74
(P5CS1) explained 59, 19.7, and 25% of the total variation,
respectively (Table 3). In concert with observed (and unobserved)
small-effect loci, the presence of these large-effect loci, and
several moderate effect-size QTLs (e.g., RMR QTL4@1 and root
mass QTL 3@33) provided evidence for an exponential distribution
of allelic effects on potentially adaptive traits (Orr, 1998). This

pattern has been observed in other recent physiological QTL
mapping studies (Ågren et al., 2013; Joseph et al., 2013a).

Genetic Correlations Underlie Pleiotropic QTLs

Correlations among drought acclimation responses can directly
affect the fitness (yield) of genotypes when challenged with low
soil water potentials. For example, mild early season drought may
simultaneously select for cellular dehydration avoidance through
stomatal closure (Heschel et al., 2002) and reduced growth rates
(Schmalenbach et al., 2014). Alternatively, strong late season
drought may select for drought escape through early flowering and
fast growth while soil water conditions are favorable (Meyre et al.,
2001; Heschel and Riginos, 2005; Sherrard and Maherali, 2006).
Genetic correlations among many of these traits have been ob-
served both within (McKay et al., 2003; Lovell et al., 2013) and
among (Angert et al., 2009) species, providing further evidence
that selection acts on both the plasticity of and correlations among
drought-associated phenotypes (Endler, 1986).
In our population, a “dehydration avoidance” drought adaptive

strategy was conferred by increased water use efficiency, de-
creased growth rate, increased water foraging through root growth,

Figure 2. Mapping Positions of Significant QTLs.

QTL point estimates (filled circles) and accompanying drop 1.5 (solid colored lines) confidence intervals for all phenotypes with significant multiple QTL
models. Phenotypes in red were collected in the drought treatment. Blue-labeled phenotypes were from the “wet” treatment, and purple traits are
plasticity estimates. The two focal regions for candidate gene method validation are highlighted in green.

Figure 3. Interaction Plots for Proline QTLs 2@74 (Best Candidate P5CS1), 3@44 (ProDH), and the Effect of Cytoplasmic Variation.

Allelic means 6 SE are plotted.
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and delayed flowering. Dehydration-avoidant phenotypic values and
QTL effects were typical of KAS alleles, while TSU alleles conferred
a drought escape strategy. Habitats with consistently limited pre-
cipitation throughout the growing season, such as Northwest India
where the KAS genotype originated (McKay et al., 2008), may favor
a dehydration-avoidant strategy (Heschel et al., 2002; Blum, 2005;
Schmalenbach et al., 2014). By contrast, TSU originates from
Southwestern Japan, where more mesic growing season conditions
exist. In annual plants such as Arabidopsis, greater moisture avail-
ability usually favors rapid cycling and drought escape strategies
(Sherrard and Maherali, 2006; Wilczek et al., 2009; Banta et al.,
2012), an observation consistent with the effects of the TSU allele
for many QTLs (Supplemental Table 2).

We found strong evidence of a genetic basis for correlations that
conferred drought-adaptive syndromes, especially between WUE
and phenology. QTLs for FT and WUE colocalized for 4/7 of the
unique significant loci across the traits. Additionally at each locus,
we found evidence for parallel responses where allelic effects for

each trait produced phenotypic vectors of similar, positive orien-
tation (Supplemental Figure 3). Even where the sign of the effects
reversed (e.g., QTL 5@70), the correlation conferred by alleles at
this QTL remained positive. This effect, which antagonized the
degree of physiological differentiation between TSU and KAS, in-
creased the strength of the drought adaptive trade-off between
dehydration avoidance and drought escape in the RIL population.
Finally, the genome-wide correlation between FT and WUE QTL
locations suggests that pleiotropy (at the QTL level) between these
traits is not unique to the FRIGIDA locus (Lovell et al., 2013).

