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Abstract

Evolutionary studies usually use a two-step process to investigate sequence data. Step one estimates a multiple sequence alignment

(MSA) and step two applies phylogenetic methods to ask evolutionary questions of that MSA. Modern phylogenetic methods infer

evolutionary parameters using maximum likelihood or Bayesian inference, mediated by a probabilistic substitution model that de-

scribes sequence change over a tree. The statistical properties of these methods mean that more data directly translates to an

increased confidence in downstream results, providing the substitution model is adequate and the MSA is correct. Many studies have

investigated the robustness of phylogenetic methods in the presence of substitution model misspecification, but few have examined

the statistical properties of those methods when the MSA is unknown. This simulation study examines the statistical properties of the

complete two-stepprocesswhen inferring sequence divergence and the phylogenetic tree topology.Bothnucleotide andamino acid

analyses are negatively affected by the alignment step, both through inaccurate guide tree estimates and through overfitting to that

guide tree. For many alignment tools these effects become more pronounced when additional sequences are added to the analysis.

Nucleotide sequences are particularly susceptible, with MSA errors leading to statistical support for long-branch attraction artifacts,

which are usually associated with gross substitution model misspecification. Amino acid MSAs are more robust, but do tend to

arbitrarily resolve multifurcations in favor of the guide tree. No inference strategies produce consistently accurate estimates of

divergence between sequences, although amino acid MSAs are again more accurate than their nucleotide counterparts. We con-

clude with some practical suggestions about how to limit the effect of MSA uncertainty on evolutionary inference.
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Introduction

Studies of molecular evolution typically wish to infer the pat-

terns by which sequences change over time, using those

changes to reveal evolutionary relationships (Felsenstein

2003), patterns of selection acting upon genes (Yang 2006),

or other biologically informative quantities (Galtier and Gouy

1998; Whelan et al. 2011; Liberles et al. 2012). The inferential

process is typically split into two distinct steps: the first is to

infer the sitewise homologies among the sequences through

multiple sequence alignment (MSA; see Anisimova et al. 2010

for discussion); and the second is to use those sitewise homol-

ogies to make inferences about the evolutionary process

through phylogenetic inference. Early in the development of

MSA it became clear that the MSA and evolutionary inference

steps are integral to one another (Sankoff and Kruskal 1983),

but the computational convenience of separating the two

steps has led to the development of MSA methods

(MSAMs) and methods of phylogenetic inference becoming

increasingly separated from one another, further consolidat-

ing this two-step inferential process. This study will investigate

how these two steps interact by examining how the MSA step

affects the well-characterized statistical properties of the evo-

lutionary inference step. We begin by highlighting the core

developments in MSAMs and phylogenetic inference.

MSAM developers have tended to concentrate on improv-

ing their software benchmark performance on structure-based

MSAs (Blackshields et al. 2006), which capture functional or

structural similarity between amino acids in proteins, but may

or may not accurately reflect the sitewise homologies required

for evolutionary studies. Since the development of the early

progressive MSAMs ALIGN and CLUSTAL (Dayhoff and

Schwartz 1978; Thompson et al. 1994), there have been

many key algorithmic developments, which have lead to im-

provements in MSAM performance assessed via structural
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benchmarks. These improvements include: iterative progres-

sive alignment, where the guide tree and subsets of the MSA

are iteratively updated (Edgar 2004); consistency alignment,

where local patterns of conservation and change are inte-

grated into an MSAM (Notredame et al. 2000; Do et al.

2005); and hybrid MSAMs that attempt to use the best

from all approaches (Wallace et al. 2006; Katoh and

Standley 2013). More recently, some of the principles of mo-

lecular evolution have been applied to MSA in Prank, an

MSAM that includes the explicit modeling of substitutions

and the phylogenetically meaningful placement of insertions

and deletions during a sequences history (Löytynoja and

Goldman 2008). Benchmarking studies have shown that

Prank performs rather well on data simulated from a phyloge-

netic model, but notably less well relative to other MSAMs on

structurally derived benchmarks (Blackburne and Whelan

2012).

In contrast, researchers developing phylogenetic inference

methods have mostly ignored any uncertainty associated with

the MSA step, and instead have concentrated on developing

methods that assume a known MSA. Many of the key devel-

opments in phylogenetic inference methodology have been

linked to the statistical properties of those methods

(Felsenstein 2003). Statistical methods, such as maximum like-

lihood (ML) and Bayesian inference, have been shown to be

statistically consistent (Rogers 1997), which means they tend

toward the correct answer as more data are added to an

analysis conditional on the substitution model being correct.

The consistency property is one of the key reasons for the

adoption of statistical methods over maximum parsimony

(MP), which was demonstrated to be inconsistent and suscep-

tible to long-branch attraction (LBA) artifacts (Felsenstein

1978). Other key methodological advances in phylogenetic

inference have all assumed that the patterns of substitution

observed in sequences are reflective of a biologically informa-

tive evolutionary signal, such as natural selection or speciation,

and independent of assumptions made during MSA

(Felsenstein 2003; Kosiol et al. 2006; Yang 2006; Liberles

et al. 2012).

Although methods for MSA and phylogenetic inference

have mostly been developed independently of one an-

other, there have been a number of studies that have

either attempted to link the two steps together or dem-

onstrated the effect of MSA on downstream evolutionary

inference. The former has concentrated on either explicitly

modeling substitution, insertion, and deletion through

variants of the TKF model (Thorne et al. 1991, 1992;

Redelings and Suchard 2005; Arunapuram et al. 2013),

or iteratively refining MSA and phylogenetic tree estimates

(Liu et al. 2009, 2012). Both of these approaches offer

alternatives to the dogma of the two-step process, but

are computationally demanding and, at present, too

slow for large-scale genomic studies. The links between

MSA and phylogenetic inference were established by early

empirical studies showing that MSA could affect tree es-

timates and bootstrap support (Morrison and Ellis 1997).

