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ABSTRACT A pooled-sample approach to the construc-
dion of hig-resolution genetic maps is described. The strategy
depends on the existence ofan easily selectable target locus and
the ability to produce large segregating populations. If these
requirements are met, the pooled-sample mapping approach
allows tightly linked marks (e.g., restriction fgment length
polymorphisms) to be mapped relative to the target with a great
economy of effort. The recombination fractions among loci can
be estimated by the maximum likelihood method and a simple
approximate estimator is derived. The order of loci is deduced
using a Bayesian statical framework to yield posterior prob-
abilities for all possible orderings of a marker set. Optimal
pooling strategies and the effects of misclassification of selected
individuals aredied and studied by computer simulation.
The feasibility of this method is demonstrated by the high-
resolution mapping ofa region on chromosome 5 oftomato that
contains a gene regulating fruit ripening.

The idea of using restriction fragment length polymorphisms
(RFLPs) for genetic mapping was introduced in 1980 (1).
Since that time there has been rapid progress in the devel-
opment of genetic maps in a variety of organisms, including
humans, mice, and many crop species (2-5). One of the
reasons for constructing DNA-based genetic maps is for use
in chromosome walking. Currently, many interesting and
important genes are known only by their phenotype. Lack of
knowledge oftheir gene products inhibits traditional methods
ofgene cloning; however, knowing the position of such genes
on a DNA-based map opens the opportunity for walking to
the gene from adjacent marker(s). In this manner, a number
of genes have been cloned from humans and other higher
eukaryotes in recent years (6).
Two requirements for chromosome walking are (i) avail-

ability of tightly linked DNA marker(s) in the vicinity of the
gene of interest and (ii) knowledge of the position of these
markers relative to the targeted gene. In the past, finding
markers near a gene of interest proved to be very time
consuming. However, increased efforts in genome mapping
have led to the generation of RFLP-based maps for many
organisms (2-5). In addition, there are now methods in place
for rapidly identifying DNA markers specific to any region of
a genome (7-11).
Once a number of markers tightly linked to a gene of

interest have been identified, the two markers that most
closely flank the targeted gene must be identified since it is
these two markers that provide the most efficient starting
points for a walk. In cases where the markers are very tightly
linked to the targeted gene [e.g., <1 centimorgan (cM)],
analysis of hundreds or even thousands of segregating prog-
eny may be required to determine the order of markers in the
vicinity of the target gene (12). This can be costly and time
consuming since it requires isolation and analysis of DNA
from each individual in a segregating population. As the

relationship between genetic and physical distances may vary
across different regions of the genome, additional experi-
ments to verify tight physical linkage may be warranted.

In an effort to overcome the problem encountered with
mapping large populations, we have devised and tested a
pooled-sample method for high-resolution mapping around
genes targeted for cloning. The method exploits the fact that
when mapping many markers in a small segment of a chro-
mosome, very few individuals (from a segregating popula-
tion) contain chromosomes with a crossover in the region of
interest and thus most individuals provide little useful infor-
mation. By pooling individuals for analysis, the effort re-
quired to construct a high-resolution map can be reduced
manyfold. The steps for using this pooled-mapping technique
in a segregating population (e.g., F2) are as follows: (i)
identify (by phenotype) those individuals that are homozy-
gous (usually homozygous recessive) for the target gene and
(ii) divide these individuals into pools (see Results for opti-
mum pool sizes). Extract DNA en masse from each pool
using approximately equal amounts of tissue from each
individual. This bulked DNA is then probed with clones
known to be located in the vicinity of the gene. The propor-
tion of pools containing at least one crossover event is
recorded and the resulting data are used to construct a
high-resolution map. By using this method, the number of
samples from which DNA must be isolated and analyzed can
be reduced by a factor of 10 or more. There are two practical
requirements: the trait being selected must be known to be
controlled by a single gene and it must be possible to identify
single recombination events between the target and marker
genes in the pooled DNA sample.
We present here the basic theoretical considerations nec-

essary for utilizing pooled mapping and demonstrate the
technique by mapping a gene regulating fruit ripening in
tomato. This method leads to the identification of the two
markers most closely flanking the targeted gene. It can also
be used to determine the map order of other markers and an
estimate of map distance from the targeted gene. Although
the method has been demonstrated in a plant, it can be used
in any diploid sexually reproducing organism for which large
segregating populations can be obtained.

