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Abstract

Historically, genome-wide and molecular characterization of the genus Listeria has concentrated on the important human path-

ogen Listeria monocytogenes and a small number of closely related species, together termed Listeria sensu strictu. More recently, a

number of genome sequences for more basal, and nonpathogenic, members of the Listeria genus have become available, facil-

itating a wider perspective on the evolution of pathogenicity and genome level evolutionary dynamics within the entire genus

(termed Listeria sensu lato). Here, we have sequenced the genomes of additional Listeria fleischmannii and Listeria newyorkensis

isolates and explored the dynamics of genome evolution in Listeria sensu lato. Our analyses suggest that acquisition of genetic

material through gene duplication and divergence as well as through lateral gene transfer (mostly from outside Listeria) is wide-

spread throughout the genus. Novel genetic material is apparently subject to rapid turnover. Multiple lines of evidence point to

significant differences in evolutionary dynamics between the most basal Listeria subclade and all other congeners, including both

sensu strictu and other sensu lato isolates. Strikingly, these differences are likely attributable to stochastic, population-level pro-

cesses and contribute to observed variation in genome size across the genus. Notably, our analyses indicate that the common

ancestor of Listeria sensu lato lacked flagella, which were acquired by lateral gene transfer by a common ancestor of Listeria grayi

and Listeria sensu strictu, whereas a recently functionally characterized pathogenicity island, responsible for the capacity to

produce cobalamin and utilize ethanolamine/propane-2-diol, was acquired in an ancestor of Listeria sensu strictu.

Key words: Listeria, genome sequencing, comparative genomics, lateral gene transfer, cobalamin, ethanolamine metabolism,

propane-2-diol metabolism, flagella.

Introduction

Historically, genome-wide and molecular characterization of

the genus Listeria has concentrated on the important human

pathogen Listeria monocytogenes (for which the genomes of

around 100 isolates have been sequenced) and a relatively

restricted number of closely related species including Listeria

marthii, Listeria innocua, Listeria welshimeri, Listeria seeligeri,

and Listeria ivanovii. Together, these six species, all of which

are capable of growth within higher vertebrate hosts, are

known as Listeria sensu strictu, and various studies have fo-

cused on the identification and characterization of virulence

factors that determine the differential capacity of many
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L. monocytogenes and L. ivanovii isolates to cause disease in

mammals. Indeed, pathogenicity correlates well with the

presence of intact virulence genes that facilitate direct

interaction between bacteria and host cells—promoting

colonization, entry into and death of host cells (Mishra et al.

2011). In particular, the virulence gene cluster (LIPI-1)

promotes cytosolic replication as well as intra- and intercellular

movement (Portnoy et al. 1992). A second cluster required for

virulence contains an operon of two genes (inlA/B) that

encode internalins necessary for the attachment to and inva-

sion of nonphagocytic host cells (Hamon et al. 2006).

Additionally L. ivanovii harbors a specific genetic island with

virulence factors called LIPI-2, comprising of multiple interna-

lins and the smcL sphingomyelinase hemolysis gene

(Dominguez-Bernal et al. 2006). Phylogenomic analyses of

Listeria sensu strictu suggest that nonpathogenic species

evolved from a pathogenic ancestor through differential loss

of pathogenicity factors (Schmid et al. 2005).

Besides the Listeria sensu strictu group, other, more diver-

gent and presumably basal nonpathogenic species have long

been known and more recently, many of these, as well as

newly discovered congeners and representatives of the

genus Brochothrix (Weller et al. 2014)—the presumed sister

group to Listeria—have been subjected to whole-genome se-

quencing and phylogenetic analysis of concatenated core

gene sets. Listeria grayi susbsp. grayi (DSM 20601, GenBank

accession number ACCR00000000) and L. grayi subsp. mur-

rayi (ATCC25401), isolated from vegetation (Welshimer and

Meredith 1971) and sequenced by den Bakker et al. (2014),

represent the sister taxon to the Listeria sensu strictu group.

Listeria fleischmannii (susbsp. fleischmannii [from cheese]

[Bertsch et al. 2012], subsp. coloradonensis [from agricultural

environments] [den Bakker et al. 2013]) and L. fleischmannii

FSL S10-1203 (den Bakker et al. 2014), along with Listeria

floridensis and Listeria aquatica (both from running water)

(den Bakker et al. 2014), constitute the sister clade to

Listeria sensu strictu and L. grayi (Weller et al. 2014). Listeria

rocourtiae (from lettuce leaves) (Leclercq et al. 2009; den

Bakker et al. 2014), Listeria cornellensis, Listeria riparia and

Listeria grandensis (all from water/agricultural environments)

(den Bakker et al. 2014), Listeria weihenstephanensis (from

aquatic vegetation) (Lang Halter et al. 2013; den Bakker

et al. 2014), Listeria booriae (from seafood) (Weller et al.

2014), and Listeria newyorkensis (from a milk processing

plant) (Weller et al. 2014) constitute the basal clade in the

genus (Weller et al. 2014). Representatives of the L. fleisch-

mannii and L. rocourtiae clades have been reported to be

nonmotile (den Bakker et al. 2014). Their possible role as ge-

netic reservoirs of genes that might be transferred to sensu

strictu species remains to be investigated.

In this study, we have sequenced the genomes of

additional L. fleischmannii and L. newyorkensis isolates.

Probabilistic reconstruction of patterns of gene gain and

loss, as well as comparative and phylogenomic surveys of all

available basal Listeria genomes, indicates a nonpathogenic,

nonmotile ancestor of extant Listeria species. Genome evolu-

tion is characterized by gene gain by lateral transfer (predom-

inantly from outside the genus) and gene duplication—as well

as by gene loss. Throughout Listeria sensu lato, genome size

and dN/dS ratio show significant negative correlation, sug-

gesting that rates of genetic drift underlie at least some of

the observed variability in evolutionary dynamics. In particular,

the larger genomes of the most basal subclade of Listeria are

associated with an increased rate of gene gain with respect to

other Listeria. Concentrated episodes of gene gain are inferred

to have occurred along several major internal branches of the

Listeria phylogeny, in particular, the entire flagella apparatus

was acquired by a common ancestor of L. grayi and the Listeria

sensu strictu clade, possibly through lateral gene transfer (LGT)

from a Bacillus cereus-like organism. Furthermore, a recently

characterized pathogenicity island encoding genes involved in

ethanolamine/propane-2-diol/cobalamin metabolism was ac-

quired and assembled, potentially from several donors, by a

common ancestor of Listeria sensu strictu.

Materials and Methods

Whole-Genome Sequencing

Genomic DNA was extracted from the Listeria-like isolates

using the QIAmp DNA mini kit (Qiagen, Hilden, Germany),

according to the manufacturer’s protocol. An indexed geno-

mic library for each Listeria-like isolate was prepared using the

Nextera XT DNA sample preparation kit (Illumina, San Diego,

CA), and a 2� 250 paired-end sequencing run was per-

formed on Illumina MiSeq platform.

Sequence Data Preprocessing

A custom script implementing strict quality filters based on the

provided base call quality scores was used to trim sequences

reads prior to assembly. Reads were iteratively trimmed from

the 30-end until all of the following conditions were satisfied:

1. The median quality score (Qscore) of upstream bases was
>25.

2. Less than three bases with Qscore �10 and less than five
bases with Qscore �20 were present in the upstream
sequence.

3. The cumulative error probability in the upstream region
was below 0.01.

Genome Assembly and Annotation

The velvet (Zerbino and Birney 2008) program was used for

genome assembly. Optimal parameters for K-mers length and

coverage were established manually, after careful inspection

of the K-mer frequency graph for different values of K (21–

81), as described in the manual. Scaffolding was performed

using the SSPACE software (Boetzer et al. 2011).
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The RAST (Aziz et al. 2008) pipeline was used through

its web interface to provide annotation for the assembled

genomes, using the L. monocytogenes EGD-e genome

(NC_003210) as reference.