Candidate Genes for Drought Adaptation

One of the goals of genetic mapping is to discover the regions,
interactions, and ultimately the genes that underlie physiological
variation. Many approaches permit inference of potential candi-
date genes underlying QTLs, including CIT (Schadt et al., 2005),
differential expression analyses (Drake et al., 2006; Farber et al.,
2009), and partial regressions (Bing and Hoeschele, 2005); how-
ever, it is difficult to rank or infer the effect of each without sig-
nificant additional data, such as reverse genetics experiments.
By combining gene expression data with genetic mapping ap-
proaches, we presented a method to define and rank sets of
candidate genes for any QTL.
We tested the effects of 652 genes across all QTLs with intervals

narrower than 25 cM. Transcript abundance of 169 of these genes
significantly (Q-transformed P10000permutations < 0.1) affected the LOD
score of the overlying QTL. Interestingly, these 169 represent a highly
expressed subset of the total 25,662 genes with expression data.
We were able to recover the two a priori candidates for the main

FT and proline QTLs, FRIGIDA and P5CS1, respectively. FRIGIDA
is a vernalization-responsive transcription factor that affects
flowering and pleiotropically drives variation in WUE (Lovell et al.,
2013). In our RIL population, lines with the low-expression TSU
alleles flowered earlier and had lower WUE, a drought escape life
history strategy. Alternatively, KAS alleles were associated with
dehydration avoidance physiology through increased WUE and
FT. These effects were mediated by stomatal conductance and
other upstream physiological traits (Lovell et al., 2013). P5CS1
catalyzes the rate-limiting step in proline biosynthesis. The in-
duction of P5CS1 gene expression and subsequent increased
P5CS1 protein abundance is required for high levels of proline
accumulation (Kesari et al., 2012). Capillary sequencing revealed
a functional polymorphism at P5CS1, where intronic sequence
variation yielded a reduced function allele in KAS, which was
nearly identical to the reduced function allele of P5CS1 previously
described for the ecotype “Sha” (Kesari et al., 2012).
Aside from FRIGIDA and P5CS1, we were able to define candi-

date genes for all other narrow QTLs. Several of these were anno-
tated to have similar effects as those shown in our physiological
assays. For example, we found CSA1 (CONSTITUTIVE SHADE
AVOIDANCE1) as a candidate for FT QTL 5@15. Furthermore, the
much wider, but colocalized WUE QTL 5@37 also had CSA1 as
a strong candidate (J.T. Lovell, unpublished data). CSA1 responds
directly to shade and red/far red light ratios (Supplemental Figure 5),
altering life history and vegetative growth structure (Faigón-Soverna
et al., 2006). There is significant physiological crosstalk between
shade avoidance, drought physiology, and phenology (Maliakal

Figure 4. Two Examples of the Candidate Gene Ranking Approach.

(A) The multiple-QTL model profile (solid black line) and the LOD profile
with FRIGIDA as a covariate (solid magenta line) for WUE in the wet
environment. The green highlighted region is the drop 1.5 LOD interval
and matches that in Figure 2. Gray lines indicate LOD profiles for 100
permuted gene expression covariates.
(B) The difference between covariate scans (1000 permutations and
FRIGIDA) and the full QTL model.
(C) and (D) The same data are displayed for the proline QTL 2@74 and
P5CS1.
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Table 4. List of the Top 10 Significant Candidate Genes for Each QTL Ranked by LOD Effect

Phenotype QTL %Var Candidate Genes (Ordered by P Value)

LA.plast 1@3 (2) 3.13
RGR.dry 1@12 (2) 3.30
LA.dry 1@32 (2) 3.48
FT.wet 1@84 (+) 3.95 AT1G65490, FAS1
ABA.dry 2@16 (2) 5.16 AT2G03140, AT2G04380**, ALDH6B2, AT2G04170*,