MATERIALS AND METHODS
Pooling. Individuals from an F2 population segregating for

a target locus (T) are determined to be homozygous for the
target locus (either TIT or tit) and are divided into n pools of
k individuals each. Since each individual contains two chro-
mosomes, the number of independent meiotic events repre-
sented by each pool equals 2k. If a backcross population is
used, the number of meiotic events equals k, and the results
below should be modified accordingly. DNA is isolated en
masse from each pool and analyzed with markers thought to
be linked to T but not necessarily ordered with respect to T
or each other. It is assumed that a single recombinant

Abbreviations: RFLP, restriction fragment length polymorphism;
cM, centimorgan.
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chromosome can be detected in a pool of otherwise nonre-
combinant chromosomes but that the exact number of re-
combinant chromosomes cannot be determined. Therefore,
the results from probing a pooled DNA sample with a linked
marker classify that pool as recombinant (i.e., contains at
least one chromosome that is recombinant between the
marker and the target gene) or nonrecombinant. The com-
bined result of probing a pool with a set ofm markers, M =
{MI, M2 ... , Mm}, is a classification of the pool into one of
2m possible pool types. A pool type is defined by the set S of
markers in M that are recombinant with respect to T for at
least one chromosome in the pool. The observed number of
pools of type S will be denoted by Y, and the 2m vector of
observed counts will be denoted by Y.
Ordering ofMarkers. The goal ofa pooled sample mapping

experiment is to infer the map order among a set of markers
relative to the target locus. In particular, we wish to identify
the two markers that most closely flank the target locus. One
widely used approach to the problem of inferring map order
among a set of markers is to choose that order which has the
highest maximized likelihood (13, 14). However, the maxi-
mum likelihood approach has several limitations. (i) When
markers are known to be tightly linked to the target locus, as
will generally be the case when a pooled-sample approach to
mapping is being considered, this prior knowledge should be
incorporated into the linkage analysis. (ii) The different order
hypotheses are not nested and thus one cannot construct a
likelihood ratio to formally test the best order. For these
reasons we have employed a Bayesian approach to the
marker ordering problem.
Let H denote the map order of markers in the set M U T

and let R = (r1, r2, . .. , rm) denote the recombination
probabilities between adjacent markers in the ordered set.
Inference of the map order will be based on the posterior
probability (Pr) of H, which can be computed as

Pr(HIY) a Pr(H)fPr(YIR, H) Pr(RIH)dr, [I]

distinct orders and the equally likely prior distribution is Pr(H
= h) = 2/(m + 1)!, for all orders h. In situations where order
information is available, the posterior probabilities from
previous experiments can be used as the prior distribution for
the new experiment.
The prior distribution on recombination probabilities is

taken to be a product ofm - 1 independent Beta distributions
with parameters a = 1 and b = 100-D - 1. This is an
analytically convenient choice and, when the genetic dis-
tances involved are small, approximates the distribution of
spacings between randomly placed markers. Because recom-
bination probabilities can vary significantly in different
crosses, it is not clear what form of prior information should
be used when previous experimental data are available.

Decision Rules. The posterior probabilities (Eq. 1) are used
to make decisions about the map order. The decision rule that
chooses the order with highest posterior probability as an
estimate ofthe true map order is optimal in the sense ofbeing
the Bayes rule for a 0 - 1 loss function (ref. 16, p. 163).
However, if the markers are to be used to attempt a chro-
mosome walk, an incorrect decision could be very costly. We
wish to ensure that the two nearest markers that span the
target are correctly ordered with high probability. A more
stringent criterion is to decide that an order is correct only if
its posterior probability exceeds a specified critical value
(e.g., 0.90). Otherwise, no decision is made and probing of
additional pools will be required to resolve the map order.

