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Abstract

Recent developments in sequencing technology have allowed the investigation of the common 

disease/rare variant hypothesis. In the Genetic Analysis Workshop 17 data set, we have sequence 

data on both unrelated individuals and eight large extended pedigrees with simulated quantitative 

and qualitative phenotypes. Group 11, whose focus was incorporating linkage information, 

considered several different ways to use the extended pedigrees to identify causal genes and 

variants. The first issue was the use of standard linkage or identity-by-descent information to 

identify regions containing causal rare variants. We found that rare variants of large effect 

segregating through pedigrees were precisely the bailiwick of linkage analysis. For a common 

disease, we anticipate many risk loci, so a heterogeneity linkage analysis or an analysis of a single 

pedigree at a time may be useful. The second issue was using pedigree data to identify individuals 

for sequencing. If one can identify linked regions and even carriers of risk haplotypes, the 

sequencing will be substantially more efficient. In fact, sequencing only 2.5% of the genome in 

carefully selected individuals can detect 52% of the risk variants that would be detected through 

whole-exome sequencing in a large number of unrelated individuals. Finally, we found that 

linkage information from pedigrees can provide weights for case-control association tests. We also 

found that pedigree-based association tests have the same issues of binning variants and variant 

counting as those in tests of unrelated individuals. Clearly, when pedigrees are available, they can 

provide great assistance in the search for rare variants that influence common disorders.
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Introduction

Can standard linkage analysis be used to help narrow the region to be searched in an 

association study? The short answer is, of course, yes. The larger question, however, is 

whether the advent of genome-wide association (GWA) studies sounds the death knell of 

linkage studies. This question formed part of the undercurrent explored by Group 11 of 

Genetic Analysis Workshop 17 (GAW17). We argue here that, because both linkage 
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analysis and GWA studies exploit the same physical phenomena, they are not in competition 

but are rather complementary methods and that the debate pitting the two approaches is a 

false dichotomy [Risch and Merikangas, 1996]. Each method has its strengths and 

weaknesses.

One hundred forty-six years ago an obscure Bohemian monk, Gregor Johann Mendel, 

announced the results of his experiments on the common garden pea (Pisum sativum). The 

full account of his seminal work was published the following year [Mendel, 1866]. 

However, for a variety of reasons, his findings were largely ignored by the scientific 

community of his day, only to be independently rediscovered in 1900 by three botanists (the 

Dutch biologist Hugo de Vries, the German botanist Carl Correns, and the Austrian Erich 

Tschermak). Mendel's observations led to the formulation of two important laws: the law of 

segregation and the law of independent random assortment. Ironically, it is the violation of 

Mendel's second law that underpins both linkage analysis and GWA studies. It is, as it were, 

the exception that proves the rule.

Mendel studied seven sets of alternative characters in a species that we now know has only 

seven pairs of chromosomes. Two of the characters he analyzed display phenotypes 

resulting from genes physically located on the same autosome. The map positions of these 

two loci, however, are sufficiently distant that their alleles segregate independently. They 

are syntenic but not linked.

Although chromosomes were first discovered in 1842 by the Swiss botanist and 

microscopist Karl Wilhelm von Nägeli, the hypothesis that chromosomes carry the genes in 

a more or less linear order was not confirmed until 1902 by Sutton [1902, 1903]. Indeed, it 

was not until 1956 that the diploid number of chromosomes for our species was finally 

determined to be 46 [Ford and Hamerton, 1956; Tjio and Levan, 1956]. Because multiple 

loci are packaged on the same chromosome, both linkage analysis and GWA studies are 

obvious approaches for locating those genes. In the not too distant past the challenge for 

either method was the dearth of markers. Before recombinant DNA technologies were 

available, the number of markers was restricted to a few dozen blood groups, serum 

proteins, and cytological markers. (Before use of DNA variants as markers for linkage 

studies, it was common practice to obtain blood samples from members of a family, 

centrifuge the samples, and discard the buffy coat containing the DNA!) What changed, 

beginning in the 1970s, was the revolutionary explosion of discoveries of DNA sequence 

variants (e.g., restriction fragment length polymorphism [RFLPs], variable number of 

tandem repeats [VNTRs], microsatellites, and single-nucleotide polymorphisms [SNPs]). It 

became obvious that the abundance of markers would allow the mapping of all simple 

Mendelian phenotypes given sufficient family data [Botstein et al., 1980].