UGT73B5, AT2G05915
Roll.dry 2@74 (2) 6.23 ACX5*, AT2G36460, CTF2A, GLTP1*
Proline.dry 2@74 (+) 24.8 AT2G38800*, P5CS1, PROT1*
Proline_plast 2@74 (+) 13.6
WUE.dry 2@74 (+) 3.6
WC.dry 2@87 (2) 3.34 MAC3B, ATTI3, AT2G43210, AT2G46220, IQD14,

AT2G46100**, AT2G38800, AT2G32150, AT2G42490,
AT2G32160

GR.dry 3@4 (2) 4.56
GR_plast 3@4 (2) 4.38
WUE.wet 3@18 (+) 3.12 CBSDUFCH1, RPL18AC*, AT3G18530, AT3G14595
RMR.dry 3@19 (+) 19.7 UGT88A1, AT3G14360**, AT3G18535, AT3G18530,

CYP77A5P
LA.plast 3@27 (2) 4.18
RGR.dry 3@30 (2) 3.81
RDM.dry 3@33 (+) 19.2 AT3G16750, AT3G25240, BRT1 (UGT84A2)
Proline.dry 3@50 (2) 4.91 AT3G43230, AT3G28080, AT3G27250, ATCSLC04,

AT3G30300*, AT3G26670*, PRODH, CAF1-9*,
ATMYB30,

RGR.wet 3@54 (2) 6.69 AT3G44430, emb2076, AT3G43430, AT3G43670, ATIVD
(IVD), ATMLO3 (MLO3)*, AT3G45555

WUE.dry 3@58 (2) 3.76
WUE.wet 3@65 (2) 5.14 HR4, ABC2 Homolog 1 (ATATH1)*, scpl48, ALDH2B4**,

AT3G47580, IVD, AT3G53730*, ATEXLA1,
AT3G51470**, CSR1

LA.dry 3@90 (+) 3.30
RMR.dry 4@1 (+) 15.9 ATSTE24, SAM-2*
Wilt.dry 4@2 (2) 4.01
FT.wet 4@3 (2) 59.1 AT4G00740, FRI, ECA2
Proline.dry 4@3 (2) 3.46 AT4G01130, SAM-2*, ATSTE24, AT4G00270,

AT4G02540, MLO1
WUE.wet 4@4 (2) 7.09 FRI
WUE.plast 4@4 (+) 3.47
WUE.wet 4@42 (2) 2.59
GR.plast 4@60 (2) 4.82 CRK22, CRK21, AT4G22990, AT4G24050, ISU1,

AT4G21910, ATSBT3.12, TOM1*
FT.wet 4@62 (2) 5.19 CRK22, CRK23, AT4G24340
FT.wet 5@15 (2) 1.83 CSA1, CHS3, AT5G18950, AT5G16890, AT5G17680,

PAT1(TRP1), GDH1**, ATCBR*
WUE.wet 5@37 (2) 3.49
FT.wet 5@72 (+) 4.24 ATATG18F, AT5G55180, AT5G54710, AT5G54720,

PORA*, ATM2
WUE.dry 5@84 (+) 3.53 XYL4**, AGL62, AT5G61660, ABA1, LECRK110,

AT5G62350, DAR5, AT5G55180, KCA2
WUE.wet 5@89 (+) 6.33 AT5G54710, AT5G55180, AT5G54720*, ARF2*,

ATATG18F, AT5G63020, AT5G53700, SNRK2-3,
AT5G60160**, AT5G61660

The QTL-specific percentage of variance explained is presented and is preceded by the direction of the QTL effect. Positive values indicate a higher
mean of the TSU allele. Candidate genes for QTL with confidence intervals that spanned >25 cM are not listed. Bold font indicates those genes
discussed in the text. Genes without DNA sequence or with neither DNA sequence nor protein divergence between TSU and KAS alleles are marked by
one asterisk or two asterisks, respectively.
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et al., 1999; Schmitt et al., 2003), raising the possibility that CSA1
pleiotropically affects phenological and physiological traits in the
TSUxKAS population, a hypothesis that requires further testing.