RESULTS
Estmating the Genetic Map Distance Between a Marker and

the Target Gene. Let T denote the target locus, A denote a
marker locus near T, and r denote the probability of recom-
bination between A and T within a single chromosome. The
probability that a pool contains at least one recombinant is pA
= 1 - (1 - r)2k. When r is small, this probability is
approximated by 1 - e-2kr. An approximate maximum like-
lihood estimator for r is

r= (1/2k)ln[1- (yAln)],
where Pr(H) is the prior distribution on map orders, Pr(RIH)
is the prior distribution on recombination probabilities, and
Pr(YIR, H) is the likelihood of the observed counts. The
integral can be evaluated to desired numerical precision by
the Monte Carlo method of composition (15).
The likelihood is multinomial on 2m pool types,

Pr(Y= yIR, H) X H pss
SCM

[2]

where the pool type probabilities Ps are to be defined in
Results and ys is the observed count of pools of type S. The
multinomial distribution follows from assumptions that indi-
vidual pools contain identical numbers of chromosomes
generated by independent meioses and that each pool is
probed independently of others.

Prior Distributions. The prior knowledge available about
map order and recombination probabilities will depend on the
source of the markers. For example, we may consider
markers selected at random from a fixed interval of known
size (e.g., markers identified using nearly isogenic lines; ref.
9), markers known to segregate closely with the target locus
in previous crosses, or markers selected in the vicinity of the
target locus from a previously constructed high density
genetic map. For purposes of this analysis, the markers are
assumed to be placed uniformly at random in a region around
T with known density D markers per cM.

In the cases of unmapped or cosegregating markers, it is
natural to assume that all possible orders are equally likely.
For a set ofm markers plus the target T, there are (m + 1)!/2

[31

where YA is the total number of recombinant pools. Numer-
ical comparisons of the exact and approximate maximum
likelihood estimators show very close agreement when the
true value of the recombination probability is small (<0.1).
The large sample variance of this estimator,

Var(P) = (1/4k2n)[(1-e-2k/e-2kr], [4]
is minimized when the pool size is kopt 1.594/2r (17). This
provides one criterion for selecting an optimal pool size. Note
that when the pool size is near kopt, the expected number of
recombinations per pool is near 1.

Ordering Markers Relative to the Target Gene. Two-point
data can be used to estimate map distances from the target to
each member of a set of markers but will not be sufficient to
order the markers relative to the target. For this purpose,
three-point data (i.e., a target Tand two segregating markers
A and B) are required. It is well known that there is a
significant information gain in standard (unpooled) genetic
mapping when one considers triplets of markers rather than
pairwise data (14). Thus we expect that three-point data will
also be useful in resolving the order of markers that may be
unresolved by two-point data.
For the three-point analysis, we will focus on the ordering

problem. There are three distinct orders, each with its own
set of recombination parameters R = (rl, r2). The probability
of a recombination between the "left" pair of markers is ri
and the recombination probability for the "right" pair is r2.
By assuming a no-interference model, recombination be-
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tween the outer pair of markers will occur with a probability
of (1 - r)r2 + r1(1 - r2).
The individual chromosomes in a pool can be classified into

four types (4, A, B, and AB), indicating which markers are
recombinant with respect to T. The chromosome type prob-
abilities, denoted by q, depend on the order of markers as
shown in Table 1.
The pool type is determined by the collection of chromo-

some types contained in the pool. For example, a pool oftype
A will contain at least one chromosome of type A and none
of type B or AB. A pool of type AB may contain one or more
AB chromosomes or at least one each of the types A and B.
The pool type probabilities