More recent empirical studies have shown that variation in

the output of MSAMs leads to differences in estimates of

phylogenetic trees and the detection of molecular adap-

tation (Wong et al. 2008; Markova-Raina and Petrov

2011; Blackburne and Whelan 2013). These have been

supported by simulation studies, showing that choice of

MSAM has an effect on MSAs (Blackburne and Whelan

2012), phylogenetic tree estimates (Liu et al. 2009), and

the detection of molecular adaptation (Fletcher and Yang

2010). Blackburne and Whelan (2013) suggested that the

greatest difference in evolutionary inference was between

MSAMs based on evolutionary principles (evolutionary-

MSAMs) and those based on more orthodox similarity-

based approaches (similarity-MSAMs).

Although these studies demonstrate a link between MSA

and the accuracy of genomic inference, they have not ad-

dressed the general statistical properties of phylogenetic infer-

ence under an unknown MSA. Here, we use a simulation

study to examine whether phylogenetic inference can recover

accurate divergence and tree estimates under the correct sub-

stitution model without assuming a known MSA. If phyloge-

netic inference is statistically consistent in the presence of MSA

uncertainty we expect two key properties to hold when the

simulation and inference model are the same. First, MSA will

introduce uncertainty of parameter estimates in phylogenetic

inference, but it will not introduce a bias to estimates relative

to estimates made from the true MSA. Second, these esti-

mates will tend asymptotically to the correct answer as

more data are added. Here, we provide evidence that uncer-

tainty and inaccuracy in MSA can bias estimates of sequence

divergence, both in terms of the individual branch lengths on a

known tree and the total tree length (sum of branch lengths).

We then proceed to demonstrate that MSA leads to inaccu-

rate phylogenetic tree estimates, first by showing that MSA

leads to arbitrary and statistically supported resolution of mul-

tifurcations, and then by providing evidence for a “Felsenstein

zone” where LBA artifacts occur for some types of data and

some MSAMs. We conclude with some practical precautions

that researchers can take to ensure their results are as accurate

as possible in the face of evidence of systematic bias caused by

MSA.

Materials and Methods

Specifying the Simulation Model

Simulation of sequence evolution under nucleotide and amino

acid sequences was conducted using INDELible. Nucleotide

sequences were simulated under the general time reversible

model (GTR) with four categories of �-distributed rates across

sites. Our parameterization of the rate matrix is inspired by the

mammalian genes analyzed by Arbiza et al. (2011), with
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exchangeability parameters rAC ¼ 0:30, rAG ¼ 1:0,

rAT ¼ 0:20, rCG ¼ 0:25, rCT ¼ 1:39, rGT ¼ 0:22; and nucleo-

tide frequencies pA ¼ 0:25, pC ¼ 0:26, pG ¼ 0:27,

pT ¼ 0:22. Amino acid sequences were simulated under

Whelan and Goldman (WAG) with four categories of �-dis-

tributed rates across sites. For both state-spaces we chose a
¼ 1:8 for the parameter of the �-distribution, based on a

preliminary study examining parameters inferred from

PANDIT families (Whelan et al. 2003, 2006). Insertion and

deletion is described by a reversible process, with insertions

and deletions occurring 0.05 times the rate of substitutions,

which is inspired from estimates obtained from Cooper et al.

(2004). Following the default values in INDELible we use a

power law distribution to describe indel length, with an a
value of 1.7. We impose a maximum indel length of 20 (60)

characters for amino acids (nucleotides). This length is rela-

tively short, but is chosen to ensure direct and clear pairwise

homology between even the more divergent sequences in our

simulations. The length of the root sequence is inspired by the

average length of sequence of a subset of PANDIT families.

Unless specified otherwise the length of the root sequences

are taken of the tree are 408 amino acids and (3�408=)

1,224 nt.

The tree topologies used for simulation are shown in

figure 1 and are intended to represent: A) a balanced tree

with a confident topology, which we use to study how esti-

mates of divergence vary by aligner; B) a single deep degree 4

multifurcation (polytomy), which we use to examine whether

aligners systematically affect tree estimates; and C) a

Felsenstein-zone style tree, which we use to examine whether

aligners can induce LBA artifacts in phylogenetic analyses.

MSA and Quantifying MSA Error

MSA was conducted using 11 popular alignment algorithms.

We investigate the progressive aligners ClustalW (Thompson

et al. 1994), Clustal Omega (Sievers et al. 2011), MUSCLE

(Edgar 2004), and MAFFT FFT-NS-2, which is the progressive

algorithm of the MAFFT package (Katoh and Standley 2013);

the consistency aligners T-Coffee (Notredame et al. 2000),

ProbCons (Do et al. 2005), FSA (Bradley et al. 2009), and

MAFFT L-INS-i (Katoh and Standley 2013); and the phyloge-

netically aware aligner Prank (Löytynoja and Goldman 2008).

In addition to these standard algorithms we also examine

SATé, which attempts to improve MSA estimates by using a

divide-and-conquer approach to MSA based on MAFFT and

the phylogenetic tree inference program RAxML to update the

guide tree. All aligners are run using default settings.

Modifying these settings may yield better or worse estimates

of evolutionary parameters, but do not reflect how the vast

majority of researchers use these programs. Comparisons be-

tween resultant MSAs are conducted using MetAl (Blackburne

and Whelan 2012) under the devol metric or FastSP to obtain

true positive and false negative scores (Mirarab and Warnow

2011).