Both linkage analysis and GWA techniques aim to locate the chromosomal position of genes 

that give rise to a measurable phenotype. Historically, the older of these two techniques is 

linkage analysis, which proved to be an especially useful tool for mapping genes in 

organisms for which controlled experimental crosses could be performed. In addition to the 

scarcity of markers, linkage analysis in humans was much more difficult because of the 

relatively small size of families and the cumbersome statistical methods. Ott's [1974] 
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implementation of Elston and Stewart's [1971] algorithm in the computer program LIPED 

revolutionized human linkage analysis. Association studies did enjoy a brief period of 

popularity in the 1950s, but like linkage analysis, these early case-control studies suffered 

from two problems: a paucity of genetic markers, so they were largely restricted to searching 

for an association between various diseases and blood groups; and sample sizes that were in 

retrospect woefully underpowered [Suarez and Hampe, 1996].

To be sure, there are significant differences between linkage analysis and GWA studies. 

Whereas most linkage analyses are carried out in families ranging in size from sib pairs to 

large extended pedigrees (the exception is somatic cell hybrid studies that can locate loci on 

a particular chromosome.), GWA studies are primarily carried out on unrelated samples of 

case and control subjects drawn from the same breeding population. Both methods exploit 

the fact that genes that are located close enough together do not display independent random 

assortment. In families, the propinquity between the causal gene and the marker need only 

be close enough that the recombination fraction between the two loci is significantly less 

than 50%. The causal gene and the marker can be dozens of megabases apart and still 

provide mapping information. On the other hand, notwithstanding a marker that is the culprit 

responsible for the phenotype under study, a successful GWA study requires that the marker 

be in linkage disequilibrium with alleles at the causal gene. In an idealized closed random 

mating population, not subject to mutation, selection, admixture, or drift, the expectation is 

that, given enough time, alleles at any two genes (or a gene and a marker) will not display 

linkage disequilibrium. However, the approach to equilibrium may take many generations 

[Suarez and Hampe, 1996] and, moreover, no human population is, or has ever been, free of 

the evolutionary forces supposed for the idealized population.

All the contributors to Group 11, which focused on incorporating linkage information, 

carried out some sort of linkage or family-based analysis. Because a main focus of GAW17 

dealt with the analysis of rare variants, standard linkage analysis with the 24,487 SNPs in 

3,205 genes would likely have been underpowered because so many SNPs had a minor 

allele frequency less than 1% (and would not meet the standard definition of a 

polymorphism [Ford, 1940]). In fact, in the sample of 697 unrelated individuals, 9,433 of the 

24,487 SNPs (38.5%) had only a single occurrence. The abundance of these private 

polymorphisms (in the sense used by Race and Sanger [1950]) would yield a low 

information content for linkage analysis. Fortunately, the data providers simulated 

completely informative markers for each of the 3,205 genes and provided the participants 

with identity-by-descent (IBD) matrices for all pairs of pedigree members. Without these 

matrices, standard linkage analysis would have had low power to detect any of the causal 

genes without adding more polymorphic markers with higher information content.