=22k

PA = (q.0 + qA) q-

PB = (q0 + qB) -q0

and PAB = 1 -(q + qA)2k -(q + qB)2k + q [5]

are substituted into the likelihood (Eq. 2) and together with
the prior distributions define the posterior distribution over
map orders (Eq. 1).
The results for three-point mapping are readily generalized

to the problem of ordering a set of m markers relative to a
target. However, the multipoint analysis presents a number
of computational problems and will be described elsewhere
(18).
Optimum Pool Size. The optimum number of individuals to

include in a pool is determined primarily by the local density
of markers around the target locus. Consider the nearest
adjacent markers to T. The probability that a chromosome is
recombinant for either of these markers will decrease as the
local density of markers increases. If the pool size is small,
most pools will contain no recombinant chromosomes and
the amount of mapping information per pool will be very low.
If the pool size is very large, most pools are likely to contain
multiple recombinant chromosomes and mapping also be-
comes very inefficient. An optimum pool size is found
between these two extremes and is larger for higher marker
densities.
To study the effect of pool size on the inference of map

order, we considered sets of three adjacent loci (one ofwhich
is the target locus) selected from a region with known marker
density D markers per cM. Simulations were carried out to
estimate the probability of a correct decision, averaged over
all realizations of Y and all orders M. The quantity computed
is one minus the Bayes risk of the decision rule (ref. 16, p.
159). This probability is shown (Fig. 1) as a function of pool
size for different marker densities, numbers of pools, critical
values for the decision rule, and misclassification rates (see
below). An optimum pool size maximizes the probability of
correct ordering.
The local density of markers has the greatest effect on

optimal pool size (Fig. 1A). At low marker densities smaller
optimal pool sizes are obtained and overpooling can result in
an inefficient experiment. Higher marker densities give larger
optimal pool sizes and are more robust to overpooling. For

Table 1. Chromosome type probabilities
A-T-B A-B-T T-A-B

4<t (1 - rl)(1 - r2) (1 - rl)(1 - r2) (1 - rl)(1 - r2)
aA rir(1 - r2) ri(1 - r2) rlr2
qB (1 - rl)r2 rlr2 (1 - rl)r2
qAB rlr2 (1 - rl)r2 r1(l - r2)

Order of markers A, T, and B is shown.

the lowest marker density studied (D = 0.16 marker per cM),
the maximum probability of correct ordering is attained with
a pool size ofthree individuals. At this density, an experiment
with more than about eight pooled individuals becomes less
efficient than probing single individuals. For higher densities
the maximunm ordering probabilities are attained with larger
pool sizes and the range of efficient experiments is much
broader.
As more pools are sampled, the probability of selecting the

correct order increases but there is little effect on the
optimum pool size (Fig. 1B). The critical value ofthe decision
rule also affects the probability of choosing the correct order
but has little effect on the optimum pool size (Fig. 1C).
Although the true order may have the highest posterior
probability, if this probability does not exceed c, no decision
is made. If the decision rule is very stringent (c = 0.99), large
sample sizes may be needed to assign order unambiguously
but confidence in the chosen order is very high.

Misclassification. When forming pools of individuals of
type tit, it is possible that one or more individuals of type Tit
or T/Tmay be misclassified and included in a pool. Pools that
contain a misclassified individual will typically be recombi-
nant for all markers and will inflate the estimated recombi-
nation fractions in the intervals immediately flanking the
target locus. Pools that are recombinant for markers flanking
the target but are nonrecombinant for more distant markers
contain an obligate double crossover or a misclassification.
The phenotypes of individuals in such pools should be
rechecked if possible (see the example below).
We have studied the effects of misclassification using

simulations (Fig. 1D). If the misclassification rate is low
(1-2%), correct ordering inferences are made with high
probability. As the misclassification increases, fewer correct
inferences are made, the optimum pool size is slightly re-
duced and the loss of efficiency due to overpooling is more
serious. The effect is more pronounced for large pool sizes
(2k > 20) and for high marker densities. The presence of a
misclassified individual in a pool will generally reduce the
posterior probability for ordering the two markers flanking
the target and thus the procedure is conservative.