Several studies have found that single QTL peaks can frac-
tionate into multiple linked peaks, each caused by separate, but
linked polymorphisms (Studer and Doebley, 2011; Johnson et al.,
2012). To examine this possibility, we screened for QTLs with
multiple strong candidate genes with correlated expression
patterns. Several genes within the ABA 2@15 QTL returned
strong covariate effects. Of these, two genes displayed gene
expression phenotypes that were highly correlated, AT2G03140
and AT2G04380. To determine the relative strength of each can-
didate, we analyzed DNA sequence and protein polymorphism
within the genes and compared TAIR-10 gene annotations. Only
AT2G03140 had any sequence polymorphism between the TSU
and KAS parental accessions (Supplemental Table 6). While gene
function can easily be affected by polymorphism outside of the
coding region, genes that are conserved between the widely di-
vergent genomes of TSU and KAS may be less likely to contribute
to quantitative genetic divergence than those with sequence, and
especially protein, divergence (Lowry et al., 2013).

It is important to note that this approach does not definitively
document functional effects of loci. Instead, genes such as
AT2G03140, which lack functional annotation for drought response
or ABA biosynthesis, necessitate further functional genetic analyses.
With that said, AT2G03140 is a highly interesting candidate gene as
it encodes a putative chloroplast-localized protein with similarity to
CAAX amino terminal proteases involved in membrane anchoring of
proteins (Choy et al., 1999). As the early steps of ABA biosynthesis
occur within the chloroplast (Endo et al., 2008; Cutler et al., 2010;
Lee et al., 2013) and involve lipid-soluble carotenoids and membrane-
associated enzymes (Milborrow, 2001; Seo and Koshiba, 2002),
the connection of AT2G03140 to ABA metabolism is plausible and
highly promising for further analysis.

Documentation of Genetic Networks through QTL Mapping

Our candidate gene discovery method made use of the details of
genetic architecture, through incorporation of epistasis, additive
effects of cytoplasm (and other covariates of interest), and envi-
ronmental interactions. For example, this approach validated the
effects of P5CS1 and permitted inference of potential candidate
quantitative trait nucleotides in the cytoplasmic genome. However,
as with any other candidate gene selection approach, our method
provides hypotheses and does not document functional variation
of candidate genes.

Our analysis of the parental genomes (sequences were published
in Lowry et al., 2013) revealed that the chloroplast genomes of TSU
and KAS were identical and only 16 SNPs existed in the mito-
chondrial genome. These results differed from published TSU-1
(SRX246442) and KAS-1 (SRX246466) sequences (http://www.ncbi.
nlm.nih.gov/sra/; Joseph et al., 2013b), where many more cyto-
plasm genomic SNPs were documented. However, despite having
the same name, the KAS-1 and TSU-1 on the short read archive are
not closely related to the KAS-1 and TSU-1 genomes that represent
the parents of our mapping population. For example, over half of the
published sequenome SNPs that are polymorphic in our mapping
population are monomorphic between NCBI TSU-1 and KAS-1

(http://naturalvariation.org/hapmap). It is important to note that,
while well suited for the characterization of SNPs, the short read
sequencing and reference-based alignment used by Lowry et al.
(2013) to sequence the mapping parents TSU and KAS may be
unable to detect genomic rearrangements. As large-scale re-
arrangements are characteristic of the Arabidopsis mitochondrial
genome (Davila et al., 2011), it is possible that these sequence
variants are augmented by other undetected polymorphisms.
Proline concentration was strongly affected by cytoplasmic