Methods

There were three questions addressed by Group 11. First, we tried to understand how well 

IBD information and linkage analyses could be used to identify regions containing causal 

rare variants. Second, we considered the costs and power of using limited sequencing based 

on the family data. Finally, we investigated the role of rare variants for association tests with 

family data.
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IBD Information and Linkage Analyses

All of the work groups investigating IBD information and linkage analyses used the fully 

informative IBD matrices. Analyses included all three quantitative traits as well as the 

affection status. The methods of linkage analysis included affected relative pairs 

implemented in LODPAL (from the SAGE package [SAGE Project, 2009]), variance 

components implemented in SOLAR [Almasy and Blangero, 1998], the Elston-Stewart 

algorithm implemented in FASTLINK [Cottingham et al., 1993; Schäffer et al., 1994], the 

modified Haseman-Elston algorithm [Elston et al., 2000], the Lander-Green algorithm and 

variance components implemented in Merlin [Abecasis et al., 2002], and a Markov chain 

Monte Carlo algorithm implemented in MCLINK [Thomas et al., 2000].

Song et al. [2011] developed a novel method to analyze affection status. Each affected 

individual was assigned a propensity score [Doan et al., 2006]; this score is the predicted 

probability of being affected based on a logistic regression using the significant covariates, 

calculated in each replicate separately. Linkage analysis was performed using LODPAL, and 

SNPs were placed into the model in turn. Each SNP was assigned the value of the LOD 

score with the SNP included after subtracting the LOD score of the base model (without any 

SNP genotypes). This was called the LodDiff.

Shi et al. [2011] used SOLAR on the two quantitative traits with simulated risk loci, Q1 and 

Q2. They examined the role of family-specific linkage analysis and power across 200 

replicates. Hinrichs et al. [2011] also used SOLAR on the quantitative traits but generated a 

novel phenotype by considering, first, 50 replicates as the repeated measures of a single 

genotyped individual; they derived a quantitative liability score. For comparison, they also 

considered the combination of 50 replicates analyzed using Fisher's method [Province, 

2001]. Simpson et al. [2011] analyzed both the quantitative traits and the affection status 

using the modified Haseman-Elston algorithm, the Lander-Green algorithm, and variance 

components. They also analyzed affection status using the Elston-Stewart algorithm.

Akula et al. [2011] performed a novel variation on the affected relative pairs linkage 

method. They examined only affected pairs of fourth- and fifth-degree relatives to identify 

loci with higher sharing than expected. This was repeated across all replicates.

Identifying Sequencing Candidates

The second question addressed by Group 11 was a cost-benefit analysis of performing 

limited resequencing to identify rare variants using family data. In the GAW17 data set, we 

were provided with sequence data for all exons in all 3,205 genes in all individuals 

generated by gene dropping from subjects in the 1000 Genomes Project. In any other 

sample, this much sequencing would be prohibitively expensive (although prices are 

dropping rapidly). We considered the advantages and disadvantages of restricting attention 

to only genes underneath established linkage peaks and selecting individuals likely to be 

carriers of rare variants with large effect size.

Allen-Brady et al. [2011] used MCLINK for the affection status across 23 unilineal 

pedigrees in each of 10 replicates. They identified regions with a heterogeneity LOD [Smith, 

1961] score of 3.3 or greater (significant) or less than 3.3 but greater than 1.86 (suggestive). 

Hinrichs and Suarez Page 4

Genet Epidemiol. Author manuscript; available in PMC 2015 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



They considered a number of different methods to select individuals for these gene regions 

(such as the youngest affected subject or low-covariate-risk subjects) and tested to see how 

frequently a rare causal variant would have been identified. Similarly, Choi et al. [2011] 

considered linkage analysis of the quantitative phenotypes and how frequently a causal rare 

variant would have been identified through exonic sequencing of the linked family.

Association Testing

The final topic addressed by Group 11 was to examine the role of rare variants for 

association tests with family data. Feng et al. [2011] developed a novel statistical method in 

which data from affected sibling pairs within arbitrary pedigrees was used to weight 

variants; they then ran association tests based on those weights. In particular, to test a set of 

variants belonging to a group (gene, pathway, genomic region, etc.), they generated a weight 

for each variant on the basis of affected siblings carrying the minor allele and unaffected 

siblings carrying the major allele. For a sample of unrelated case and control subjects, each 

individual was given a genetic score based on the weights for each variant. This approach is 

similar to a method developed by Madsen and Browning [2009], where weights were 

created using the inverse of the variance of the minor allele frequency in control subjects. 