Technical Limits in Detecting Recombinants in a Pooled
Sample. One of the assumptions of pooled mapping is that a
single recombinant chromosome can be detected in a pool of
otherwise nonrecombinants. The degree to which this is
technically possible depends on the organism being studied
and the molecular detection techniques being employed.
RFLPs represent the common type of molecular marker now
being used in higher organisms and they are normally de-
tected on Southern blots with single-copy probes (1). Tomato
(Lycopersicon esculentum), like most eukaryotes, has a
genome that is relatively large and complex (haploid DNA
content = 900 megabases). To test the limits of pooling, DNA
from tomato plants of two genotypes was mixed and sub-
jected to Southern blot analysis with a single-copy DNA
probe. The results indicate that in a mixture as great as 40:1,
one can still detect the rare allele. This is comparable to
detecting a single recombinant chromosome in a pool of 20
plants. However, since the pooling is done before DNA
extraction and is based on utilizing approximately equal
amounts of tissue from individuals within the pool, there is
room for additional error. For this reason, for the purposes
of testing pooled-mapping, we decided to use pools of five
plants (see next section).

Pooled Mapping of the rin Locus. To test the pooled
mapping strategy, a large F2 population (1840 plants), segre-
gating for the rin (ripening inhibitor) gene, was planted in the
field and grown to maturity. Fruit from plants homozygous
for the recessive rin allele do not ripen and it is believed that
rin represents an upstream regulatory switch for the ripening
process (19). rin is on chromosome 5 and a number ofDNA
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FIG. 1. Probability of correct order. The probability of determining the correct order of three adjacent loci (two markers and the target) is
shown as a function of pool size. The effects of marker density D, sample size N, critical value for the decision rule c, and misclassification
rate a were studied. The curves shown are based on constant values ofD = 0.64 marker per cM, N = 40 pools, c = 0.90, and a = 0.0, except
that one factor is varied as follows: marker densities D = 0.16 (c), 0.32 (o), 0.64 (A), 1.28 (+), and 2.56 (x) markers per cM (A); sample sizes
N = 20 (o), 40 (o), 80 (A), and 160 (+) pools (B); critical values c = 0.90 (o), 0.95 (A), 0.99 (+), and a decision rule that chooses the most likely
order (o) (C); proportion ofmisclassified chromosomes a = 0o (o), 1% (o), 2% (A), 5% (+), and 10%6 (X) (D). The sample size and critical value
were chosen to give curves for which the correct order probability is well below 1 as such curves are most informative regarding optimal pool
sizes.

markers have been identified that are in the vicinity of the
gene (J.J.G. and S.D.T., unpublished data). Two hundred
twenty plants were unambiguously determined to be ho-
mozygous (rin/rin) and tissue from these plants was pooled
into groups of 5 to form 44 pools. DNA was extracted from
each pool and scored for seven RFLP markers known from
previous experiments to be linked to the rin locus. After the
pools were formed and scored, a misclassified plant was
discovered in one pool. Thus, the analysis presented is based
on the remaining 43 pools.

Previous analyses suggested that the eight loci (rin plus
seven RFLP markers) are located in an =20-cM interval
(J.J.G. and S.D.T., unpublished data). When markers are
considered three at a time, the average density (D) is 0.15
marker per cM. Thus the prior distribution for recombination
probabilities in three-point mapping was taken to be Beta (a =
1, b = 14). All orders were assumed to be a priori equally
likely.
Two-point analyses were carried out to estimate distances

between the marker and the target (Table 2). The left and right
groupings were readily established by three-point analysis.
The inferred map is shown in Fig. 2. Posterior probabilities
for ordering adjacent markers are shown in Table 3. The
critical ordering inference involves markers CT93 and CT63
that appear to span the rin locus. The posterior probability of
the three-point ordering CT93-rin-CT63 is 0.971. When the

data of 44 pools, including the misclassified pool, are ana-
lyzed (see Table 3), the posterior probability of this order is
reduced to 0.904.