PFAM domains were annotated to predict protein-coding

genes with the PfamScan program (Mistry et al. 2007), using

both the Pfam-A and Pfam-B domain models.

Gene Ontology (GO) terms were annotated to protein-

coding genes directly from the Pfam domains annotation,

using a custom script and the Pfam2go file available on the

GO consortium website (http://ftp.cbi.pku.edu.cn/pub/data-

base/GO/goa/external2go/pfam2go, last accessed March 10,

2015).

Clusters of Orthologous Genes

All-against-all BLASTP (Altschul et al. 1990) was performed

using the BLOSUM80 matrix and accepting only best recipro-

cal hits with e value �1e-5 and where “second-best” hits

from the same genome produce bit scores less than 90% of

that associated with the best match. Putative clusters of ortho-

logous genes (COGs) were established as groups of best re-

ciprocal BLAST (Basic Local Alignment Search Tool) hits. Core

genes were defined as COGs containing single representatives

from all genomes considered (or all genomes within major

clades), and accessory genes as COGs with incomplete

representation.

Rarefaction Analyses of Core and Accessory Genomes

For each number of organisms considered (2–27 for Listeria

sensu lato, 2–10 for Listeria sensu strictu), the inferred sizes of

core and accessory genomes were recorded for 10,000 repli-

cates of randomly selected combinations of genomes. Plots

were prepared showing mean and standard deviation of these

statistics.

Prunier

Prunier (version 2.1) was used with standard parameters, and

in conjunction with RAXML version (7.2.6) for the estimation

of the phylogenetic trees.

Phyletic Patterns and Inference of Gene Gains/Losses

The phyletic pattern of COGs inferred not to contain xenolo-

gous sequences was analyzed with the GLOOME program

(version 1.266), using the default parameters, other than set-

ting the optimization level to “high” and requesting recon-

struction of ancestral state and generation of a gene absence/

presence tree.

Genes were considered to be ancestral to a given node if

the posterior probability of their presence, according to

GLOOME, was �95%. Genes gains were assigned to the

branch with the highest gain probability, provided that the

presence probability at the ancestral node was �75% and

�95% at the derived node.

dN/dS ratios were estimated for concatenated alignments

of 623 genes universally present in Brochothrix and Listeria

genomes using the Ka/Ks calculator (Zhang et al. 2006) with

default settings.

Validation COGs Supporting LGT and Characterization
of Genes Gained According to GLOOME

COGs supporting an LGT event according to Prunier and

COGs consisting of less than five genes were validated by

executing BLAST searches against an extensive database

containing all the protein-coding sequences from all the

1,743 complete bacterial genomes in GenBank (ftp://ftp.ncbi.

nlm.nih.gov/genomes/Bacteria/all.gbk.tar.gz, last accessed

March 10, 2015) for a total of 4,902,485 bacterial proteins.

Only hits showing an e value�1e-5 and covering the query

sequence by more than 25% of its length were considered.

COGs were considered valid if and only if all the members

remained best reciprocal BLAST hits among themselves even

when searched for similarity against this more extensive

database.

Similarly the genes gained at each node according to

GLOOME were subjected to BLAST searches against the

same database and using the same cut-offs, to discern

whether they were more likely genes acquired by LGT (best

matches outside Listeria) or generated by gene duplication

(best matches within the same major Listeria group)

Phylogenetic Analyses

Phylogenetic analyses were performed on the concatenated

alignment of a reference set of 623 proteins, conserved

among the genomes of Listeria, Brochothrix, and the selected

outgroups.

Peptide sequences for each gene were aligned individually

with the Muscle software (Edgar 2004); conserved alignment

blocks were identified and extracted using Gblocks

(Castresana 2000) and concatenated using a custom Perl

script.

Different amino acid substitution models (WAG [Whelan

and Goldman], LG, JTT [Jones, Taylor, and Thorton], and

Dayhoff) were compared using the ProtTest program

(Darriba et al. 2011).

Phylogenetic relationships and bootstrap proportions were

estimated using PhyML (Guindon et al. 2009) under the WAG

amino acid substitution model (Whelan and Goldman 2001)

with invariable and four gamma-distributed substitution rate

categories.

Splits tree was constructed using the filtered supernetwork

algorithm as implemented in Splitstree (Huson and Bryant

2006) with MinNumberTrees = 10 and default parameters,

starting from the individual genes trees of the 623 Listeria

and Brochothrix core genes.

Chiara et al. GBE

2156 Genome Biol. Evol. 7(8):2154–2172. doi:10.1093/gbe/evv131 Advance Access publication July 15, 2015

http://ftp.cbi.pku.edu.cn/pub/database/GO/goa/external2go/pfam2go
http://ftp.cbi.pku.edu.cn/pub/database/GO/goa/external2go/pfam2go
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.gbk.tar.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.gbk.tar.gz


Identification of Orthologous Genes of the Listeria
Eut–Cob–Pdu and Flagellar Clusters

The sequences of protein-coding genes of the eut–cob–pdu

and flagellar clusters were manually extracted from the

NCBI (National Center for Biotechnology Information) entry

of the Listeria monocytogenes EGD-e (AL591824) genome

and searched against a custom protein database consisting of

4,902,485 bacterial proteins from 1,743 bacterial genomes,

downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/

Bacteria/all.gbk.tar.gz. Only hits showing an e value �1e-5

and covering the query sequence by more than 25% of

their length were considered. If at least 80% of the genes in

a given cluster recovered satisfactory matches against proteins

from a particular genome, we considered the cluster to be

present in that genome and used the putative orthologs in

the reconstruction of the phylogeny of the cluster. To avoid

redundancies, we included only a maximum of two represen-

tative genomes for each species.

Consensus Networks

Consensus networks were calculated using the galled consen-

sus network algorithm implemented in Dendroscope (Huson

et al. 2009), starting from the individual genes trees and using

a threshold of 20%.

Functional Enrichment Analyses

Functional enrichment analyses were performed using a

custom script, implementing a hypergeometric test with a

Bonferroni correction, the pan genome was used to provide

a background for functional enrichment testing

Analysis of Pfam Domains Enrichment by
Major Listeria Clade

The number of occurrences of each Pfam domain in each

major clade (Listeria sensu strictu, Listeria grayi, Listeria fleisch-

manii, and Listeria rocourtiae) was counted using a custom

script. A simple R script based on the hypergeometric distri-

bution and implementing a Bonferroni correction was used to

compute the P value for the overrepresentation of the do-

mains in each group.

All the significantly enriched domains were included in the

heatmap, which we computed using the heatmap.2 function

of the gplots package in R.

Results

Preliminary Characterization of Two Novel Listeria-Like
Isolates from Southern Italy

Two Listeria-like bacterial strains were isolated during a micro-

biological study of milk and milk-derived products in southern

Italy. The sequence of a 1,473-bp fragment of 16S rDNA from

a Listeria-like bacterium isolated from cheese samples was

identical to a 16S rRNA sequence from L. fleischmannii in

GenBank (e.g., accession number: JN093102) and the isolate

was provisionally classified as a L. fleischmannii strain, a

conclusion supported by metabolic and antibiotic resistance

profiling (supplementary methods and results and tables S1

and S2, Supplementary Material online) as well as by

subsequent genome sequencing and analysis (see below).

For a second isolate, from raw milk, a partial (1,388 bp) 16S

rDNA sequence showed greater than 99% identity to

L. rocourtiae and L. newyorkensis homologs in GenBank.

However, metabolic profiles of our isolate and that of L. new-

yorkensis (Weller et al. 2014) (supplementary methods and

results and tables S1 and S2, Supplementary Material online)

did not conclusively resolve this issue. Assignment of our iso-

late to L. newyorkensis was achieved through genome se-

quencing and phylogenetic analyses (see below).

Genome Sequencing, Assembly, and Annotation

Listeria fleischmannii

In total, 1,341,131 pair-end reads of 250-bp were produced

from L. fleischmannii genomic DNA using the Illumina MiSeq

platform. The average insert size was estimated to be around

723 bp. After applying strict quality filtering and read trim-

ming, 948,303 high quality mate pairs reads, with average

read length of 82.12 bp were retained.