Feng and colleagues first tested a single replicate and then compiled replicates to generate 

400 affected sib pairs and 2,000 case subjects and 2,000 control subjects.

Almeida et al. [2011] compared a variety of association methods and tested sensitivity, 

specificity, and positive and negative predictive values. These methods included looking for 

reduced heritability estimates from SOLAR by including polymorphisms as covariates and 

p-values from QTDT [Abecasis et al., 2000]. They considered several different methods for 

binning rare alleles. They also examined the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database to look for interconnected pathways with influence on the traits.

Simpson et al. [2011] compared power and type I error rates of two family-based association 

tests as applied to the quantitative traits: regression on mid-parent (ROMP) [Pugh et al., 

2001; Roy-Gagnon et al., 2008] and ASSOC from the SAGE package [SAGE Project, 

2009].

Results

First and foremost, we note that the contributors chose a variety of subsets of the data for 

testing: The number of replicates used varied between 1 and all 200; in some cases only a 

few of the large extended pedigrees were used; and several methods decomposed the large 

pedigrees into nuclear subsets. The results presented here are based on the internal testing 

that each work group performed, and the results may differ on different data sets. In the 

Discussion section, we present results that were observed by several teams.

IBD Information and Linkage Analyses

Song et al. [2011] looked for an increase in LOD score (the LodDiff) when a causal SNP 

was included in the trait model. They found that the LodDiff was highly skewed toward true 

positives. However, their method still requires work into the statistical properties of the 
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LodDiff. In particular, the theoretical and empirical distributions of the LodDiff need to be 

developed.

Shi et al. [2011], Hinrichs et al. [2011], and Simpson et al. [2011] all revealed the ability of 

linkage analysis to localize candidate genes with true causal variants. Many of the 

significant findings occurred in only a single family or in a small number of families where 

a causal variant happened to segregate throughout a pedigree (Table I). In fact, a number of 

causal variants that occurred only a few times in the unrelated individuals and thus could not 

have been detected in that sample showed significant linkage. These three work groups also 

noticed odd patterns of false positives that may have been due to identical genotype data 

across replicates. Hinrichs and colleagues found that the repeated-measures framework, with 

multiple phenotypic observations for the same genotype, might be useful for longitudinal 

data in human or animal genetics.

Simpson et al. [2011] showed that methods using extended pedigrees (such as variance 

components analysis or Elston-Stewart model-based linkage in extended pedigrees) had 

substantially greater power than sibling pair and nuclear pedigree-based linkage analysis. 

However, the Elston-Stewart algorithm is severely limited in the number of markers it can 

analyze at one time in multipoint linkage, which reduces its utility in modern sequencing 

studies. Finally, following up linkage signals that are suggestive rather than genome-wide 

significant does not adequately control for type I error.

Akula et al. [2011] found that looking at sharing for distantly affected pairs of relatives 

resulted in a low true-positive rate (4.6%). However, this method may be more useful in a 

different context, because there are lots of variants that increase risk in these data. The 

technique may be most useful for Mendelian traits, rare traits for which there are unlikely to 

be multiple risk variants within a pedigree, or inbred pedigrees for which distantly related 

individuals have IBD = 2. Because the GAW17 data set has no inbreeding and simulates a 

common disease with many risk variants, further investigation of the method in other data 

sets is necessary.

Identifying Sequencing Candidates

Allen-Brady et al. [2011] found that it is far less efficient to sequence unrelated case 

subjects than to use linkage information to identify linked pedigrees and to select outlying 

case subjects from the pedigrees, such as the youngest affected individual or affected 

individuals with low covariate risk. Identifying haplotype carriers through examination of 

segregation patterns, when possible, is also extremely useful. Similarly, Choi et al. [2011] 

found that by sequencing only 2.5% of the exome (the areas under significant linkage peaks 

in the families), they were able to identify 52% of the loci that would have been identified 

by whole-exome sequencing in the unrelated individuals.