Phylogenetic Inference

The majority of phylogenetic inferences are conducted using

the PAML package (Yang 2007b) under a small number of

selected trees. The choice of the PAML package is to obtain

high accuracy of ML branch length and topology estimates,

which ensures the effects we study are the product of ML

inference and not a quirk of a heuristic and fast tree-search

program. To analyze nucleotide sequences we use the GTR

FIG. 1.—The evolutionary trees used for simulation in this study. Tree A is a balanced tree, used to investigate branch length estimates. All branch lengths

are equal, with the whole tree scaled to obtained different tree lengths. Note the definitions of sets of branches used later in figure 3. Tree B is an eight-taxa

balanced tree with a multifurcation at the root, used to investigate how MSAMs resolve multifurcations. Tree C is an eight taxa “Felsenstein-style” tree with

two long and two short subtrees, used to investigate LBA artifacts.
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model with four categories of �-distributed rates across sites,

implemented in the baseml program. For amino acid se-

quences we use WAG with four categories of �-distributed

rates across sites, implemented in codeml. An appropriate set

of phylogenetic trees is specified a priori depending on what is

being investigated. Otherwise all parameters are estimated

from the data using ML, with the exception of nucleotide

and amino acid frequencies, which are estimated using their

observed counts. Inference of sequence divergence, in terms

of total tree length and individual branch lengths, is performed

using ML on the same tree that was used to generate the

data. Tree inference on data generated by the multifurcation

presented in figure 1B is done by estimating ML for each of

the three possible resolutions of that multifurcation and

choosing the best. In cases where several trees have the

same ML (tolerance 1.0E-2 log-likelihood units) each tree

was weighted equally so the total contribution of trees from

that simulated data sets was one. SH-tests (Shimodaira and

Hasegawa 1999) on the resultant trees were conducted using

the native code in PAML. Trees were rejected by the SH-test at

a ¼ 0:05 and the panels in figure 7 simply show the fre-

quency that each tree was rejected across all simulations.

Note that the ML tree for each simulation cannot be rejected.

Tree inference on data generated from the Felsenstein-zone

tree (fig. 1C) is done in a similar manner to that for the multi-

furcation, although we do not perform SH-tests.

Results and Discussion

This study investigates the effect of MSA on phylogenetic in-

ference through data simulated by INDELible (Fletcher and

Yang 2009). We examine amino acid sequence data from

WAG+F+� (Whelan and Goldman 2001) and nucleotide se-

quence data from GTR+� (Yang 1994), parameters inspired

by studies based on large repositories of genomic data, in an

effort to ensure they reflect some of the properties of real

sequences (Whelan et al. 2006; Arbiza et al. 2011). We also

include an insertion and deletion process, with estimates

taken from mammalian genomic data (Cooper et al. 2004).

Inference of phylogenetic models and trees are performed

using the two-step process of MSA followed by ML inference,

using the same substitution models used to simulate data, but

treating gaps as missing data in line with standard phyloge-

netic methodology. Under these conditions proofs of statisti-

cal consistency show that given the true MSA and enough

data all phylogenetic parameters can be estimated accurately

in an unbiased manner. We examine the effect of using

MSAMs on the inference of three quantities important in evo-

lutionary biology: 1) the divergence between sequences; 2)

the phylogenetic tree estimate; and 3) the statistical confi-

dence in that tree estimate. Note that the simulations in our

study use eight or more taxa to ensure MSA is performed

across multiple internal nodes. These internal alignments are

often where program specific heuristics are used, such as phy-

logenetic gap placement by Prank or profile-profile alignment

in other MSAMs, and therefore represent the major differ-

ences between MSAMs.

MSA Error and the Inference of Sequence Divergence

We simulate sequences on an eight species balanced tree

(fig. 1A), where all branches are of equal length and the

FIG. 2.—True (simulated) tree lengths and the median inferred tree lengths inferred from amino acid and nucleotide sequences. Deviation from the line

x = y suggests estimates obtained from an MSA are biased.
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simulation starts from a root set halfway along the deepest

branch. The tree-shape used in this study design is intended to

be amenable to MSA because the guide tree should be rela-

tively simple to infer and the sequences are evenly spaced on

that tree. For divergent sequences the guide-tree estimates

can become unreliable and the effect this has on the MSA

and downstream analysis is discussed later.

Inferring Total Sequence Divergence from an MSA

The first aspect of sequence divergence, we examine is the

ability for phylogenetic methods to correctly infer the total

number of substitutions occurring between a set of sequences

given a known phylogeny. Figure 2 shows the simulated (true)

and inferred total tree length (the total sum of branch lengths)

for amino acid and nucleotide sequences under a wide range

of different MSAMs, each with its own panel. In all plots the

solid line is x ¼ y, represents what we should expect if the

inferential procedure is working correctly. In line with our ex-

pectations based on statistical consistency, if we use the true

alignment given by the simulation program we are able to

obtain unbiased estimates of the tree length for both nucleo-

tide and amino acid sequences.

There are several general points to take from our results.

The divergence estimates obtained from most MSAMs show

substantial differences in their accuracy when using nucleotide

and amino acid sequences. All MSAMs—with the exception

of MAFFT—tend to produce noticeably lower estimates from

nucleotide sequences than from amino acid sequences. Of

these MSAMs, most give underestimates of divergence from

nucleotide sequence and relatively accurate to overestimates

of divergence from amino acid sequences. The underestima-

tion of divergence from nucleotide sequences is most severe

with FSA and Prank, although both of these methods provide

the most accurate divergence estimates from amino acid se-

quences. SATé performs similarly to other programs for amino

acid sequences, whereas for nucleotide sequences the perfor-

mance is similar to MUSCLE, with increasing overestimation

for moderate divergences that gradually decreases as diver-

gence increases.