The genome was assembled using Velvet (Zerbino and

Birney 2008). Optimal K-mer size and K-mer coverage param-

eters were established using a simple grid search (values of K

from 21 to 81 bp) coupled with careful examination of K-mer

frequency plots.

The final assembly (K = 53, expected coverage = 38�), con-

tained 40 contigs longer than 500 bp with an N50 value of

119,961 bp. The estimated genome size was 2,842,057 bp.

Scaffolding reduced the 40 contigs into 18 scaffolds and in-

creased the N50 to 237,103 bp.

The RAST pipeline (Aziz et al. 2008) predicted 2,881

protein-coding genes, consistent with the 2,835–2,923 re-

ported for other L. fleischmannii strains (Bertsch et al. 2012;

den Bakker et al. 2013, 2014). A total of 5,008 Pfam domains,

associated with 6,408 GO terms, were annotated to the pro-

tein-coding genes using the PfamScan program (Mistry et al.

2007) with default parameters. The draft genome sequence

of the novel L. fleischmannii isolate is deposited in GenBank

under the accession number AZHO00000000, the version de-

scribed in this article is AZHO01000000.

Listeria newyorkensis

In total, 1,596,258 pair-end reads of 250 bp were produced

from genomic DNA isolated from the L. newyorkensis isolate

using the Illumina MiSeq platform with average insert size

estimated at 650 bp. In total, 1,003,123 high quality pairs
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(mean read length 75.6 bp) were used as described above for

genome assembly.

The final assembly (K = 61, expected coverage = 38�) con-

tained 113 contigs of 500 bp or more. The estimated genome

size was 3,321,213 bp and the N50 89,213 bp. Scaffolding

merged the 113 contigs into 79 scaffolds and increased the

N50 to 105,891 bp.

RAST identified 3,268 genes in the genome assembly,

PfamScan found 5,556 Pfam domains in the predicted

protein-coding genes, corresponding to 6,981 GO terms.

The assembled contigs showed an Average Nucleotide

Identity (Konstantinidis and Tiedje 2005) score of 99% with

L. newyorkensis genomes, supporting the assignment of our

isolate to this species. The draft genome sequence of the novel

L. newyorkensis isolate is deposited in GenBank under the

accession number AZHN00000000, the version described in

this article is AZHN01000000.

Repetitive Sequences

Due to the relatively fragmented nature of the draft genome

assemblies, it is difficult to distinguish confidently between

plasmid borne sequences and repetitive elements in the

main chromosomes. Consideration of the K-mer coverage

of contigs in both assemblies revealed a restricted number

of relatively short contigs with atypical coverage. For L. new-

yorkensis, contigs representing small and large subunit ribo-

somal DNA sequences had K-mer coverage of 328 and 385,

respectively, with the median K-mer coverage of all contigs

being 55, consistent with the presence of 6 or 7 copies of the

ribosomal repeat. Three contigs (500–1,400 nt), estimated as

showing copy numbers between 3 and 12, potentially encode

proteins with high similarity to transposases/integrases,

whereas another (copy number = 3–4) might encode a homo-

log of an LPXTG-motif protein cell wall anchor domain protein

and a contig of approximately 900 nt (copy number = 2–3)

potentially encodes an autolysin modifying protein. Taken to-

gether, we interpret these findings as indicating the presence

of a number of possibly active transposable elements in the L.

newyorkensis genome.

For L. fleischmannii, the median K-mer coverage of all con-

tigs was 42.5, whereas ssu and lsu rDNA contigs had coverage

of 263 and 290, respectively, again indicating the presence of

6 or 7 copies of the ribosomal repeat. No other contigs with

anomalous coverage were detected and, taken together with

the lower degree of fragmentation in this assembly, we sug-

gest that other perfectly repeated, or high copy number se-

quences, such as transposons, are scarce or absent from the L.

fleischmannii genome although it is difficult to exclude the

presence of low copy number plasmid(s) in either organism.

Phylogeny of the Genus Listeria Sensu Lato

The genomes of 25 Listeria and 2 Brochothrix isolates (B. cam-

pestris and B. thermospacta) (supplementary table S3,

Supplementary Material online), were selected on the base

of phylogenetic relevance and contiguity of their genome as-

sembly, downloaded from GenBank, and used in conjunction

with our newly assembled genomes for comparative genomic

analyses.

Clusters of reciprocal best BLASTP matches (putative COGs)

were established using all-against-all BLASTP (Altschul et al.

1990) searches employing the BLOSUM80 matrix and accept-

ing only best reciprocal hits with e value� 1e-5 and where

“second-best” hits produce bit scores less than 90% of that

associated with the best match.

The conceptually translated sequences of 623 Listeria core

genes also present in both Brochothrix genomes were inde-

pendently aligned using Muscle (Edgar 2004) and ambigu-

ously aligned regions were excluded using the GBlocks

software (Castresana 2000). Maximum-likelihood phyloge-

netic reconstruction and bootstrap analyses were performed

using the software PHYML (Guindon et al. 2009) under the

WAG (Whelan and Goldman 2001) substitution model (sug-

gested by the software ProtTest [Darriba et al. 2011] to best fit

the data) with invariable and four gamma-distributed substi-

tution rate categories. The resulting topology (fig. 1A) is highly

congruent with that previously published by Weller et al.

(2014) and further confirms the preliminary species assign-

ments of the novel isolates sequenced here. All L. fleischman-

nii isolates were monophyletic and form a sister group to

L. floridensis and L. aquatica as previously proposed (den

Bakker et al. 2014). Listeria newyorkensis emerged as part

of a well-supported monophyletic group containing L. rocour-

tiae, L. cornellensis, L. riparia, L. grandensis and L. weihenste-

phanensis, but not as sister to L. rocourtiae itself. This last

grouping constituted the basal emergence within Listeria

(100% bootstrap support). As expected, L. grayi represents

the sister taxon of Listeria sensu strictu. The filtered supernet-

work algorithm (Huson et al. 2004), as implemented in

SplitsTree (Huson and Bryant 2006), was employed to provide

a representation of possible conflicts between individual core

gene trees (fig. 1C ) and provides no evidence for extensive

lateral gene transfer/gene replacement/allele sorting of Listeria

core genes other than, possibly between L. fleischmannii iso-

lates. Manual observation of 60 individual gene trees conflict-

ing with the concatenated gene tree revealed consistently low

bootstrap support for noncanonical relationships between L.

fleischmannii isolates. Taken together, these observations con-

firm existing hypotheses regarding phylogenetic relationships

among Listeria sensu lato and suggest that lateral transfer/

homologous replacement of genes that are widely distributed

among Listeria sensu lato is rare.

Core and Accessory Genomes

Our approach based on best reciprocal BLAST hits identified a

total of 9,639 clusters (more than one gene) of putative

orthologs as well as 9,095 singleton genes. Of the former
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1,129 are present in all Listeria genomes and 2,086 in all

Listeria sensu strictu genomes sampled. The latter observation

was consistent with a previous empirical observation of a core

genome of Listeria sensu strictu of 2,032 genes and a pre-

dicted size of 1,994 genes (den Bakker, Cummings et al.

2010). Rarefaction analyses suggested that these estimates

of the core genomes of Listeria sensu strictu and Listeria

sensu lato should remain fairly stable with additional species

sampling (fig. 2A).

Analogously, absolute counts of the accessory genome of

Listeria sensu strictu and sensu lato were 4,280 and 13,805

genes, respectively. Rarefaction analyses suggest that the cat-

alog of the accessory genes of Listeria sensu strictu is fairly

completely represented by the sampling used and irrespective

of the inclusion of singleton genes, whereas that of Listeria

sensu lato appears close to complete when singleton genes

are excluded, but rather open when singleton genes are in-

cluded (fig. 2B). The distribution of frequency of occurrence of

genes among Listeria genomes (fig. 2C) confirms that a large

proportion of accessory genes are present in only one or two

genomes. The discrepancy between the observed pan

genome size of Listeria sensu strictu (4,280 genes) and a pre-

vious total (2,918 genes) (den Bakker, Cummings et al. 2010)

is due mostly to the inclusion of genes with less than 75

codons in this study. Boxplots of gene size distributions by

genome are presented in supplementary figure S1,

Supplementary Material online.