variation in our mapping population, indicating that sequence
variation in the cytoplasmic genomes affected quantitative varia-
tion of adaptive traits. While the plastid genomes were mono-
morphic, there were 16 mitochondrial SNPs between the TSU and
KAS parents of our mapping population, four of which were genic,
including two in genes encoding NADH dehydrogenase subunits
(NAD-7 and NAD-9). The observation that two of the mitochondrial
polymorphisms were in genes for NADH dehydrogenase subunits
is consistent with proposals that proline accumulation is tightly
related to cellular redox status and that proline catabolism in the
mitochondria is important in drought resistance (Sharma et al.,
2011). For example, Szabados and Savouré (2010) and Verslues
and Sharma (2010) found that proline metabolism is connected to
oxidization/reduction status, and Sharma et al. (2011) showed that
mitochondrial catabolism of proline is required to maintain growth
under low water potential. We observed that p5cs1-4, which is
blocked in stress-induced proline accumulation, was associated
with strongly upregulated expression of a number of genes for
NAD(P)H-dehydrogenases as well as additional genes related to
mitochondrial respiration (P.E. Verslues, unpublished data).
To determine which of the NAD genes was the most likely can-

didate, we conducted capillary sequencing and downloaded se-
quence data from 218 natural accessions. Interestingly, while the
SNP within NAD-7 was within an intron, the NAD-9 SNP was
a missense mutation. Furthermore, there was evidence for historical
balancing selection at NAD-9, but not NAD-7. While neutral evolu-
tion should yield many low-frequency haplotypes, and directional
selection would reduce the number of variants, historical balancing
selection should yield multiple haplotypes at elevated frequencies
without a single dominant haplotype (reviewed in Nielsen, 2005).
While three of the four candidate genes in the mitochondrial genome
had a single dominant haplotype, the two main haplotypes of NAD-
9 were maintained at >40% across a sample of 218 accessions.
These results are consistent with the findings of Joseph et al.
(2013b), who demonstrated that the mitochondrial genes for the
NADH dehydrogenase complex harbor many more sequence
polymorphisms than expected by neutral evolution. Given the
nonsynonymous nature of the SNP, and evidence of historical bal-
ancing selection, it is possible that variation in NAD-9 affects proline
catabolism in the mitochondria, a process that has consequences
for redox balance and growth during drought.
To assay the effects of epistasis, we incorporated gene ex-

pression patterns of interacting loci (or covariates) into the candi-
date selection approach. Since many epistatic loci lacked strong
additive effects, we fit a model where the expression of each gene
underlying the epistatic QTL was a function of the local genotype
and gene expression of the interacting QTL. Candidate de-
termination of the proline epistatic locus QTL3@44 (with P5CS1)
revealed a strong candidate: AT3G30775, ProDH1. These loci and
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the cytoplasm combined to affect proline levels both additively
and interactively, where the TSU allele at P5CS1 and the KAS
ProDH1 maximized the accumulation of proline in the TSU cyto-
plasmic background (Figure 3). This analysis provided evidence
that proline metabolism is influenced by mitochondrial genes and
that natural allelic variants in the mitochondria could have an
evolutionarily significant effect on proline accumulation in terms of
drought adaptation.

Finally, it is important to note that the genotype-phenotype cas-
cade operates in many fashions. Our approach can discover only
a distinct subset where transcript abundance is the causal pheno-
type underlying physiological traits. In particular, we expect our ap-
proach to be limited by the strength of correlations between
physiological and gene expression phenotypes. For example, if
genes are expressed at a similar rate, but alternative splicing or RNA
sequence polymorphism causes protein and trait variation, we ex-
pect to have little power to detect signals of connections between
candidate genes and QTLs. However, sequence-based gene ex-
pression quantification methods, such as RNA-seq, provide addi-
tional information that may improve the extensibility of our approach.
For example, with information on alternative splicing, methylation
patterns, and protein structure in hand, it would be possible to cal-
culate ameasure of gene functionality. As such, functionality, and not
simply transcript abundance, could be used as a covariate in our
method. While the data presented here come from microarray
technology and do not permit such inference, we expect a combi-
nation of sequence and expression data to bolster our candidate
gene approach in future analyses.