Patterns of Divergence Estimate Error across a Tree
Topology

The previous section only investigates the overall accuracy of

divergence estimates and implicitly assumes that they are

FIG. 3.—Summary of errors in branch length estimates across the tree for amino acid and nucleotide sequences. For each MSAM the left, middle, and

right column corresponds to the external, middle, and root branches, respectively (see fig. 1A). The intensity of blue represents the difference between the

lower quartile of estimates and the expected (simulated) branch length, whereas the intensity of red represents the difference between the upper quartile of

estimates and the expected (simulated) branch length. A tendency toward blue indicates underestimates; red indicates overestimates, and the combination

of both red and blue (violet) indicates unbiased estimates. The overall intensity of the color represents the variance of those estimates.
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evenly distributed through the tree structure. If errors in esti-

mates of divergence between species were consistent be-

tween lineages then these errors would be of limited

concern in evolutionary studies because they could be ac-

counted for by a simple linear scaling factor. In contrast, if

patterns of overestimation/underestimation are differentially

distributed across the tree topology then it is likely to be prob-

lematic for phylogenetic analyses. The heat-map shown in

figure 3 summarizes which branches on the phylogenetic

tree errors are made when estimating divergence under the

full range of conditions examined above.

For each aligner the left, middle, and right columns show a

heat map indicating the type and intensity of error made for

the external, middle, and root branches, respectively (see fig.

1A). The frequency with which MSAs lead to overestimation

of branch lengths is shown by the intensity of red in the figure,

whereas the frequency with which MSAs lead to underesti-

mation is shown by the intensity of blue. In cases where an

estimate has the correct mean and there is equal underesti-

mation and overestimation, then the intensity of violet indi-

cates the overall variance of the estimator, with the secondary

color demonstrating an equal contribution of overestimates

(red) and underestimates (blue). For example, theory predicts

that the true MSA for both amino acids and nucleotides

should provide accurate estimates of branch lengths, but

their variance differs through the tree. This is reflected in the

true alignment for both nucleotide and amino acid sequences

with the variation in the intensity of violet for external, middle,

and root branches. As expected, external branches have

lowest variance and root branches the highest variance.

For the estimates obtained from the output of MSAMs,

divergence estimates from both amino acid nucleotide se-

quences show that patterns of over- and underestimation

are more variable, with different MSAMs and branch diver-

gences suffering from over- and underestimation. This obser-

vation supports the hypothesis that MSAM error tends to be

nonrandomly distributed through a tree topology. For amino

acid sequences the patterns of overestimation evident from

most aligners are nonrandomly distributed across the tree. The

performance of FSA and Prank is of particular interest because

when those MSAMs are applied to amino acid sequences they

tend to produce MSAs that give a good overall estimate of

divergence (see fig. 2), but this apparent accuracy results from

a compound effect of two different types of error. MSAs from

FSA tend to overestimate the external branches of a tree, but

provide underestimates of the middle and root branches. In

contrast, MSAs from Prank tend to lead to underestimates of

external branches and (mild) overestimates of root branches.

Results obtained from MSAs from nucleotide sequences

are more variable. Most MSAMs tend to give progressively

worse underestimates of the root branch divergence as tree

length increases. ClustalW is one notable exception since it

tends to overestimates of the root branch divergence for mod-

erate tree lengths, but underestimates it for longer tree

lengths. A second is SATé, which mildly overestimates the

root branch at low divergences, but becomes more accurate

FIG. 4.—The relationship between MSA error, quantified by the devol distance from the true MSA, and cumulative branch length errors for amino acid

and nucleotide sequences.
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at higher divergences. The majority of other MSAMs under-

estimate the middle and there is a roughly even mix of over-

and underestimation of external branches.

The Relationship between MSA Error and Inference of
Sequence Divergence

The above results demonstrate that errors made during align-

ment may lead to biased estimates of divergence between

sequences, but do not causally link the degree of MSA error

with that bias. Each panel in figure 4 represents a different

MSAM and shows the relationship between MSA error, char-

acterized by average MSA distance from the true alignment,

and divergence estimate error, taken to be the average sum of

errors across individual branches in the phylogenetic tree for

amino acid sequences and nucleotide sequences. As ex-

pected, as MSAs become more dissimilar to the true align-

ment, the error in branch length estimates becomes greater,

although the nature of the relationship between these quan-

tities depends on the MSAM used and whether one is exam-

ining amino acid or nucleotide sequences.

The degree of MSA error appears lower in amino acid se-

quences than nucleotide sequences. Under our nucleotide

simulations with a tree length of 6.0 all MSAMs yield dis-

tances of around 0.9, which represents around 90% of pair-

wise homologies being inaccurately inferred (Blackburne and

Whelan 2012). In contrast, for amino acid sequences simu-

lated with a tree length of 6.0 the degree of error tends to

range between 0.5 and 0.6, with the exception of ClustalW,

which fares much worse. This difference may be attributable

to the larger number of characters available in amino acid

sequences. The larger number of characters leads to a reduced

probability of back mutation to a character (e.g., A!R!A)

and a lower probability of two similar strings of characters in a

sequence occurring by chance. These two factors may allow

longer runs of characters to be correctly aligned, reducing the

tendency of underalignment and the underestimation of dis-

tances. Instead, these longer runs may result in the tendency

to miss indels within the runs or to over extend the runs. Both

these outcomes result in the alignment of nonhomologous

and different characters, leading to the observed overestima-

tion of distance.

Prank and FSA do not tend to follow this pattern since their

MSAs have comparable distances from the true MSA as other

MSAMs, but have lower distance errors. This difference is at-

tributable to the types of error made. FSA, and to a lesser

extent Prank, tend to have lower false positive (incorrectly

assigned) pairwise homologies than other MSAMs (supple-

mentary fig. S1, Supplementary Material online). This lower

false positive rate means that there are fewer aligned residues

and more gaps, leading to longer MSAs (supplementary fig.

S2, Supplementary Material online). The MSAs produced by

FSA, for example, are often many times longer than those

produced by other programs. The lower false positive rate

may result in lower divergence estimates because each false

positive could require additional substitutions on a tree to ex-

plain it.