Lateral Gene Transfer within Listeria

Prunier (Abby et al. 2010) searches for potential lateral gene

transfer events by identifying gene/protein trees that show

well-supported incongruence with a reference organismal

tree that has been pruned to give identical organismal sam-

pling as the gene under examination. This software was used

to examine 4,089 clusters of best reciprocal BLAST hits con-

taining representatives from five or more genomes. The pos-

sible confounding effect of LGT on COG assignment has

recently been noted (Dalquen et al. 2013). Indeed, of 738

candidate transfers identified by Prunier, additional similarity

searches (see Materials and Methods) suggested that 416

were likely “xeno-COGs” wherein one or more member(s)

were derived from homologous gene replacement or inde-

pendent acquisition events involving donors from outside

the genus Listeria. COGs whose phylogenies were identified

by Prunier as incongruent are listed in supplementary table S4,

Supplementary Material online. Notably, none of the 60 core

loci whose poorly supported phylogenies had suggested pos-

sible transfers between L. fleischmannii isolates was recovered

by Prunier as showing statistically significant incongruence.

The high frequency of inferred xeno-COGs among clusters

with five or more genes prompted an evaluation—through

similarity searches—of the coherence of 5,500 COGs that

contained representatives from only 2 to 4 genomes (and

which were accordingly not suitable for analysis by Prunier).

Of these, 1,012—where at least one member of the cluster

recovered a best BLAST match outside Listeria—were inferred

to be xeno-COGs. In total, 386 clusters with incomplete rep-

resentation in more than one Listeria subclade but where all

members were more similar to each other than to nonlisterial

genes were considered candidates for within Listeria gene

transfer.

Genome-Wide Evolutionary Dynamics

Presence/absence profiles of 8,211 putative orthologs, present

in at least two genomes and for which no evidence of xeno-

logous components had been inferred, were provided as input

to GLOOME (Cohen et al. 2010) for reconstruction of a pres-

ence/absence phylogenetic tree, and to provide estimates of

patterns of gene gain and loss across the genus. The gene

presence–absence tree (fig. 1B) is congruent with the topol-

ogy derived from likelihood analyses of concatenated gene

sets (fig. 1A). GLOOME provides probabilities for gain or loss

of each gene on each branch as well as posterior probabilities

for the presence of each gene at each node in the tree. Gene

gains were assigned to the most probable branch—provided

that the presence probability at the following node was

�95%. Singleton clusters were assigned as gains on terminal

branches and the previously identified xeno-COGs were ex-

cluded from subsequent analyses.

The potential origins of genes identified by GLOOME as

acquired along internal branches of the Listeria phylogeny

and of “singleton” best BLAST match clusters (genes present

in a single Listeria genome) were further investigated through

similarity searches (see Materials and Methods). Amino acid

sequences yielding best matches to proteins already included

in Listeria putative COGS were tentatively assigned as resulting

from Listeria-specific gene duplication events, whereas those

generating best matches to non-Listeria proteins were consid-

ered candidates for acquisition by lateral gene transfer.

Of 2,593 genes identified as acquisitions at the base of, or

within, the L. fleischmannii clade, 997 provided significant

best BLAST matches outside Listeria. For the L. rocourtiae

clade, the equivalent figures were 3,941 and 1,524; for

L. grayii 549 and 285 and for Listeria sensu strictu of 2,432

inferred nonterminal branch acquisitions 1,445 recovered best

hits outside Listeria. Although ratios of apparent gains by LGT

and duplication remain fairly constant across the genus, the

proportion of gains assigned to duplication events is rather

higher on terminal branches (54%) than internal branches

(33%). Statistics regarding the numbers and nature of inferred

gene gain events in the distinct Listeria subclades are summa-

rized in table 1.

Perhaps unsurprisingly, the largest numbers of genes were

gained on the branches leading to the basal divergences

within each of the major subclades within Listeria.

Considering all acquisitions assigned to branches associated
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FIG. 2.—Estimation of completeness of core and accessory genomes by rarefaction analyses. Core and accessory genome sizes were calculated on

randomly resampled combinations of Listeria genomes. Trends according to numbers of genomes sampled are presented. Error bars represent standard

deviations over 10,000 experimental replicates. (A) Core genome rarefactions for Listeria sensu strictu (red triangles) and the complete genus Listeria sensu

lato (blue squares). (B) Accessory genome rarefactions for Listeria sensu strictu without singleton genes (light red triangles), with singleton genes (dark red

triangles) and Listeria sensu lato without singleton genes (light blue diamonds) with singleton genes (dark blue squares). (C) Frequency distribution of number

of entries in inferred COGS for all Listeria genomes used in this study.
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Table 1

Statistics regarding Gene Gain and Loss Rates for Branches within the Listerial Phylogeny as Inferred by GLOOME and Singleton Assignment to