Association Testing

Feng et al. [2011] found that the weights generated from family data substantially improved 

on the Madsen-Browning weighting scheme. Although neither method had power in a single 

replicate, when considering a larger data set, their novel method found more significance for 
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a true positive than the Madsen-Browning method in one case and identified a true positive 

missed by the Madsen-Browning method in another case.

Almeida et al. [2011] showed that several different ways of dealing with the information 

provided by rare and common variants showed low sensitivity and low positive predictive 

value to detect causal genes. The polygenic model using the information provided by 

common variants that altered trait heritability in at least one family presented the highest 

level of sensitivity but a lower positive predictive value. However, these analyses were 

based on only a single replicate. Almeida and colleagues also noted that only a third of 

genes present in the exome had entries in the KEGG database, and consequently any kind of 

annotation would neglect a significant proportion of genetic information

Simpson et al. [2011] found that the nuclear family-based tests of association (ROMP and 

ASSOC) were more powerful than the linkage methods in detecting variants with causal 

effects on the quantitative traits Q1 and Q2 but that they also lacked stringent control of type 

I error.

Discussion

Group 11 set out to examine how linkage information could be incorporated into a common 

disease/rare variant framework using the GAW17 data. Three questions were considered: 

Can linkage analyses be used to detect rare variants? Can we select sequencing candidates 

from family data? Can we perform association with rare variants in family data? However, 

we note that the term rare variant may be misleading. In particular, a variant that appears in 

only a small percentage of unrelated individuals may be enriched within a family and 

actually be quite common. Similarly, a variant that is common in unrelated individuals but 

that happens to not occur in the founders of a pedigree will appear to be monomorphic. All 

the methods described here depend to some extent on the frequency of the risk variants, but 

they tend to rely more on the segregation of those variants conditional on their presence in 

founders.

We found that linkage analyses work well in the common disease/rare variant framework. In 

particular, when a rare variant of large effect segregates through a pedigree, this perfectly 

fits a linkage model for quantitative or qualitative traits. After examining the families 

contributing to the true-positive signals, our group found that often a single family or a small 

number of families were responsible for the linkage signal. For example, in Table I we see 

that the single causal variant in VEGFC occurs only once in the unrelated sample but is 

observed in 31 individuals in Family 7. On the other hand, any risk variants that do not 

appear in the relatively small number of founders cannot be detected through any family-

based analysis.

Our second issue, the selection of sequencing candidates, investigates the circumstance in 

which sequencing resources are limited and available for only a small number of 

individuals. Our results indicate that appropriate selection of individuals for sequencing can 

greatly reduce sequencing costs while maintaining reasonable power. In particular, when 

family-specific analysis shows strong linkage to a particular region, the affected or 
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quantitatively extreme individuals, when sequenced, are much more likely to identify rare 

variants than randomly selected case subjects. If a risk haplotype segregating through the 

pedigree can be identified, then the chance of finding risk variants will be further increased.

For the final issue, association tests, we find that families also have advantages. We 

observed that family linkage information can provide weights for an analysis of unrelated 

case and control subjects. This technique outperforms other methods based only on weight 

or on minor allele frequencies. We also found that when directly testing association in 

pedigrees, we encounter the same issues as with unrelated case and control subjects, namely, 

that when multiple rare variants occur within a gene, we need to consider binning or allele 

counts rather than simply performing separate tests on each variant.

Clearly then, in a common disease/rare variant framework, extended pedigrees have 

tremendous promise. Using linkage analysis to identify candidate genes, identifying 

individuals for sequencing, and performing association tests within pedigrees can all have 

better power than simply looking at unrelated case and control subjects. On the other hand, 

these methods require the use of informative markers outside what would be typed during 

exonic sequencing in case and control groups. This suggests that the many studies that have 

collected large pedigrees and typed them with microsatellites or SNPs for linkage would be 

well served by reexamining them to identify loci where rare variants of large effect may be 

segregating.
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