FIG. 5.—The effect of increasing the number of OTUs included during MSA on the tree length inferred from an identically structured subset of eight

OTUs embedded within the full set of OTUs. The true total tree length of the eight OTUs, represented by the dotted line, is 6. Note that T-Coffee would not

run successfully on nucleotide sequences from 512 OTUs.
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For similar degrees of divergence, defined by expected

number of character replacements, MSAs from nucleotide se-

quences tend to be further from the true alignment (fig. 4).

For nucleotides, all MSAMs show both very high false positive

and false negatives (supplementary fig. S1, Supplementary

Material online) Despite these extreme levels of MSA error,

the overall levels of divergence error are lower than those of

amino acid sequences. It is unclear how accurate divergence

estimates can arise from mostly misaligned sequences, parti-

cularly for SATé, which has similar levels of error as other

MSAMs but much more accurate divergence estimates. This

may be because the iterative tree-search used to define the

guide tree produces a more accurate tree for these divergent

sequences than the k-mer methods used by other MSAMs

(supplementary fig. S3, Supplementary Material online),

which in turn leads to groups of true and false pairwise ho-

mologies that nevertheless reflect the history of the

sequences.

The Effect of Increasing the Number of OTUs on Inferred
Sequence Divergence

The sections above all examine the effect of MSA on inferring

divergence from eight OTUs, whereas most studies examine

many more. In order to investigate the effect of increasing the

number of OTUs on MSA and downstream analyses we also

perform simulations on groups of 8, 64, and 512 OTUs where

the tree and relative branch lengths shown in figure 1A is

exactly embedded within the larger group of OTUs while

spanning the entire tree topology. The MSA for this set of

eight OTUs is extracted from the MSA obtained using all of

the simulated sequences and analyzed in the same manner as

those in figure 2. This experimental design allows the direct

comparison between the results obtained here and those in

the preceding part of this study. If an MSAM is unaffected by

the number of OTUs then the evidence for bias in inferred tree

length will remain the same regardless of the number of OTUs

used in the full MSA.

Figure 5 shows that the number of OTUs included in the

analysis affects the tree length inferred by many MSAMs. For

amino acid sequences many of the MSAMs show a substantial

increase in error of the tree length estimate, particularly for the

512 OTU-based data set. For example, ClustalW, MAFFT,

MUSCLE, and SATé approximately double their error under

the large 512 OTU MSA. Clustal Omega and T-Coffee main-

tain roughly the same degree of error for all numbers of OTUs,

whereas Prank and FSA retain their accurate estimates of di-

vergence across different numbers of OTUs. The inferred tree

lengths from nucleotide sequences are generally much worse

than those from amino acids. For 512 OTUs many MSAMs

result in very long inferred tree lengths. The cause of these

extreme estimates is evident when examining the extracted

eight OTU MSAs, which consists mainly of gaps with very few

aligned bases in each column. It may be more accurate to

interpret these cases as the MSA step failing rather than the

two-step process producing a heavily biased estimate.

MSA Error and Phylogenetic Tree Estimation

Evidence for systematic error when estimating divergence af-

fects many evolutionary analyses where relative branch length

estimates are important, such as molecular dating or studying

FIG. 6.—Frequency with which a polytomy is resolved to an LBA tree under ML for amino acid sequences and nucleotide sequences. Root sequence

lengths are for amino acid sequences; nucleotide sequences have three times the length displayed in the x axis.
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adaptation, but the most popular evolutionary analysis re-

mains inferring a phylogenetic tree. Here, we use simulation

to examine two related questions about the effect of MSA on

phylogenetic tree inference.

The Effect of MSA on Tree Estimates from
Multifurcations

Previous studies have demonstrated that multifurcations (poly-

tomies) can affect both ML and Bayesian inference, either

through the strategies used to perform tree-search (Whelan

and Money 2010) or through misspecification of the prior

(Yang 2007a). To examine the effect of MSA on resolving

multifurcations, we simulate data from an eight-taxa balanced

tree where the root node is a four-way multifurcation (fig. 1B).

Two of the subtrees attached to the multifurcation are short

(root to tip length 0.12; each branch 0.06) and two are long

(root to tip length 1.4; each branch 0.7), allowing us to inves-

tigate whether there is a bias toward one resolution of the

multifurcation over the other two. If MSA induces no bias in

the tree estimate then each tree will be chosen with frequency

one-third and that frequency will be independent of the

length of the sequences, demonstrated by the patterns

shown by inference from the true alignment.

Figure 6 shows how frequently the multifurcation esti-

mated to be the tree grouping the two long subtrees together

under ML; a pattern reminiscent of an LBA artifact. The re-

maining fraction of the time, the tree is estimated to be one of

the other two topologies with roughly even probability. For

amino acid sequences all MSAMs that include a guide tree

show a preference toward the LBA tree. The exceptions to this

pattern are FSA, ProbCons, and T-Coffee, which incorporate

consistency-based measures when scoring MSAs rather than

just a guide tree based hierarchical alignment methods. The

remaining MSAMs are more heavily reliant on a guide tree

and more susceptible to LBA-type artifacts. Prank shows the

strongest tendency to select the LBA tree, whereas the older

ClustalW shows the weakest LBA artifact. Increasing the

amount of sequence data causes MSAs produced by Clustal

Omega, MAFFT, MUSCLE, Prank, and SATé to progressively

tend toward the LBA tree, while the other MSAMs remain

stable. For nucleotide sequences a similar, but more extreme

pattern is observed. All of the MSAMs based on a guide tree

show a very strong preference toward the tree that groups the

two long subtrees together, even for very short sequences.

The only MSAMs that does not exhibit this pattern are the

consistency-based MSAMs T-Coffee and ProbCons. The effect

of sequence length is less noticeable in nucleotide sequences

since MSAs from most guide-tree-based MSAMs result in the

LBA tree being estimated with very high frequency even for

short root sequences.