METHODS

Plant Materials and Growth Conditions

Seed of 341 RILs from reciprocal crosses between Arabidopsis thaliana ac-
cessions KAS (Kas-1; CS903) and TSU (Tsu-1; CS1640), along with the pa-
rents were sown on fritted clay (Profile Products) in 2.5-inch pots in duplicate in
each of two blocks. The Tsu-1 x Kas-1 mapping population is publically
available through the ABRC (ID: CS97026). Seeds were planted in a ran-
domized complete block design, and then the pots were refrigerated at 4°C in
darkness for 6 d to cold-stratify the seeds prior to commencement of a 12-h
photoperiod in two Conviron ATC60 growth chambers (Controlled Environ-
ments), at 23°C and 40%humidity during the day and 18°C and 50%humidity
during the dark period. Light intensity was;330 mmol m22 s21. After 4 weeks
of growth, half of the plants were given a drought treatment, while the others
remained fully watered. Two replicates of each RIL were randomly assigned to
each treatment.

The drought treatment consisted of a slow decrease in soil moisture
content over the course of 1week. The treatment was imposed at the level of
the flat (tray of 32 plants) and randomized within each chamber. Each day, all
pots assigned to the drought treatment were weighed, and water was added
to individual pots to bring them up to the target gravimetric water content.
The targetwater content decreased eachday, in the following series: 100, 90,
80, 70, 60, 45, and 40% of saturation. We had previously calculated the soil
moisture release curve for fritted clay: 40% soil moisture content relates to
approximately 22 MPa soil water potential (Figure 1A).

Phenotypic Analyses

At the end of the drought treatment, photographs were taken of each
plant, and the shoots were excised at the hypocotyls and weighed to

obtain shoot fresh mass. The shoots were then freeze-dried and their dry
mass was measured. In a subset of 240 plants, root tissue was collected
by rinsing away the fritted clay. Root tissue was then freeze-dried for dry
mass determination.

Photographs of the plants were taken and used to calculate leaf area by
summing pixels comprising the rosette image using the image processing
software Scion Image (Scion). For half of the plants, a photograph was also
taken prior to the onset of the dry-down treatment, so thatwecould calculate
growth in leaf area during the treatment and relative growth rate.

ABAwas assayedwith a Phytodetek enzyme-linked immunosorbent assay
kit from Agdia. Samples were prepared and measured according to the
protocol fromAgdia. Each sample andeight standardswere run in duplicate on
32-well Phytodetek plates. A BioTek PowerWave HT spectrophotometer was
used toquantify theabsorbances (at 450nm),whichwerefit to the standardsof
each plate using a logistic equation. To reduce residual variance caused by
freshmass variance among and within treatments, we performed all additional
analyses on ABA concentrations standardized by the dry mass of the rosette.

Leaf tissue from each plant was crushed and lyophilized to quantify d13C
using a dual-inlet mass spectrometer at the Stable Isotope facility at Uni-
versity of California, Davis. Proline concentration was assayed by an acid
ninhydrin assay adapted to 96-well plates (Bates et al., 1973; Verslues, 2010).

In addition to traits measured in both environments, we collected several
environment-specific phenotypes. Flowering time for each line was measured
in a separate experiment (Lovell et al., 2013) and reanalyzed here to make
comparisons with all other phenotypes. Plants in the drought treatment were
photographed both at the onset and the conclusion of the drought treatment.
Fully expanded leaf characteristics were compared between the two time-
points to determine the degree of rolling (Dwidth) and wilting (Dlength).

Quantitative Genetic Analyses

The phenotypic data set was analyzed with a linear mixed model, with RIL as
a fixedeffect and treatment, and thegenotype-treatment interactionas random
effects. These models and variance component estimates were calculated
using PROCMIXED in the SAS software package (SAS Institute). Least square
means of trait values were estimated for each RIL, and genetic correlations
among traits were calculated as the standard Pearson pairwise correlations.
Phenotypes were in general very normal; however, FT and ABA were both
marginally skewed. Quantile normalizations of these traits did not strongly
affect ourQTL analysis (for detailed comparisons, seeSupplementalMethods),
so we opted to map the raw breeding values (Supplemental Data Set 1A).