Terminal Branches

Branch Lengtha Gainsb Lossesb Gainc Lossc Ratiod

N2 0.46 160 461 2.86E-003 9.92E-004 0.35

Brochothrix campestris 0.16 196 308 8.40E-004 5.36E-004 0.64

Brochothrix thermospacta 0.14 232 268 6.17E-004 5.35E-004 0.87

N3 0.31 469 170 6.65E-004 1.84E-003 0.36

N4 0.15 538 161 2.81E-004 9.39E-004 3.35

N5 0.05 251 140 1.88E-004 3.36E-004 1.79

Listeria booriae 0.01 279 183 3.86E-005 5.88E-005 1.52

Listeria riparia 0.03 284 313 1.00E-004 9.09E-005 0.91

N6 0.03 286 131 1.08E-004 2.37E-004 2.19

Listeria weihenstephanensis 0.05 350 234 1.53E-004 2.29E-004 1.50

N7 0.01 232 207 5.60E-005 6.30E-005 1.12

Listeria grandiensis 0.06 285 318 2.27E-004 2.04E-004 0.90

N8 0.01 238 172 5.89E-005 8.14E-005 1.38

Listeria rocourtiae 0.07 305 330 2.17E-004 2.00E-004 0.92

N9 0.01 251 181 3.98E-005 5.54E-005 1.39

Listeria cornellensis 0.03 281 354 1.10E-004 8.78E-005 0.79

N10 0.01 346 214 4.05E-005 6.54E-005 1.62

Listeria newyorkensis.p 0.00 134 160 8.23E-006 6.87E-006 0.83

N11 0.00 173 143 1.12E-005 1.35E-005 1.21

Listeria newyorkensis.2 0.00 150 116 1.03E-005 1.33E-005 1.29

Listeria newyorkensis.1 0.00 125 123 1.31E-005 1.33E-005 1.02

N12 0.07 244 203 3.04E-004 3.64E-004 1.20

N13 0.09 311 173 3.02E-004 5.44E-004 1.80

N14 0.14 437 159 3.23E-004 8.87E-004 2.75

N15 0.01 155 133 4.31E-005 5.03E-005 1.17

Listeria fleischmannii.p 0.00 78 116 4.65E-006 3.12E-006 0.67

Listeria fleischmannii FSL-S10 0.01 124 195 8.01E-005 5.12E-005 0.64

N16 0.01 162 117 3.11E-005 4.31E-005 1.39

Listeria fleischmannii TTU-M1 0.03 216 315 1.32E-004 9.08E-005 0.69

Listeria fleischmannii LU2006 0.02 387 466 5.22E-005 4.33E-005 0.83

N17 0.09 220 320 3.87E-004 2.66E-004 0.69

Listeria aquatica 0.16 302 480 5.20E-004 3.28E-004 0.63

Listeria floridensis 0.11 342 373 3.20E-004 2.94E-004 0.92

N18 0.03 230 220 1.48E-004 1.55E-004 1.05

N19 0.29 235 492 1.24E-003 5.93E-004 0.48

Listeria gray DSM20601 0.00 145 189 1.85E-005 1.42E-005 0.77

Listeria grayi FSL-F6-1183 0.01 221 226 6.08E-005 5.96E-005 0.98

N20 0.13 510 182 2.55E-004 7.13E-004 2.80

N21 0.02 189 122 1.22E-004 1.88E-004 1.54

N22 0.03 194 199 1.65E-004 1.61E-004 0.97

Listeria seeligeri FSL-N1-067 0.02 194 381 9.58E-005 4.86E-005 0.51

Listeria seeligeri FSL-S4-171 0.01 247 256 5.75E-005 5.56E-005 0.97

N23 0.02 148 132 1.08E-004 1.21E-004 1.12

Listeria ivanovii PAM55 0.05 266 578 1.88E-004 8.67E-005 0.46

Listeria ivanovii FSL-F6-596 0.02 238 249 7.74E-005 7.40E-005 0.96

N24 0.02 186 107 9.15E-005 1.59E-004 1.74

Listeria welshimeri 0.03 195 169 1.59E-004 1.83E-004 1.15

N25 0.01 169 146 4.11E-005 4.76E-005 1.16

N26 0.02 107 100 1.88E-004 2.00E-004 1.06

Listeria innocua ATCC33091 0.02 202 390 1.02E-004 5.27E-005 0.52

Listeria innocua FSLJ1023 0.00 204 129 1.68E-005 2.66E-005 1.58

N27 0.01 121 119 8.25E-005 8.39E-005 1.02

Listeria marthii FSL-S4-120 0.04 203 477 2.13E-004 9.06E-005 0.43

(continued)
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with each major Listeria clade, no obvious biases toward par-

ticular possible donor organisms were evident (fig. 3) although

for all clades the most frequently inferred potential donors

included Bacillus, Carnobacterium, Entrococcus, and

Paenibacillus.

Strikingly, the mean ratio of branch-specific rate of gene

gain to rate of gene loss (defined as the sum of gene gain or

loss probabilities assigned to a branch by GLOOME [table 2])

was significantly higher (1.4 vs. 1.1) in the basal (L. rocourtiae)

clade than in the remaining clades (P� 0.0171 Welch’s t-test).

Table 1 Continued

Branch Lengtha Gainsb Lossesb Gainc Lossc Ratiod

N28 0.01 235 139 4.05E-005 6.83E-005 1.69

Listeria monocytogenes.12a 0.01 120 141 5.61E-005 4.80E-005 0.86

Listeria monocytogenes.EGD-e 0.00 113 95 1.79E-005 2.15E-005 1.20

aBranch length (substitutions per site from concatenated core gene phylogeny).
bExpected number of gene gains/losses according to GLOOME.
cSubstitutions per gene gain/loss.
dRatio of gene gain/loss rates.

A

B

FIG. 3.—Best matches for genes inferred to have been gained by horizontal transfer from outside Listeria. Frequencies of best matches to distinct taxa for

genes inferred to have been acquired on specific branches and giving best matches outside Listeria. All entries correspond to branches leading to nodes

described in table 1. (A) Genes inferred by GLOOME to have been inferred on internal branches of the Listeria phylogeny. (B) Singleton genes inferred to have

been gained on terminal branches. Key: L.m1, L. monocytogenes 1/2a; L.m2, L. monocytogenes.EGD-e; L.ma, L. marthii FSL-S4-120; L.in1, L. innocua

ATCC33091; L.in2, L. innocua FSLJ1023; L.wel, L. welshimeri SLCC5334; L.iv1, L. ivanovii PAM55; L.iv2, L. ivanovii FSL-F6-596; L.sel1, L. seeligeri FSL-S4-171;

L.sel2, L. seeligeri FSL-S4-171; L.g1, L. grayi FSL-F6-1183; L.g2, L. grayi FSL-F6-1183; L.fl.c, L. fleischmannii TTU-M1; L.fl.p, L. fleischmannii this study; L.fl.2, L.

fleischmannii LU2006-1; L.fl.1, L. fleischmannii FSL-S10-1203; L.a, L. aquatica; L.flo, L. floridensis; L.bo, L. booriae; L.rip, L. riparia; Lwei, L. weihenstepha-

nensis; L.roc, L. rocourtiae; L.cor, L. cornellensis; L.new.p, L. newyorkensis this study; L.new.2, L. newyorkensis 2; L.new.1, L. newyorkensis 1; B.c, B.

campestris; B.t, B. thermospacta.
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Normalization of the inferred branch-specific gene gain and

loss rates to the lengths of branches in the concatenated gene

tree (to provide estimates of rates of gene gain and loss with

respect to fixed substitutions) (table 2) suggested that al-

though rates of gene loss were similar across the genus,

gene gains occur more rapidly in the basal clade

(P = 6.097E-07), consistent with observations regarding

genome size and gene complement across the Listeria tree

(supplementary table S3, Supplementary Material online).

In the presence of purifying selection on coding sequences,

higher dN/dS indicates a lower efficiency of selection and

therefore a larger impact of drift, accordingly, dN/dS ratios

derived from concatenated nucleotide alignments of the

core genes used in phylogenetic reconstructions were em-

ployed as proxies of rates of genetic drift (Novichkov et al.

2009; Joseph et al. 2012) between pairs of cospecific isolates

from each major clade within the genus Listeria. For the four

L. fleischmanni and three L. newyorkensis genomes, all pair-

wise comparisons were performed whereas the two represen-

tatives of L. seeligeri, L. monocytogenes, L. ivanovii and L.

innocua employed for GLOOME analysis were also compared.

Estimated dN/dS values showed a significant negative corre-

lation with genome size (r =�0.759, P = 0.002595) (fig. 4A).

When only a single intraspecific comparison was used for

L. fleischmanni and L. newyorkensis, the correlation coefficient

(r =�0.9) remained significant (P = 0.01381) (fig. 4B), consis-

tent with the hypothesis that lower rates of genetic drift

(Novichkov et al. 2009) might underlie the larger genome

size of basal clade Listeria.

Functional Enrichment Analyses

COGs predicted by Prunier to have been subject to LGT

within Listeria (both inter- and intraclade) showed most

significant enrichment of the GO terms GO:0004478

(methionine adenosyltransferase-activity), GO:0006556,

(S-adenosylmethionine-biosynthetic-process) (supplemen-

tary table S5, Supplementary Material online). Xeno-COGs

recovered by Prunier were enriched in various carbohydrate

metabolic processes, whereas sparsely distributed xeno-

COGs with less than five members showed strong

Table 2

Summary of Specific Gene Gains for Individual Branches within the

Listerial Phylogeny as Inferred from GLOOME Outputs and Singleton

Assignment to Terminal Branches

Branch Gainsa With

Matchesb

Matches

within

SMCc

Brochothrix campestris 495 446 236

Brochothrix thermospacta 505 489 218

N3 403 357 61

N4 390 364 87

N5 301 289 129

Listeria booriae 461 222 195

Listeria riparia 396 324 290

N6 151 127 59

Listeria weihenstephanensis 282 269 208

N7 178 164 62

Listeria grandiensis 292 292 261

N8 141 131 48

Listeria rocourtiae 397 342 310

N9 196 168 79

Listeria cornellensis 496 447 389

N10 268 393 189

Listeria newyorkensis.p 91 82 60

N11 118 216 111

Listeria newyorkensis.1 129 81 56

Listeria newyorkensis.2 112 84 61

N12 111 100 31

N13 170 163 61

N14 229 205 96

N15 312 269 98

Listeria fleischmannii.p 149 95 85

Listeria fleischmannii FSL-S10-1203 207 124 122

N16 171 141 51

Listeria fleischmannii TTU-M1 213 148 132

Listeria fleischmannii LU2006-1 623 511 368

N17 179 137 65

Listeria aquatica 454 385 279

Listeria floridensis 405 399 336

N18 124 104 21

N19 254 202 79

Listeria gray DSM20601 235 198 156

Listeria grayi FSL-F6-1183 180 111 69

N20 386 379 77

N21 60 58 19

N22 208 181 69

Listeria seeligeri FSL-N1-067 402 338 278

Listeria seeligeri FSL-S4-171 375 314 254

N23 181 163 59

Listeria ivanovii PAM55 422 350 283

Listeria ivanovii FSL-F6-596 375 357 187

N24 209 202 67

Listeria welshimeri SLCC5334 99 77 48

N25 101 98 33

N26 64 59 21

Listeria innocua ATCC33091 238 200 153

Listeria innocua FSLJ1023 125 41 27

(continued)