The Effect of MSA on Tree Support from Multifurcations

Demonstrating a tendency to resolve a multifurcation toward

the LBA tree alone is a concern for phylogenetic studies. More

important, however, is whether MSA can cause high levels of

statistical support for that tree, leading to strong, but false,

confidence in a particular resolution. Figure 7 shows the prob-

ability of each of the LBA and other resolutions of the

FIG. 7.—Frequency with which LBA and non-LBA trees are rejected using a RELL-based SH-test for amino acid and nucleotide sequences. Root sequence

lengths are for amino acid sequences; nucleotide sequences have three times the length displayed in the x axis.
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multifurcation being rejected by the SH-test for amino acid

and nucleotide sequences, respectively. Each panel in the

figure represents results obtained from the MSAs of a specific

aligner. These probabilities are obtained by counting how fre-

quently trees are rejected in simulation (pSH< 0.05; full details

in Materials and Methods). If the test is working correctly, then

around 5% of trees will be rejected by chance. The results

from the real alignments suggest that less than 5% of trees

are rejected, indicating that the SH-test is conservative, in

agreement with previous studies (Goldman et al. 2000).

Both sets of panels show there is a tendency for the SH-test

to reject the two non-LBA trees and to not reject the LBA tree,

although the strength of that tendency varies between

MSAMs and the type of data analyzed. For nucleotide se-

quences, all MSAMs except MUSCLE, FSA, T-Coffee, and

ProbCons tend to reject non-LBA trees for moderate and

long root sequences. For amino acid sequences, as root se-

quence length increases the non-LBA trees are rejected in-

creasingly frequently for all MSAMs, with the exception of

FSA, ProbCons, T-Coffee, and to a lesser extent ClustalW.

The error rates of programs appear related to two related

properties of the MSAM: whether or not it uses a guide

tree, and where it makes alignment errors on the tree.

We base our statement about the effect of the guide tree

on two lines of evidence. The first is that progressive MSAMs

that use a guide tree frequently demonstrate higher errors

rates. MSAs obtained from Clustal Omega, the MAFFT algo-

rithms, and Prank, for example, all show very strong tenden-

cies to reject non-LBA trees for nucleotide sequences, and an

increasing tendency to reject non-LBA trees for amino acid

sequence as the root length increases. Iteratively improving

the tree, even through the ML estimates in SATé, does not

provide a noticeable improvement, suggesting that once the

errors are established in the initial MSA they bias subsequent

tree estimates to that tree. In contrast, the consistency-based

ProbCons and the pseudostatistical MSAM FSA tend to show

lower, but still worryingly high, error rates. The second line of

evidence is several MSAMs show a very strong correlation

between the choice of initial guide tree and bias in the tree

estimate from the analysis of MSA. From the 200 simulations

on our longest tree, Prank estimates an LBA guide tree 195

times, leading to rejection of non-LBA trees in 183/195

(93.8%) of those cases. This line of evidence does not hold

for all MSAMs. Clustal Omega, for instance, estimates an LBA

guide tree in only 24/200 simulations and still shows high rates

of LBA type bias.

The effect of the placement of errors in the trees inferred

from MSAs is evident from combining the information from

figures 3 and 7, and helps to explain the outlying error rates of

some MSAMs. Figure 3 shows that tree estimates from FSA

MSAs tend to underestimate the number of substitutions on

internal branches, which could be expected to result in lower

support for any tree, which could explain why it tends to reject

very few trees for nucleotide sequence data and reject almost

no trees for amino acid data. In contrast, figure 3 shows that

Prank tends to overestimate the number of substitutions on

internal branches, which may explain why it tends to have the

highest rejection rate for non-LBA trees evident in amino acid

MSAs. These placements of substitutions in the inferred trees

may also be at least partly a product of the guide tree methods

used, so should be viewed as a complementary explanation

for high levels of erroneous non-LBA tree rejection.

Supplementary figure S4, Supplementary Material online,

shows that bootstrap measures of tree support are also sub-

ject to these biases, suggesting the effects we observe are

general and not limited to any individual topology-based test.

LBA Artifacts Induced by MSA

The section above demonstrates that a multifurcation is pref-

erentially resolved in favor of a bifurcating LBA-style tree. Note

that our results do not demonstrate LBA in the usual manner,

whereby sequence data generated from a Felsenstein-zone

four taxa tree where a pair of long and short external branches

are separated from one another by a short internal branch are

falsely inferred by parsimony to come from a tree where the

two long branches group together. Here, we extend those

results using the pseudo-Felsenstein-zone tree shown in

figure 1C with either 8 or 32 taxa falling into two long and

two short subtrees separated by a single internal short branch.

We examine the three rearrangements of those subtrees

around this short internal branch, with the LBA-style tree

being that which groups together the two long subtrees.

Following the classic study by Huelsenbeck and Hillis (1993),

we vary the length of the internal branch and the long and

short subtrees, reporting how frequently the correct tree is

inferred.