A linkage map for this population was described previously (McKay et al.,
2008). To this map we added eight additional simple sequence length poly-
morphism markers and an additional 276 single nucleotide polymorphism
markers, based on Sequenom technologies (Supplemental Data Set 1B;
Gabriel et al., 2009). The linkage map was reestimated using JoinMap4 (Van
Ooijen, 2006) with the Kosambi mapping function, for a total of 450 markers.

Genotype probabilities were calculated for each locus and a set of
pseudomarkers were placed in any region with a >1 cM gap in the map. The
kosambi algorithmwith an error probability of 0.01was used to infer genotype
probabilities. QTL mapping was performed using the Haley-Knott regression
algorithm implemented in theR/qtl packagewithin theR statistical computing
environment (Broman et al., 2003; Broman and Sen, 2009). We developed
multiple-QTL models via a penalized stepwise model selection approach
(Manichaikul et al., 2009) where terms were included at a = 0.05. Significance
was determined by 10,000 permutations. To test for QTL-by-environment
interactions, we conducted stepwise model selection on plasticity of all traits
thatweremeasured in bothwet anddry treatments. Plasticity breeding values
were calculated as the difference between quantile-normalized wet and dry
breeding values for each RIL (e.g., Figure 1C).

To achieve increased accuracy in our estimates of QTL peak means and
breadth, we calculated confidence intervals (1.5 LOD drop) for each QTL
point estimate separately by varying the position of the focal QTL while
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controlling for all other terms in the model. We also conducted multiple-QTL
modeling using cytoplasm as an additive covariate and conducted post-hoc
tests for cytoplasm-QTL interactions for all QTLs in those models with
evidence for additive effects of cytoplasm.

It is important to note that we defined the significance of all covariate
affects (e.g., gene expression and cytoplasm-QTL interactions) post-hoc.
That is, the base multiple-QTL model was defined following Manichaikul
et al. (2009). The QTL positions and interactions from this model were
fixed for all other analyses. To determine significance of additional effects,
we added and then removed a single term. Significance was determined
by comparing the fit of the original and more complex QTL models.

All scripts and pipelines to conduct the QTL and covariate analyses
have been posted on github: https://github.com/jtlovell/r-QTL_functions.

Candidate Gene Analysis

We downloaded gene expression and DNA sequence data from Lowry
et al. (2013), who used Affymetrix atSNPTILE1.0 arrays (Zhang et al., 2007)
to map eQTLs for the TSUxKAS population from RNA extracted from the
experiment presented here. Gene expression data was available for a 104
RIL subset of our mapping population. To identify candidate genes, we
conducted a three-step protocol that combined this gene expression data
with QTL mapping results and covariates.

The first step of our candidate gene identification approach was to
define a list of candidate genes that had significant gene expression
polymorphism for each phenotypic trait QTL interval. For each QTL
confidence interval for each trait, we extracted all genes that fell between
the maximum and minimum physical positions of all markers within the
interval. This approach was necessary because there are many small
rearrangements throughout the population relative to the Columbia ref-
erence genome. Additionally, there is a single large inversion on Chr4
(Supplemental Figure 8). If the QTL interval was so narrow that it only
included a single marker, the interval was expanded to the nearest
bounding markers. For the majority of QTLs that had simple additive
effects, we defined gene expression polymorphism as those genes with
cis-eQTLs (Lowry et al., 2013). For other QTLs with strong additive effects
of cytoplasm, differentially expressed genes were further culled to only
those with significantly different expression between cytoplasmic
backgrounds using fixed effects ANOVA. Finally, for QTLs with primarily
epistatic effects, candidates were determined as those that have gene
expression polymorphism that is significantly associated with gene ex-
pression of the primary candidate at the interacting QTL. In the latter two
cases, significance was assessed with q-value estimation in the R
package “q-value” (Dabney and Storey, 2014).

