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The Hybrid Synthetic Microdata Platform:
A Method for Statistical Disclosure Control

Joél Kuiper!*? Edwin R. van den Heuvel! and Morris A. Swertz?3

Owners of biobanks are in an unfortunate position: on the one hand, they need to protect the privacy of their
participants, whereas on the other, their usefulness relies on the disclosure of the data they hold. Existing methods
for Statistical Disclosure Control attempt to find a balance between utility and confidentiality, but come at a cost for
the analysts of the data. We outline an alternative perspective to the balance between confidentiality and utility. By
combining the generation of synthetic data with the automated execution of data analyses, biobank owners can

guarantee the privacy of their participants, yet allow the analysts to work in an unrestricted manner.

Introduction

IOBANKS ARE BECOMING MORE IMPORTANT in evidence-

based medicine, and their potential applications in person-
alized healthcare are enormous. Unfortunately, their growing
popularity confronts the institutes who own biobank data with
a dilemma. On the one hand, they would like to share the data
necessary to support further clinical and epidemiological re-
search, but on the other hand, biobanks contain confidential
information that cannot be made publicly available.

Various methods for Statistical Disclosure Control have
been proposed to deal with this dilemma.'™ These can
be broadly categorized as: suppression, obfuscation, and the
creation of synthetic data.

Suppression removes the obvious identifiers such as names
and addresses from the dataset, but unfortunately this is often
not enough to guarantee an acceptable level of protection
against identification of participants. Often different fields
(called quasi-identifiers) can be combined to uniquely identify
an individual. For example, 87% of the American population
can be identified based on a combination of their date of birth,
gender, and 5-digit postal code.® Similarly, it is estimated that
only a few single nucleotide polymorphisms (SNPs) are needed
to uniquely identify a person’s DNA record.’

To reduce the amount of disclosure through quasi-identifiers,
values for these can be generalized into discrete categories.
For example, instead of reporting the exact birth date of the
participant only his or her age range (e.g., 18-25 years)
would be disclosed.

But even with suppression and generalization, the risk of
disclosure through record linkage remains.® To prevent the
disclosure of confidential information, biobank owners will
often use a different strategy for statistical disclosure con-
trol, called data enclaves. Data enclaves will only share data
with authorized individuals in regulated settings, or will
only reveal summary statistics to ensure no sensitive data is
disclosed. This strategy is appealing to biobank owners: the
privacy concerns are greatly reduced and it is easy to ex-
plain to all the parties involved.

However, data enclaves come at a cost for the analysts.
Summary statistics involve a large amount of information loss,
which makes it harder to detect outliers, and poses limits to
exploratory data analysis. These points are famously illustrated
by Anscombe’s quartet,” which shows that the same summary
statistics can have dramatically different underlying datasets.

Furthermore, if the data cannot be accessed publicly the
validity of claims, risks of bias, and data provenance in
publications cannot be assessed. Restricting access limits the
ways in which results can be reproduced, and could poten-
tially invite bias. Indeed, the data in restricted platforms has
very limited public scientific value.

The core issue is thus how to achieve wider and more
usable dissemination of biobank data for the various beneficial
forms of analytics while preserving the privacy of the par-
ticipants. To address this we propose a hybrid system for
Statistical Disclosure Control. This system consists of a plat-
form that can guarantee data security and participant privacy,
but gives unrestricted access by generating synthetic data.
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HYBRID SYNTHETIC MICRODATA PLATFORM

Initially proposed by Rubin,'® the idea behind synthetic
data is to build a model from the data, and then to draw
samples from it. Instead of the original data, these draws
will be released to the public as ‘‘synthetic data.”” The
synthetic data can attempt to preserve the relevant statistical
properties, but will still protect participants’ privacy.

Although synthetic data have been used by the U.S.
Census Bureau (http://www.census.gov/ces/dataproducts/
synlbd/), its potential application to biobanks is novel.
Furthermore, the novel hybrid platform approach proposed
here will allow for better sharing of methods and data pro-
duced during research using biobank data.

For the remainder of this article, we will focus on eval-
uating the potential and feasibility of this synthetic data,
providing:

e A short review of existing methods for synthetic data
generation.

e A proposal for a method that combines synthetic data
generation with automated script execution to ensure
participant privacy and ease-of-use.

¢ The outline of a possible implementation strategy for this
proposal.

We will show that new methods for dealing with confi-
dential information are needed, and that this proposal is a
feasible alternative to current methods.