Figure 8 shows tree estimates from data simulated under

nucleotide and amino acid models. The left hand panel of the

top four rows (True-ML) shows that, as expected from

the property of statistical consistency, ML analyses based on

the known alignments show absolute confidence for the true

tree. The right hand panel of the four bottom rows shows tree

estimates from MP, demonstrating the widely known LBA

artifact and allowing us to compare the errors induced by

MSA to this well-characterized problem. The intervening

panels show the errors from ML tree inference based on the

MSAs produced by different programs. The most striking

result from figure 8 is that all MSAMs apart from the consis-

tency-based ProbCons and to some extend T-Coffee demon-

strate some degree of LBA artifact for nucleotide sequences,

although the nature of that LBA artifact is somewhat different

from that observed under MP. The LBA artifacts induced by

MP tend to produce a clear diagonal line across the heat map,

whereas those induced by MSA tend to be closer to a hori-

zontal line. Moreover, moving from 8- to 32-taxa simulations

appears to lessen the severity of the MP LBA artifact, which is

probably attributable to increased taxon sampling and shorter
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FIG. 8.—Heat maps showing the relative frequency that the correct tree (red squares) is estimated from data simulated under the Felsenstein-zone tree

shown in figure 1C for data simulated under amino acid and nucleotide sequences. Blue colored squares represent the selection of an incorrect tree. For each

panel, the y axis shows the long subtree length, labeled b in figure 1C, and takes values {0.25, 0.375, . . . , 1.375} and the x axis shows the short subtree

length, labeled a in figure 1C, and takes values {0.025, 0.05, . . . , 0.25}. True-ML and True-MP show the frequency with which the true tree is estimated from

the true (simulated) MSA using ML and MP, respectively.
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average branch lengths in the subtrees. In contrast, for the

majority of MSAMs there is little difference between the two

numbers of taxa. The exceptions to this are MUSCLE and FSA,

which both show a noticeable improvement under 32-taxa

simulations. These two observations suggest there is a diver-

gence threshold for nucleotide data, after which it becomes

very difficult to infer accurate guide trees and MSAs.

The amino acid sequences show a much-improved sce-

nario. Although MP causes a clear LBA artifact, for eight-

taxa simulations none of the MSAMs show strong evidence

of LBA artifacts, except under the most extreme conditions

(top left of heat maps; very long and very short subtrees). This

pattern is maintained for the 32-taxa simulations, with the

exception of ClustalW that begins to show a pattern reminis-

cent of the MP LBA artifact. This observation suggests that the

older ClustalW MSAM tends to make more errors as addi-

tional sequences are added to the tree even if they increase

taxon sampling. These errors may include incorrectly carrying

gap information up the tree during MSA, which has been

addressed by iterative MSA improvement (Edgar 2004) and

phylogenetic gap placement (Löytynoja and Goldman 2008)

in more modern MSAMs

Perspectives and Recommendations

This simulation study shows that even correctly specified phy-

logenetic methods are susceptible to a range of biases intro-

duced by the MSA step. These results underscore the

important fact that the consistency proofs associated for sta-

tistical methods of phylogenetic and phylogenomic inference

are not generally applicable to real-world analysis because

they all assume that sequence evolution occurs only through

substitution and that homology relationships between char-

acters are known with certainty. In reality, sequence evolution

proceeds through substitution, insertion, deletion, and many

more processes. The MSA step attempts to capture all of these

complex processes when assigning sitewise homology, allow-

ing phylogenetic models to describe each column’s evolution

solely through substitution. The inability for MSA to capture

this complexity leads to errors in downstream inference at two

interconnected levels: the inference of phylogenetic trees and

the estimates of branches upon those trees.

Perspectives on Studies Requiring a Tree Topology

Our study suggests that MSA can affect phylogenetic tree

estimates leading to systematic bias similar to LBA artifacts

observed for MP. These biases are strongest in the resolution

of multifurcations in relatively divergent nucleotide sequences,

but also evident in the resolution of multifurcations in amino

acid sequences. These errors come from two compounding

sources. First is the influence of the chosen guide tree, which

can be considered the model that MSAMs follow and many

MSAMs tend to overfit that model. This overfitting may man-

ifest itself in the resultant alignment by inferring homologies

between residues that do not share a common ancestor, but

fit the guide tree (false positives). Alternatively, removing ho-

mology relationships that contradict the guide tree, but do

represent shared descent, may also cause overfitting (false

negatives). There are no tools available to readily identify

these types of false positive and false negative, but given

our observations it is reasonable to infer that these effects

lead to MSAs where substitutions too closely follow the

guide tree and result in biased topology estimates.

The second potential source of error comes from the rela-

tively simple clustering algorithms used to construct guide

trees in MSAMs. These algorithms are often based on

simple similarity measures, rather than evolutionary distances,

which are known to be susceptible to LBA and may lead to

such artifacts in guide trees. It is the systematic bias toward

recovering LBA guide trees, coupled with overfitting the MSA

to those LBA guide trees, that is the probable cause of the

LBA-type artifacts that we observe in the downstream evolu-

tionary inference. Improved guide trees will not correct for the

overfitting of MSAs, which is expected to lead to overconfi-

dence in whichever guide tree topology is selected, but it

could reduce the bias toward specific types of topology,

such as LBA artifacts.

We observe that amino acids help alleviate this problem,

removing LBA artifacts from Felsenstein-zone trees and sub-

stantially reducing biases when resolving multifurcations. The

performance of amino acid sequences relative to nucleotide

sequences may result from them being more robust to over-

fitting and guide tree error. The larger number of character

states in amino acid sequence means it may be easier to dif-

ferentiate true and false homology inferences. Back mutation

is less likely, reducing false homology calls, and the larger

possible sequence-space may allow easier identification of ho-

mologous regions. These factors also make it easier to infer

guide trees from amino acid sequences using similarity-based

methods such as k-mer clustering, leading to less biased

guide-trees and a reduction in LBA-type artifacts. These fac-

tors suggest these are no reasonable grounds to perform MSA

on protein coding nucleotide sequences. Even when one re-

quires a nucleotide alignment, the approach of translation,

MSA, followed by back translation seems likely to yield

better results.

The use of amino acid sequences does not remove biased

resolution of multifurcations during MSA, so we suggest some

practical precautions when analysing such data. Strong statis-

tical support for very short internal branches should be treated

with caution, especially for divergent sequences where the

MSA appears uncertain. This suggestion can be practically

assessed by examining the MSA and the point estimate and

statistical support for trees under a range of different MSAMs.