DISCUSSION
We have presented the basic theory necessary to create
high-resolution genetic maps using pooled DNA samples.
Our results suggest that this is a practical and highly efficient
approach to high-resolution mapping of DNA markers. A
number of factors were shown to affect the probability of
choosing the correct order for a set ofmarkers. These include
pool size, local density ofmarkers, number ofpools sampled,

Table 2. Estimated distances from target locus rin
Marker 9 Standard error

CD64 0.1122 0.0219
C793 0.0295 0.0089
CT63 0.0024 0.0024
TG503 0.0124 0.0055
TG96 0.0360 0.0100
TG448 0.0871 0.0180
ACC4 0.1122 0.0219

Approximate recombination probabilities (Eq. 3) between markers
and the target gene and their standard errors (Eq. 4) were estimated
from two-point data.
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95% Cl cM distance locus
from rin

CD64

controlling differentiation and plant architecture. Currently,
none ofthese genes have been cloned (to our knowledge), but
all are prime candidates for map-based cloning. The same
situation exists for most crop species as well as model species
for genetic and molecular research including Arabidopsis,
Drosophila, and mouse. Pooled mapping could be utilized in
these species in the same manner as demonstrated here for
tomato. Moreover, in species with a smaller genome (less
DNA), larger numbers of individuals could be pooled making
this strategy even more effective.

Finally, it should be noted that pooled-mapping results in
the ordering of all markers in the vicinity of a scorable locus.
Therefore, easily scorable loci can be used to develop region-
specific high-resolution maps, even if the scorable loci them-
selves are not the target of map-based cloning. Thus high-
resolution maps might be constructed for genes that are not
readily assayed but are linked to genes that are easily scored,
including quantitative trait loci.

CT93

rin
CT63
TG503

TG96

TG448

ACC4

FIG. 2. Map of the rin region. The positions of seven markers
relative to the target locus rin are shown. The distances indicated on
the figure are estimated percent recombination (in cM) between each
marker and the target. Precisions of the estimates are indicated by
95% confidence intervals {f + 2[Var(f)]1/2}, shown as vertical bars to
the left. Note that the individual markers are not mapped indepen-
dently and thus overlapping confidence intervals do not necessarily
indicate uncertainty in the map order (see Table 3).

the critical value for accepting an order, and the probability
of misclassifying an individual. There is an optimum pool size
that maximizes the probability ofchoosing the correct marker
order. It is determined primarily by the local density of
markers. For a low marker density, small to moderate pool
sizes are most likely to yield the correct order, and over-
pooling can result in an inefficient experiment. For a higher
marker density, larger pool sizes are optimal and the analysis
is more robust to overpooling.
Map-based cloning represents one of the most promising

strategies for isolating genes known only by the phenotype
they impart (20). High-resolution mapping is a prerequisite
for map-based cloning. The pooled method described in this
paper can facilitate this process and may, therefore, aid in the
isolation of genes from both plants and animals. In tomato
alone, there are >1000 genes identified by the phenotype they
impart to the plant (21). Included in the list are genes for
resistance to a broad spectrum of plant pathogens and genes

Table 3. Three-point ordering probabilities
Posterior probability

Ordered markers N = 43 N = 44

CD64-CT93-rin 0.995 0.996
CT93-rin-CT63 0.971 0.904
rin-CT63-TG503 0.908 0.987
rin-TGS03-TG96 0.827 0.938
rin-TG9-TG448 1.000 1.000
rin-TG448-ACC4 1.000 1.000

Posterior probabilities (Eq. 1) were computed for ordering all 21
pairs of markers relative to the target. The Monte Carlo integration
used 10,000 random samples for each order H. Only 6 of the 21
ordered triplets are needed to confirm the map intervals in Fig. 2. The
second column shows order probabilities using the data from 43
pools. The third column shows results when all 44 pools, including
the misclassification, are analyzed.
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