Hybrid System Perspective

Synthetic data consist of draws from models fitted to the
original data, and those draws are released instead of the
original microdata. If these models are a good representation of
the data, the released synthetic data will preserve relevant
statistical properties. The released synthetic data will then also
protect participant privacy. This protection of privacy is two-
fold. First, one can safely say that no personal data are disclosed
to the public. Second, the synthetic data are useless to some-
body who attempts to identify individuals, because even if in-
formation is disclosed, there is no way of telling whether that
information is truthful or synthetic (i.e., artificial).

Synthetic data techniques have been applied to census
data, but are hard to apply to biobanks directly. The models
are never a perfect description of reality. Only if the models
could accurately represent the data-generation process itself,
the draws would be able to fully mimic the real world.
Unfortunately, models will always be an approximation. So,
synthetic data methods might ascribe characteristics to in-
dividuals that are not possible in the real world. This lack of
truthfulness diminishes the utility of the synthetic data.

To work around this issue of truthfulness, we propose a
hybrid system. The steps involved in this system are:

1. The user requests the data needed for the desired analysis.

2. This request generates a synthetic data set that can be
freely accessed.

3. The analysis is performed on the synthetic data set.

4. After completing the analysis on the synthetic data, the
code necessary for doing the analysis can be submitted.

5. The system can then run exactly the same analysis on the
original data and, optionally after review, send the results
to the analyst.

In this system, the analyst can work in an unrestricted
manner, but can also draw valid inferences. For the biobank
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owner, concerns about confidentiality are addressed, and
they serve the public good by disseminating data. Further-
more, the remote execution can ensure the reproducibility of
the methods used. Inferences on just the synthetic data could
also be published, as these inferences would be philosoph-
ically similar to an aggregate data meta-analysis.

Methods for generation

We will briefly discuss the various methods for synthetic
data generation, needed to realize this hybrid system.

Notationally we let D be the original biobank data on the
indiviglual level (microdata), with n records and m variables.
Let D be the synthetic microdata set to be generated, with n”
records and m variables. D can be viewed as an n X m matrix
and D' can be viewed as an n’xm matrix.

Each variable (column) can be categorical (e.g., the
A,T,C,G denoting genotype data), ordinal (e.g., intensity
questions), continuous (e.g., height and weight), or binary
(e.g., yes/no questions). Each row in the matrix denotes an
individual. Longitudinal data can be handled by converting
the data from different measurement moments to a wide
format, and, missing data could be modeled by extending D
with a (binary) mask, so that reapplying this mask on the
drawn samples will yield synthetic values for missing data.

Multiple Imputation Using Conditional
Parametric Distributions

By treating the sensitive values as missing data, we can
use techniques for filling in the missing values, such as
multiple imputation, to obtain synthetic data.'®"'* Usually
parametric (and conditional) regression models are used for
multiple imputation. For example, Reiter'? uses a combi-
nation of logistic, multinominal logit, and linear regression,
to account for the different types of variables. Each of these
models is conditional on the other data (i.e., Y, is an im-
putation from a regression on (Y, Y3, ..., Ym), Yy a re-
gression on (Y, Y3, ..., Yn), and so 0n).l3"4 This method
is known as fully conditional specification (FCS) or the
chained-equations approach. Synthetic data then consti-
tute independent draws from the Bayesian posterior pre-
dictive distribution of these models.

Multiple data sets can be constructed and a random
sample from each of these sets could be released as a syn-
thetic data set. This allows the multiple data sets to be
pooled, allowing the user to draw frequency valid inferences
using standard multiple imputation techniques. Multiple
imputation models are attractive because they attempt to
preserve conditional correlation structures, and give flexi-
bility in the number of samples being drawn.

While multiple imputation has become more mature and
there are now several software tools, for example MICE,15 it
still requires modeling effort. For example, to account for
different subpopulations, we might need different regression
models, which might be hard to automate entirely. The
modeling becomes more complex as the number of variables
and their potential interactions increases.

Nonparametric Models

Because parametric models often require considerable
calibration and manual supervision, some attention has been
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given to the use of nonparametric methods to increase the
expressiveness of the models.

Drechsler and Reiter'* evaluate the use of Classification
and Regression Trees (CART), bagging, random forests
and Support Vector Machines (SVM) for generating syn-
thetic data.