The second step of our analysis was to rank the candidate genes by
their effect on the local phenotypic trait QTL. To accomplish this, we
extracted RIL-specific gene expression values for all candidate genes.
These expression values were iteratively added to the original QTL model
(which may include several QTLs, cytoplasmic covariates, and epistasis)
as a single additive term, or in the case of epistasis, as an interactive
covariate with the epistatic QTL. To make comparisons with identical
patterns of missing data, the entire genotype, gene expression, and
phenotype matrices were culled so there was no missing data. This re-
duced the peak LOD scores for all QTLs, but made comparisons among
models possible. Gene expression covariates that explained residual
variance had higher LOD scores (negative difference) and those that were
correlated with the phenotypic trait breeding values decreased the LOD
score of the focal peak (Supplemental Figure 1). Therefore, we took the
difference between LOD scores at the QTL point estimate in the original
multiple-QTL model lacking the expression covariate and the new model
with a gene-expression covariate as the estimated effect of that gene. We
then obtained a ranked list for each QTL, where the strongest candidate
gene had the most positive covariate effect.

The last step was to determine the significance of a subset of genes
with the strongest covariate effect. To accomplish this, we permuted the
gene expression data and reran the covariate scan 10,000 times and
reported the LOD difference at the QTL point estimate. The number of
permuted observations with a greater difference than the empirical data/
nperm was used as our empirical P value.

Sequencing of NAD-9

PCR amplicons of ATMG00070 (NAD-9) from Col, KAS-1, and TSU-1
were sequenced using BigDye Terminator v3.1 sequencing chemistry at
the Colorado State University Proteomics and Metabolomics Facility on
an ABI 3130XL genetic analyzer, using the forward primer 59-TCTGA-
CAAGGCGGCTATCTT-39 and the reverse primer 59-CGAGTCGTC-
TAGGGCATCTC-39.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome
Initiative or GenBank/EMBL databases under the following accession
numbers: Locus:2127013, AT4G00650, FRIGIDA; Locus:504954491,
ATMG00070, NAD9; Locus:2063907, AT2G39800, P5CS1; Locus:2089706,
AT3G30775, PRODH1; Locus:2161710, AT5G55180, O-GLYCOSYL
HYDROLASE FAMILY 17 PROTEIN; Locus:2170333, AT5G17880, CSA1;
and Locus:2056891, AT2G03140, a/b-HYDROLASE SUPERFAMILY
PROTEIN.

Supplemental Data

Supplemental Figure 1. Visualization of the concept of the covariate
scan approach.

Supplemental Figure 2. Correlation of phenotypes with colocalized
QTL on proximate Chr4 and distal Chr2.

Supplemental Figure 3. Effect of allelic variation on the correlation
between WUE and FT.

Supplemental Figure 4. Cytoplasmic interactions with genomic QTLs.

Supplemental Figure 5. Validation of the allelic effect of CSA1 using
NILs.

Supplemental Figure 6. Hierarchical clustering of the covariance of all
genes within each narrow QTL interval.

Supplemental Figure 7. Haplotype diversity of the four genes that
contained SNPs in the mitochondrial genome.

Supplemental Figure 8. Comparison of the physical position (bp) for
all TAIR10 gene models with the mapping position in cM.

Supplemental Table 1. Phenotypic correlations between plasticity
and mean breeding values for all measured phenotypic traits.

Supplemental Table 2. Summary statistics for all terms in each QTL
model.

Supplemental Table 3. T statistics for the additive effect of cyto-
plasm.

Supplemental Table 4. Significance of cytoplasm epistasis on each
QTL.

Supplemental Table 5. Significance, effect, and divergence of each
candidate gene in each narrow QTL.

Supplemental Table 6. List of cytoplasmic SNPs between TSU and
KAS.

Supplemental Data Set 1A. Complete phenotypic trait data.

Supplemental Data Set 1B. Complete genotype matrix.
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Supplemental Methods. Additional information pertaining to the
analytical pipeline for candidate gene analyses, QTL methods, and
materials.
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