The MSAMs should minimally include an evolution-MSAM

and a similarity-MSAM (Blackburne and Whelan 2013) and

preferably both progressive and consistency similarity-

MSAMs should be examined. The degree of disagreement
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between the resultant MSAs can be assessed using a pairwise

distance matrix produced using (e.g.,) MetAl distances

(Blackburne and Whelan 2012). Disagreement between

trees and their statistical support can be assessed in a similar

manner using (e.g.,) Robinson–Fould distances or P values. We

note that no evidence of disagreement is only a necessary

condition for trust in a tree, and that the tree estimate may

still be inaccurate even when there is no obvious disagreement

between the MSA and tree-based statistics.

The recently published study by Karin et al. (2014) provides

an alternative approach based on the long-standing practice

of MSA filtering. The study shows that filtering may reduce,

although not eliminate, SH-test artifacts caused by alignment.

They use a GUIDANCE-based approach (Penn et al. 2010),

which varies the guide tree of MAFFT to identify regions of

the MSA susceptible to error from the guide tree. The

GUIDANCE approach is a significant improvement over sim-

pler filtering strategies such as GBlocks (Castresana 2000), but

may need to be combined with improvements to MSAMs and

some of the suggestions above to reduce the potential biases

caused by alignment.

The Outlook for Studies Requiring Divergence Estimates

Our results suggest that MSA uncertainty leads to biased es-

timates of sequence divergence throughout an evolutionary

tree, and those biases are dependent on the MSAM used, the

number of OTUs included in a study, and the type of data

analyzed. In common with tree estimation, our results suggest

estimates of branch lengths based on nucleotide sequence

MSAs are particularly difficult to estimate, even for relatively

closely related sequences. The outlook for branch length esti-

mates based on amino acid sequences is better for closely

related sequences, but the accuracy of estimates remains

low and unpredictable for more divergent sequences. Prank

tends to have to most stable estimates as sequences diverge,

but there is a notable tendency to underestimation of external

branches and overestimation of the root branch for the most

divergent sequences. Our study of divergence estimates uses a

balanced tree with equal branch lengths for simulation, so

errors introduce by an incorrect guide tree have a more limited

impact on the systematic errors we observe. For the majority

of MSAMs the observed errors may be a consequence of

overfitting the guide tree, even for the consistency-based

MSAM ProbCons, which uses a guide tree to obtain an initial

MSA. The exception to this is FSA, which instead uses a se-

quence annealing approach to obtain an MSA, and may be

reflected in the unusual tendency of its MSAs to infer too few

changes in the internal branches and too many changes on

the external branches. Our results also show for many MSAMs

there is a clear negative effect from including additional se-

quences in the two-step process. Although this study concen-

trates on relatively small data sets where the error is easier to

quantify, these results suggest the errors caused by MSA may

be even more prevalent in larger data sets.

The wide range of biases in branch length estimates caused

by MSA has the potential to affect all areas of evolutionary

inference that rely on the accuracy of those estimates. For

example, previous studies characterizing the effect of MSA

on dN/dS-based tests of adaptive evolution (Fletcher and

Yang 2010; Markova-Raina and Petrov 2011) can be inter-

preted in the light of our study as differential errors being

made in dN and dS distance estimates. Other areas that rely

on accurate and unbiased estimates of divergence are also

likely to be affected, including methods of molecular dating

(Welch and Bromham 2005); models of species divergence

(Stadler 2011); methods for inferring patterns of temporal

and spatial heterogeneity (Wang et al. 2007; Whelan 2008;

Whelan et al. 2011); and inference of protein secondary struc-

ture using mixture models (Le and Gascuel 2010) or hidden

Markov models (Thorne et al. 1996). Further study is required

to characterize the degree of errors induced by MSA for these

types of studies.

To illustrate how these apparent biases can affect analyses

we shall discuss their potential effects on the currently popular

field of estimating diversification rates from molecular data

(Rabosky and McCune 2010). Widely used tools in this area

include the BAMM package (Rabosky 2014) and the GEIGER

package (Harmon et al. 2008; Alfaro et al. 2009). These meth-

ods use model-based approaches to infer shifts in diversifica-

tion rates from ultrametric phylogenetic trees and their branch

lengths. Our results suggest that the MSA step can affect the

branch lengths of those trees in way that may systematically

bias diversification estimates. If the tree were based on amino

acid sequences, for example, using FSA would tend to under-

estimate deep branches resulting in greater diversification

rates towards the base of the tree. In contrast, using SATé

may lead to overestimation of root branches, which may

appear as evidence for decreased diversification rates toward

the base of the tree. Given our results from larger data sets, it

also seems reasonable to presume that denser sampling in

some clades may affect their branch length estimates, parti-

cularly for nucleotide sequences obtained from intergenic

markers.

We can offer a few recommendations for studies requiring

the accurate estimation of branch lengths beyond the recom-

mendations we make for tree-based analyses. Using amino

acid based MSAs and comparing between evolutionary and

similarity-based MSAs may reduce error, and advanced filter-

ing methods such as GUIDANCE may also help, particularly for

divergent sequences where k-mer derived guide trees may

become unstable. Recent work examining the performance

of codon-based tests of natural selection may provide an al-

ternative solution. Simulations have shown that statistical

alignment methods can erase errors in dN/dS estimates

(Redelings 2014); a type of error closely related to that of

divergence estimate error. The problem is that these methods
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come at great computational, with single analyses on small

data sets taking many hours, preventing their general appli-

cation to genome-scale studies. They do, however, suggest

that faster and more widely applicable MSAMs based on the

principles of statistical alignment may provide the key to re-

ducing errors in divergence estimates.

Supplementary Material

Supplementary figures S1–S4 are available at Genome Biology

and Evolution online (http://www.gbe.oxfordjournals.org/).
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