CART is the most promising in preserving the balance
between disclosure and information loss with a minimum
of supervision.'® CART is a nonparametric decision tree
learning technique that produces either classification or re-
gression trees, depending on whether the dependent variable
is categorical or numeric. The trees essentially partition the
predictor space into homogeneous clusters, with the most
specific clusters at the leaf nodes. The trees can be pruned
(e.g., by collapsing branches) to satisfy a balance between
disclosure and information utility. Values from the fitted
trees are obtained by Bayesian bootstrap from the leaf
nodes, or draws from a (Gaussian) kernel density estimation
over the leaves in case of numeric data.'®

CART is also the method used in the recently released
synthpop R package.!” This package can create synthetic
data by conditionally fitting trees and sampling from the
fitted models, thereby generating useful synthetic data. The
synthpop package was developed for longitudinal census
data by the SYLLS project (Synthetic Data Estimation for
UK Longitudinal Studies), but can be applied to biobanks in
a straight-forward manner.

Synthetic data generation with CART is the most mature
and well understood method. But, there are some other
promising methods. For example, Bayesian nonparametric
methods such as infinite mixture models using Dirichlet
processes.'® While these are computationally still chal-
lenging, they do offer flexible ways of capturing the non-
linearities in high-dimensional cases, and effective ways
of synthesis using Markov chain Monte Carlo. In addition,
neural network techniques such as stacked Restricted
Boltzmann Machines (Deep Learning)'*?° could create a
“memory”’ of the input. This memory can potentially also
be used to create synthetic data. Neural networks are still an
active, and promising, field of research that could also allow
for fast generation of synthetic data.

Evaluation

We applied the synthpop package on data from the
PREVEND (Prevention of Renal and Vascular End-stage
Disease) study. PREVEND is a longitudinal cohort study
based on the general population of the city of Groningen, the
Netherlands, and included individuals between the ages of
28 and 75 years.>' Specifically we used the variables from
the BioSHaRE Healthy Obese Project (HOP).** Below we
show plots comparing some variables in the real data set
and in the synthetic data set. The full data set is available as
a supplementary download. (Supplementary material is
available in the online article at www.liebertpub.com/bio.)

Figure 1 shows samples from the synthetic data and the
original data, and shows that the synthetic data is useful for
exploratory data analysis. Both the general correlation and
its outliers can be synthesized.

Figure 2 shows a parallel coordinates plot of 250 entries
across several variables. This figure shows more clearly that
correlations across variables are preserved, and that realistic
values can be obtained.
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FIG. 1. Comparison of synthetic data (circles) and origi-

nal data (triangles) across two correlated variables.

The generated synthetic data is an accurate and useful
representation of both the variables and their correlations.
However, the evaluation of the synthetic data must be
twofold as there is a trade-off between disclosure and utility.
While the risk of re-identification (of a record or individual
participant) might be virtually non-existent with synthetic
data, one could predict unknown attributes of a known in-
dividual, given an ideal model of synthesis. In other words,
an attacker could find unknown attributes of some individual
with a certain probability by looking for the closest match in
the synthetic data. This is known as attribute disclosure.

There are several methods for quantifying attribute dis-
closure, most notably t-closeness, which is defined as: An
equivalence class is said to have t-closeness if the distance
between the distribution of a sensitive attribute in this class

T T T 1
Length Waist Size Hip Size

FIG. 2. Parallel coordinates plot of several variables.
Synthetic data (solid) and original data (dashed).
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and the distribution of the attribute in the whole table is no
more than a thresholdt. A table is said to have t-closeness if
all equivalence classes have t-closeness.

In short: the distribution of a particular sensitive value
should not be further away than a distance t from the overall
distribution.

Using the t-closeness metric circumvents issues associ-
ated with k-anonymity and Q-diversity. Briefly, k-anonymity
states that a certain attribute class should be present in at
least k records, which introduces ambiguity in the data set.
However, if each of the k equivalence classes are the same,
properties could still be resolved simply by elimination. The
Q-diversity metric circumvents this problem by adding a
further requirement: in addition to the class to being seen in
k records, these records must have at least 2 ‘well re-
presented’ values. But if an attacker knows the real-world
distribution of values, then attributes could still be disclosed
with a certain probability, simply by combining different
data sources.®2324

We did not attempt automated calculation of the
t-closeness metric to quantify attribute disclosure. However,
if the disclosure risk of a particular individual should exceed
a predefined threshold, steps could be taken to mitigate that
risk, for example, by smoothing the distribution of drawn
values, or by regenerating the synthetic data while omitting
the risk prone individuals.