Table 2 Continued

Branch Gainsa With

Matchesb

Matches

within

SMCc

N27 42 38 13

Listeria marthii FSL-S4-120 128 124 107

N28 234 201 59

Listeria monocytogenes.12a 84 83 66

Listeria monocytogenes.EGD-e 113.2 93 72

aNumber of genes gained.
bNumber of gained genes with matches to nonredundant database.
cNumber of matches within the same major clade of Listeria.
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enrichment of GO:0015074 (DNA-integration), consistent

with the inference of their transfer (supplementary table

S6, Supplementary Material online).

PFAM domains showing statistically significant departure

from random distribution between major listerial clades

were identified using a custom script (supplementary fig. S2

and table S7, Supplementary Material online). This analysis

highlights, for example, the expansion of internalin domain

genes in Listeria sensu strictu, as well as the overrepresentation

domains associated with cobalamin metabolism (cbi/cob), eth-

anolamine metabolism (eut), and flagellar motility.

Functional enrichment analyses performed on gene sets

identified as gains on individual branches of the listerial phy-

logeny (supplementary table S8, Supplementary Material

online) also highlighted several patterns that were highly con-

sistent with the global PFAM domain enrichments. For exam-

ple, terms related to ethanolamine and cobalamin metabolism

were significantly enriched on the branch leading to Listeria

sensu strictu, whereas terms relating to flagellar mobility were

enriched on the branch leading to the common ancestor of L.

grayi and Listeria sensu strictu. Three examples regarding the

putative gain of multigene clusters are considered in the fol-

lowing sections.

Riboflavin Biosynthesis in L. grayi

The significant enrichment of gene gains with associated GO

terms related to “riboflavin-biosynthetic-process” on the

A

B

FIG. 4.—Correlation between dN/dS for core genes and genome size for intraspecific comparisons within Listeria. Ratios of nonsynonymous to

synonymous substitution rates were calculated for cospecific genomes from 623 Brochothrix/Listeria core genes and correlated with genome size. (A)

Scatterplot including permutations of L. fleischmannii and L. newyorkensis intraspecies comparisons. (B) Scatterplot including single L. fleischmannii and L.

newyorkensis intraspecies comparisons.
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branch leading to the last common ancestor of L. grayi isolates

was associated with four, genomically clustered, genes anno-

tated as RibD, RibE, RibAB, and RibH and showing highest

similarity with homologs from various firmicutes. The gene

arrangement and the presence of an annotated FMN-sensitive

riboswitch are conserved with a wide range of bacterial op-

erons responsible for the biosynthesis of riboflavin, an essen-

tial precursor of FAD and FMN (Perkins and Pero 2001). These

observations lead to the prediction that L. grayi, unlike

L. monocytogenes (Welshimer 1963) (and presumably other

members of the genus), should be capable of riboflavin

biosynthesis.

Acquisition of Flagellar Genes

Forty-two of the 124 genes gained inferred to have been

gained in a common ancestor of L. grayi and Listeria sensu

strictu were associated with GO terms relating to flagellar

biosynthesis. Strikingly these genes constitute a contiguous

cluster on the genome of L. grayi and “sensu strictu” species.

Phylogenetic analyses of individual protein sequences (supple-

mentary fig. S3, Supplementary Material online, and see

Neville et al. 2012) represented as a galled network in

figure 5 reveal the consistent affinity of listerial flagellar-

system proteins for their homologs from the B. cereus com-

plex, where the corresponding genes are similarly clustered in

a tight genomic interval. Notably B. cereus proteins do not

show strong phylogenetic affinity with other firmicute flagel-

lar genes including those of other Bacillus species. The shared

peculiarities of listerial and B. cereus complex flagellar appa-

ratus include the presence of common FliN/Y paralogs absent

from other genomes (Neville et al. 2012).

These data are consistent with lateral gene transfer of the

entire flagellar biosynthetic pathway between a common an-

cestor of L. grayi/Listeria sensu strictu and an ancestor of the B.

cereus complex. Alternatively, an ancestral flagellar apparatus

in B. cereus may have been replaced from a similar, as yet

unknown, source to the donor of the listerial flagella. Flagellar

genes have been associated with pathogenicity in both B.

cereus-like organisms (Bouillaut et al. 2005; Ramarao and

Lereclus 2006) and Listeria (Dons et al. 2004) underlining

the possible relevance of the acquisition of flagella, before

the divergence of L. grayi, in the evolution of pathogenicity

in Listeria.

Genetics of Ethanolamine and Propane-2-Diol
Utilization in Listeria Sensu Strictu

Another striking example of functional enrichment is observed

among genes inferred to have been acquired in the common

ancestor of Listeria sensu strictu, where GO terms related to

cobalt transport, cobalamin metabolism, ethanolamine me-

tabolism, and propanediol metabolism were highly enriched.

Indeed, 82 of the 386 genes acquired are clustered in a single,

53-kb locus in Listeria sensu strictu, and constitute the

annotated cobalamin (vitamin B12) biosynthetic cluster and

the propane-2-diol and ethanolamine utilization clusters,

whose regulation has recently been studied in detail and

shown to be highly integrated (Mellin et al. 2013, 2014)

and, at least in the case of the eut pathway, contribute sig-

nificantly to virulence in L. monocytogenes (Mellin et al. 2014).

The genomes of basal Listeria contain a broadly conserved

putative operon consisting of cobA, NirS, nirB, cysG, and cbiX

genes as well as a distant locus homologous to the Bacillus

hemA, hemC, hemD, hemB, hemL operon (Hansson et al.

1991). HemH, hemE, hemN, and hemY genes (Hansson and

Hederstedt 1992) are scattered throughout their genomes,

whereas cob–cbi operons are not present. These observations

lead us to hypothesize that basal Listeria are capable, like

Bacillus megaterium, of synthesizing uroporphyrinogen III,

heme and siroheme from a glutamyl tRNA precursor, but

are unable to produce cobalamin (B12) cofactors de novo

(Raux et al. 2003; Layer et al. 2010). The conservation of the

structure of the hemACDBL and the similarity of the cobA–

cbiX locus to homologous loci in Bacillus, and other relatives of

Listeria suggest that this state may be ancestral to the genus

Listeria. Brochothrix genomes lack the cobA–cbiX locus (al-

though they possess a highly divergent cobA gene which

shows highest sequence similarity to homologs from

Clostridium species and was likely acquired independently);

however, all genes expected to be required for heme biosyn-

thesis are present—potentially consistent with secondary loss

of the ancestral siroheme biosynthetic pathway in Brochothrix.

The capacity to utilize ethanolamine and/or propanediol as

sole carbon sources is, for many bacteria, a prerequisite for

pathogenesis of vertebrates (Conner et al. 1998; Joseph

et al. 2006; Klumpp and Fuchs 2007; Srikumar and Fuchs

2010). Cobalamin is required as a cofactor in both these met-

abolic pathways and in Listeria sensu strictu, 40 characterized

lineage-specific genes are consistently clustered in a single 53-

kb genomic locus, and organized in 3 (putative) operons: a pdu

(propanediol utilization) operon, a eut (ethanolamine utiliza-

tion) operon, and a near complete cob–cbi (cobalamin biosyn-

thesis) operon (the last stage of synthesis of functional

cobalamin cofactor is mediated by a noncanonical combination

of enzymes [Gray and Escalante-Semerena 2010]). This gene

cluster is flanked at one end by the ancestral cysG gene. Other

genes from the putatively ancestral cobA, NirS, nirB, cysG, and

cbiX cluster are not present in Listeria sensu strictu, presumably

as they are not required for cobalamin or siroheme synthesis in

the presence of a complete complement of cob–cbi genes. It

was previously proposed that eut, pdu, and cob–cbi genes

might have been acquired through horizontal gene transfer

from a Salmonella-like bacterium (Buchrieser et al. 2003).