Implementation Strategy

To realize a hybrid system, we propose the architecture
outlined in Figure 3. The analyst has free access to the
metadata (1) associated with a particular biobank. Through
the metadata, the measured endpoints can be ‘“‘ordered”,
similar to the shopping cart metaphor in various web shops.
This order might constitute various variables of interest or a
specific subpopulation. The order triggers the generation of
synthetic data (2a), which will be made available as a link
specifically for the analysts’ request (2b).

From here on, the analysts can inspect the synthetic data and
can build, or use, the tools necessary to answer their research
questions (3). When these tools take the form of programming
code, such as R or Python scripts, an analyst can then submit
this code to the biobank owner (4), ideally through the same
interface to which the initial request was made.

Without manual intervention the submitted code can then
be evaluated against the original data. After evaluation, the
results of the analysis can be put in a holding queue for
further (manual) evaluation by the owners. This holding

4 N

> Metadata
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Biobank

Synthetic data [« (2a) request
generator ——(2b) synthetic data—>

Analyst

A

Analysis
evaluator

\_ _/

—(3)>»

(4) submission of analysis code:

(5) results are returned (optionally after review)
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queue is especially useful when dealing with code and an-
alysts who are not trusted (or intruders). After clearing the
holding queue, the results can be accessed by the analyst,
giving truthful results for the constructed analysis (5).

Concretely the synthetic data generation systems could be
added to the existing data enclave systems such as Data-
SHIELD.* However, unfortunately not all scripts can be fully
automated. This is partly due to the increasing complexity of
statistical analysis that requires custom software, and partly
because some functionality might expose too much of the
confidential data. Nonetheless, this does not diminish the
utility of the vast majority of scripts that can be fully auto-
mated and which would benefit from the hybrid approach.

The synthetic data generation and code evaluation should
be sand boxed using containers or virtual machines, thereby
preventing unprivileged access to system resources. This
point is crucial since it is trivial to engineer an ‘‘analysis”
that would, when executed, immediately upload the raw data
to a third party. Furthermore, all standard data security and
guarantees for dealing with remote access and data “‘on the
wire”” should be firmly in place.

Discussion and Conclusion

We have outlined a hybrid system in which synthetic
data are generated as a surrogate. This allows analysts to
develop tools and methods without being restricted to a
closed platform, while still ensuring that confidentiality
concerns are addressed. Furthermore, by providing a remote
execution platform, valid inferences can still be made, while
the original data reside in a secure environment.

While merits of this system may be self-evident, it still
remains a perspective. Implementation should determine the
utility of the system as a whole. Important technical chal-
lenges remain, such as the automatic evaluation of disclosure
risk and the fully automatic generation of high quality syn-
thetic data. However, these technical challenges may well
pale in comparison to legal, financial, and political hurdles.

Convincing biobank owners of the merits of implementing
a synthetic data system, which always comes at a cost, may
prove hard, especially considering that the system should be
kept operational for a long period (preferably indefinitely) if
it is to be useful in the permanent dissemination of scientific
findings. Furthermore, synthetic data have met resistance
from researchers because they need to be convinced of the
merits of performing an analysis on ‘‘fake’ data first.

It is also crucial to point out that while synthetic data
protect the privacy of individual participants, it does not

FIG. 3. Implementation strategy
for a hybrid synthetic data system.
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provide any guarantees about the confidentiality of infor-
mation from whole or subpopulations. In fact, the whole
point of the exercise is to mimic the population level cor-
relations as closely as possible. But this also means that care
must also be taken in releasing synthetic data: for example,
disclosing air pollution data might not be detrimental to
the privacy of individuals, but it could severely cut real
estate value. Another example is how, disclosing correla-
tions associated with certain professions, genetic mutations
or lifestyles could unintentionally have severe consequences
for certain individuals and groups, and these risks are not
mitigated by the sue of synthetic data.

Despite this, we believe that a hybrid system is both
useful and necessary for biobanks and other databases with
privacy issues. Not only would a hybrid system ease the
often cumbersome data acquisition and use of closed and
proprietary platforms, it would also guarantee better acces-
sibility to the data for verification and reproduction of re-
sults by other researchers.

This is a point that must be stressed even when dealing with
confidential data. If there is no method for reproduction and
verification by peers (or other third-parties) then publications
that rely on that data have a severely diminished credibility.

As we come to rely more and more on large scale infor-
mation retrieval in our day to day scientific and medical work,
we have to realize that access to the data we have used must
also be guaranteed. Methods such as the one outlined here
could prove to be a valuable step in ensuring that research
efforts remain credible, and thus relevant, in the future.
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