Consensus networks phylogenetic reconstruction for both

individual (supplementary fig. S4, Supplementary Material

online) pdu and cob–cbi genes and gene sets (fig. 6A and B)

suggest a close phylogenetic affinity of Listeria pdu and cob–

cbi genes to proteobacterial homologs as well as, in the case
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of cob–cbi to similarly arranged clusters in Gram-positive bac-

teria including Lactobacillus, Pediococcus, and Streptococcus.

The galled networks suggest possible recombination or gene

replacement within the listerial clusters, although uncertainties

regarding the rooting of these representations render explicit

inferences difficult.

Although Eut genes are also present in Brochothrix, neither

phylogenetic reconstructions of individual eut genes (supple-

mentary fig. S4, Supplementary Material online) nor the galled

network representation (fig. 6C ) suggests a sister group rela-

tionship with the listerial genes, and unlike pdu and cob–cbi,

no proteobacterial affinities were identified. Instead, the

network consensus representation implies that the listerial

eut cluster is made up of genes with firmicute ancestry.

Taken together, we interpret these data as suggesting that

the eut, cob–cbi, and pdu operons have likely been acquired

by Listeria through lateral gene transfer. Although the arrange-

ment and content of the cob–cbi and pdu clusters are con-

served with proteobacterial exemplars, at least in the case of

cob–cbi, similar gene arrangements are also observed in a va-

riety of firmicutes. Uncertainties regarding the root positions

for gene trees make direct inferences regarding the nature of

donors difficult. An alternative model, wherein this cluster was

present in the common ancestor of Listeria and Brochothrix

FIG. 5.—Galled consensus network for flagellar genes inferred to have been gained in a common ancestor of L. grayi and Listeria sensu strictu. Individual

gene trees were estimated for components of representative homologous flagellar gene clusters from listerial and nonlisterial genomes using the maximum-

likelihood method and a galled consensus network was calculated using the Dendroscope software.
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FIG. 6.—Galled consensus networks for pdu/cob-cbi and eut genes inferred to have been gained in a common ancestor of Listeria sensu strictu.

Individual gene trees were estimated for components of representative homologous gene clusters from listerial and nonlisterial genomes using the max-

imum-likelihood method and galled consensus networks were calculated using the Dendroscope software. (A) Pdu cluster proteins, (B) Cob–cbi cluster

proteins, (C) Eut cluster proteins.
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(with at least three independent losses in the known basal

Listeria lineages), cannot be excluded. However, the resem-

blance of the Brochothrix eut cluster to that found in

Enterococcus and Streptococcus and similarities between the

Listeria and Clostridia eut clusters may indicate that Brochothrix

and Listeria sensu strictu acquired the operon independently.

Discussion

Unraveling the molecular mechanisms underlying the patho-

genicity of L. monocytogenes has been a major consideration

motivating genome sequencing within the genus Listeria.

Comparative genomics/transcriptomics studies (Schmid et al.

2005; Hain et al. 2006; den Bakker, Bundrant, et al. 2010; den

Bakker, Cummings, et al. 2010; Wurtzel et al. 2012; Kuenne

et al. 2013) largely agree that on several key points:

. The common ancestor of Listeria sensu strictu was likely a
pathogen, as many pathogenicity-associated genes are
consistently found in nonpathogenic sensu strictu species
and strains (Schmid et al. 2005).

. The loss or attenuation of pathogenicity in several Listeria
sensu strictu strains and species results from the loss or
inactivation of key pathogenicity genes.

. The core genome of Listeria sensu strictu consists of about
2,000 genes and is highly stable. Gene acquisition and loss
occurs, but is rather limited (den Bakker, Cummings, et al.
2010).

. In L. monocytogenes, the majority of gene scale differences
occurs at a limited number of hypervariable genomic hot-
spots (Kuenne et al. 2013).

In this work, we have characterized the genomes of two

additional basal Listeria isolates and used comparative geno-

mics approaches to investigate the genome-level evolutionary

dynamics of the entire genus, with a focus on the “basal”

Listeria which have been less intensively investigated. In the

following paragraphs, the main inferences from our analyses

will be considered and contextualized.

The phylogenetic relationships within Listeria sensu lato in-

ferred here from a set of 623 proteins encoded by genes with

orthologs in all Listeria and Brochothrix genomes are congru-

ent with previous analyses (Weller et al. 2014) and show that

the genus is made up of four subclades, wherein L. grayi is

sister to Listeria sensu strictu. A clade consisting of L. fleisch-

mannii, L. floridensis and L. aquatica is the sister of Listeria

sensu strictu/L. grayi, whereas the remaining species constitute

the basal clade in the genus. Notably, the mean genome size

of members of the basal clade is significantly larger than that

of the remaining congeners. For pairs of genomes from the

same species, relative nonsynonymous to synonymous substi-

tution rates in core genes were used as a proxy for levels of

genetic drift (Novichkov et al. 2009; Joseph et al. 2012) and

showed a significant correlation with genome size across

pathogenic and nonpathogenic species. Similar observations

have previously been made over a taxonomically wide

sampling of bacteria and archaea (Novichkov et al. 2009).

To our knowledge, this is the first such inference from multiple

pairs of congeneric species.

For comparative genomic analyses regarding gene gain and

loss in bacteria, the authors of a previous study in Listeria sensu

strictu (den Bakker, Cummings et al. 2010) elected to exclude

predicted open-reading frames (ORFs) encoding proteins

shorter than 75 amino acids from analyses; due to potentially

inconsistent annotation of such ORFs between genomes con-

sidered (Warren et al. 2010). There also exists a widespread

suspicion that a high proportion of short ORFs might be pre-

diction artifacts; however, a mounting body of evidence sug-

gests that many, if not most, such ORFs are likely to represent

real genes (Ochman 2002; Wang et al. 2008; Su et al. 2013),

and that rapid turnover of short ORFs might represent a sig-

nificant mechanism in prokaryotic genome evolution (Nowell

et al. 2014). Here, we have chosen to retain all predictions for

analyses. The principal consequence of overprediction of spur-

ious genes is likely to be the inflation of numbers of singleton

genes and COGS with few genomes represented, whereas

inconsistent annotation will lead, in the main, to slight over-

estimation of gene loss frequencies.

Rarefaction analyses supported previous conclusions that

the catalog of the core genome of Listeria sensu strictu is

essentially complete (den Bakker, Cummings et al. 2010),

and that a similar situation applies for Listeria sensu lato.

However, the pan-genome of Listeria sensu lato is likely to

expand rapidly with the addition of further genome se-

quences. As with other bacterial genera (e.g., Touchon et al.

2014), singleton genes constitute a notable component of the

accessory genome and contribute greatly to estimates of its

rate of expansion as a function of genome sampling.

Nevertheless, even in the absence of singleton genes our anal-

yses fail to suggest convergence of accessory genome size

estimates, indicating that overprediction of genes is unlikely

to completely explain this inference.

Probabilistic reconstruction of evolutionary relationships

based on gene presence/absence recovered a topology

which was consistent with molecular sequence data, whereas

inferences of gene gain and loss rates across the genus sug-

gested that both the ratio of gene gain to gene loss and ab-

solute rates of gene gain (gain rate normalized to branch

length in substitutions) were significantly higher in the basal

(L. rocourtiae) clade than in remaining taxa. These observa-

tions are consistent with the observed differential genome

sizes and dN/dS ratios and indicate that quite distinct dynamics

apply to genome evolution in the basal clade.

Similar proportions of gene gains are inferred to result from

duplication and acquisition by gene transfer across the genus,

although duplication is more frequent among recent gains

(singleton genes), consistent with the hypothesis that al-

though transient duplication events may be relatively fre-

quent, fixation of exogenous genetic is more probable than

fixation of duplicated material. Perhaps unsurprisingly,
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putative sources of genes gained through lateral transfer were

most frequently relatively closely related organisms from

within the firmicutes. No bias toward particular candidate

donors was observed for individual clades or genomes al-

though sets of genes gained on several branches showed

highly significant functional enrichments (see below).

A substantial number of LGT events between Listeria ge-

nomes were initially predicted through incongruence be-

tween single-gene and organismal phylogenies. Further

examination of these predictions revealed that for a large

proportion (56.4%) of these genes, homologous gene re-

placement (or independent gains) from outside Listeria

(and consequent generation of COGs containing xenologous

genes) was more probable than intra-Listeria transfers. In

particular, only 104 (33%) of 322 high-confidence LGT pre-

dictions involved species from distinct Listeria clades. This

observation is particularly striking in the light of the

method used to infer LGT events. Phylogenetic incongruence

from LGT will tend to be more pronounced when more dis-

tantly related organisms are involved and thus the method

employed is expected to be more sensitive to such events.

Rates of gene gain from outside Listeria were, by necessity,

estimated in a distinct manner to intra-Listeria transfers, so it

is not possible to make quantitative comparisons of intra-

and intergenus transfer rates. High levels of conservation

might render within-Listeria transfer events difficult to

detect through phylogenetic approaches. However, the ob-

servation that individual core genes consistently yield well-

resolved phylogenies leads us to speculate that gene ex-

change between Listeria subclades is relatively rare.

Finally, several striking examples of large-scale acquisition

of functionally and genomically linked genetic loci were un-

covered. Thirty-two genes involved in flagella synthesis (and

the capacity for flagellar motility) were inferred, with high

confidence, to have been gained in the common ancestor

of L. grayi and Listeria sensu strictu. Phylogenetic reconstruc-

tions as well as gene content and arrangement emphasize the

common descent of the listerial flagella with that present in

the Bacillus cereus group, but not with those of other Bacilli

and firmicutes. A simple explanation of the observed phylo-

genomic distribution of this flagella type would be that Listeria

acquired their flagella from a B. cereus-like organism wherein

(unlike in other Bacilli) the relevant genes are arranged in a

single cluster. An alternative and perhaps equally valid sce-

nario is that both B. cereus and Listeria acquired their current

flagella from a similar, as yet unidentified, donor. We are

aware of few reports of transfer of complete flagellar systems

in bacteria (Liu and Ochman 2007; Poggio et al. 2007) and to

our knowledge, this is the first report of such an event involv-

ing Gram-positive bacteria.

Although L. monocytogenes downregulates the expression

of flagellar genes during pathogenesis through a

temperature-dependent mechanism, several lines of evidence

indicate that functional flagella augment the pathogenic

potential of both B. cereus-like organisms (Bouillaut et al.

2005; Ramarao and Lereclus 2006) and Listeria (Dons et al.

2004). Accordingly, it is possible that the gain of flagella at

least contributed to the evolution of pathogenicity in the an-

cestor of Listeria sensu strictu, whereas the presence of this

organelle in L. grayi may contribute to its capacity to behave as

a pathogen particularly in immune-compromised hosts

(Rapose et al. 2008; Salimnia et al. 2010).

Another gain of linked genes occurred in a direct ancestor

of Listeria sensu strictu, resulting in the formation of the pro-

pane-2-diol/ethanolamine/cobalamin locus, at least parts of

which have been shown to be essential for pathogenesis of

L. monocytogenes (Mellin et al. 2014) and other bacteria

(Conner et al. 1998; Joseph et al. 2006; Klumpp and Fuchs

2007; Srikumar and Fuchs 2010). The genes from the eut

operon are most closely related to homologs from other fir-

micutes, although consensus network representation of gene

trees suggests potential recombination within the cluster.

Although it was not possible to identify possible donors of

the listerial eut cluster, genes from a homologous locus pre-

sent in the genomes of Brocothrix species do not consistently

emerge as sister to the listerial sequences, supporting the

probabilistic inference of gene gain rather than differential

loss of ancestral eut genes in basal Listeria.

Genes from the pdu operon most closely resemble homo-

logs from Streptococcus, Pediococcus and Lactobacillus, but

show high levels of conservation of sequence and arrange-

ment with pdu operons from proteobacteria, whereas the

cob–cbi cluster of Listeria most closely resembles homologous

clusters from proteobacteria.

Although current genome sampling does not facilitate

identification of donor genomes for any of these operons, it

should be noted that, of available genomes, only in Listeria

sensu strictu are pdu, eut and cob–cbi operons arranged as a

single, tightly juxtaposed cluster, an intriguing observation

given the dependence of both propane-2-diol and ethanol-

amine metabolism on the cobalamin cofactor produced by

genes in the cob–cbi pathway.

Mechanisms possibly underlying the acquisition of both the

flagellar and eut/pdu/cob–cbi clusters include transducing

phages and integrative and conjugative elements (ICEs)

(Wozniak and Waldor 2010). Recognition of specific cell-

wall teichoic acid glycosylation modifications has recently

been implicated in the wide host range specificity of transduc-

ing phages of Gram-positive bacteria and some such phages

have been shown to be capable of transducing complex path-

ogenicity loci, for example, between Staphylococcus and

Listeria (Winstel et al. 2013). We consider a contribution of

phage-mediated transduction to transfer between Gram-

positive bacteria to be very plausible. ICEs are mobile elements

that mediate their own, sequence specific, integration and

excision and which are transferred through conjugation.

Listeria monocytogenes, and at least some Enterococcus,

Bacillus, Staphylococcus and Streptococcus genomes contain
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related ICEs (Burrus et al. 2002) and ICEBs1 transfer from

Bacillus subtilis into Bacillus anthracis, Bacillus licheniformis,

and L. monocytogenes has been experimentally demonstrated

(Auchtung et al. 2005). The L. monocytogenes ICELm1 ele-

ment, the closest homolog of ICEBs1, is situated within 30 kb

of the 50-end of the pdu/eut/cob–cbi cluster. Furthermore, we

note the presence of a broken integrase gene showing highest

similarity to orfA of ICESt1 in the vicinity of the flagellar reg-

ulon of L. monocytogenes. ICELm1 is a part of the TN916-like

family of elements, members of which have been identified in,

among other taxa, Listeria, Enterococcus, Lactobacillus, Pepto

streptococcus, Staphylococcus, Streptococcus, Veillonella, Fus

obacterium, and proteobacteria (Roberts and Mullany 2009).

Tn916 elements can be naturally transferred between Gram-

negative and Gram-positive species (Bertram et al. 1991) and

given the aforementioned considerations, may represent

good candidates as mediators of the complex gene gain

events inferred to have occurred within the genus Listeria.

Our findings are for the most part consistent with previous

comparative genomic analyses of Listeria sensu strictu (Weller

et al. 2014), wherein the core genome appears to be essen-

tially closed with available sampling. Furthermore, our analy-

ses indicate that lateral gene transfer, at least within Listeria, is

not likely to be widespread. However, consideration of avail-

able genomes of basal Listeria species highlights distinct evo-

lutionary dynamics where gene gain is more frequent and

genome size apparently less constrained. For these organisms,

available data support frequent gene gain, both by transfer

from outside Listeria and by gene duplication. Strikingly, the

distribution of inferred gene gain and loss events is consistent

with recent studies suggesting that the rapid turnover of novel

genetic material in individual prokaryotic genomes represents

a taxonomically widespread phenomenon.

Supplementary Material

Supplementary methods and results, figures S1 and S2, text,

and tables S1–S8 are available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/ ).
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