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Abstract

Stroke represents a leading cause of long-term disability worldwide, with few therapeutic options 

available for improving behavioral recovery. Identification of endogenous neural stem and 

progenitor cells (NSPCs) that are capable of promoting reparative responses following brain injury 

and stroke make these cells attractive therapeutic targets for stimulating cell replacement and 

neuronal plasticity. Interest in the mechanisms that support NSPC survival and replenishment of 

damaged cells within the ischemic brain has led to elucidation of new roles for hypoxia-inducible 

factor-1α (HIF-1α) in NSPC function. HIF-1α is a well-studied mediator of adaptive cellular 

responses to hypoxia through direct transcriptional regulation of cellular metabolism and 

angiogenesis. Recent evidence also indicates novel roles for HIF-1α in stem cell differentiation 

through modulation of Notch and Wnt/β-catenin signaling pathways. In this review, we will 

explore the hypothesis that HIF-1α represents an important mediator of NSPC function under both 

non-pathological conditions and stroke; and plays a central role in the regulation of NSPC 

response to hypoxia, metabolism and maintenance of the vascular environment of the neural stem 

cell niche.
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1. Introduction

Stroke is a leading cause of long-term disability worldwide, with approximately 70% of 

stroke survivors experiencing decreased work capacity and up to 30% requiring self-care 

assistance [1]. Focal cerebral ischemia caused by thrombotic or embolic occlusion of a 

cerebral artery accounts for approximately 80% of all strokes and results in immediate 

irreversible neuronal cell death and brain damage at the core of the infarct, followed by 

expansion of the area of brain damage through secondary injury that can continue for weeks 

and months following the initial ischemic event [2]. Currently, the only FDA-approved 

treatment for focal occlusive ischemia is administration of the thrombolytic agent, tissue 
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plasminogen activator (tPA), which has a limited therapeutic window [2,3]. Thus, it is 

imperative to explore additional approaches to enhance long-term behavioral recovery.

Discovery of endogenous neural stem and progenitor cells (NSPCs) within the adult 

mammalian brain and their ability to mount regenerative responses following cerebral 

ischemia has generated much interest in therapeutic targeting of NSPCs to promote recovery 

of function after stroke [4]. NSPCs are multipotent cells that reside throughout the adult 

CNS, enriched within germinal centers of the subventricular zone (SVZ) lining the lateral 

ventricles and subgranular zone (SGZ) of the hippocampal dentate gyrus. NSPCs within the 

SVZ and SGZ generate new neurons of the olfactory bulb and dentate granule cell layer 

throughout life. In addition to providing neural progenitors for ongoing olfactory and 

hippocampal neurogenesis, NSPCs also mount regenerative responses following many types 

of metabolic and traumatic brain injuries. Focal cerebral ischemia stimulates proliferation 

and heterotypic migration of SVZ-NSPCs and their progeny into the ischemic brain 

parenchyma in both rodent [5–7] and human [8–11]. In rodents, SVZ-NSPCs give rise to 

new oligodendrocyte progenitors, astrocytes and neuroblasts that populate the peri-infarct 

region following middle cerebral artery occlusion (MCAO; e.g., see Fig. 1), even though 

only a small number of neuroblasts survive to maturity [7,12] reviewed in [4,13–15]. This 

regenerative response is temporally correlated with the onset of spontaneous improvements 

in behavioral deficits and cognitive function [5], but the mechanisms and extent to which 

NSPCs and their progeny contribute to spontaneous behavioral improvements through cell 

replacement or promotion of neuronal plasticity and reorganization have yet to be 

established. Apart from neuronal replacement, NSPCs may promote recovery of function 

through angiogenesis and stabilization of nascent vasculature [16–18], protection of 

penumbral neurons at risk of delayed cell death [19–22], or production of new glial cells 

[12] that may promote remyelination [23] and neurite outgrowth [24].

Central to the regenerative response to stroke is the ability of NSPCs to withstand sudden 

onset hypoxia. Recent studies have demonstrated that NSPCs within the adult SVZ and SGZ 

constitutively express stabilized HIF-1α, a key transcriptional mediator of the cellular 

adaptive response to hypoxia [25,26]. HIF-1α regulates hundreds of genes involved in 

systemic, tissue and cellular adaption to low oxygen conditions; including genes that 

promote erythropoiesis, angiogenesis and glycolysis, respectively. Recently, HIF1α has 

been implicated in stem cell maintenance via non-canonical regulation of Notch and Wnt/β-

catenin differentiation pathways [25,27–29]. This review will focus on the potential role of 

HIF-1α in the regulation of NSPC function under non-pathological conditions and stroke. 

This topic is also of potential clinical relevance with recent development of small molecule 

regulators of HIF-1α signaling for treatment of inflammation, chronic ischemic conditions 

and cancer [30–33], because these drugs might also be useful in regulating NSPC 

regenerative responses following brain injury.
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2. HIF-1α stabilization in adult NSPCs under non-pathological and hypoxic 

conditions

2.1. Hypoxic regulation of HIF-1α stability

In most cell types, HIF-1α protein is constitutively expressed but is rapidly degraded under 

conditions of normoxia, with a half-life of <5 min in cultured cells (Fig. 2A; reviewed in 

[34–36]). Oxygen-dependent degradation occurs via prolyl hydroxylases that utilize O2 and 

α-ketoglutarate as substrates to hydroxylate HIF-1α at two proline residues (aa 402 and/or 

564). Hydroxylated HIF-1α binds to the von Hippel-Lindau (VHL) protein, which recruits 

subunits of the E3 ubiquitin ligase, and thereby targets HIF-1α for ubiquitylation and 

degradation by the 26S proteasome. This allows cells to respond to conditions of hypoxia 

with rapid accumulation of HIF-1α, due to rate-limiting levels of intracellular O2 that inhibit 

prolyl hydroxylase activity. HIF-1α then dimerizes with the constitutively expressed HIF-1β 

subunit (ARNT; which is not susceptible to oxygen-dependent degradation), to form a 

heterodimeric HIF-1 transcriptional complex. This complex binds to cis-acting hypoxia-

response elements (HREs) in target genes, and recruits the co-activator proteins p300/CBP, 

leading to increased transcription of genes encoding metabolic enzymes and pro-angiogenic 

factors. It should be noted that the HIF-1α paralogue, HIF-2α, is also O2-regulated, 

dimerizes with HIF-1β, and activates transcription of overlapping but distinct sets of target 

genes (reviewed in [37]).

2.2. Stabilization of HIF-1α in adult NSPCs under non-pathological conditions

Unlike most cell types within the adult CNS, recent evidence suggests that HIF-1α is 

constitutively stabilized within NSPCs of adult brain. Both nestin- and Sox-2-expressing 

NSPCs of the adult mouse SVZ and SGZ express HIF-1α under non-pathological conditions 

[26] (Fig. 2B). Mazumdar et al. [25] recently reported that the adult mouse dentate gyrus 

and SGZ represent hypoxic zones, where SOX-2+ cells stain with pimonidazole 

hydrochloride, an oxygen-sensitive dye that detects intracellular O2 partial pressures of less 

than 10mmHg(∼1.3%) [25]. Pimonidazole staining was also found to be associated with the 

expression of stabilized HIF-1α and other hypoxia responsive genes such as carbonic 

anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) within the 

hippocampal dentate gyrus. These studies suggest that the NSPC niche environments of 

adult brain may represent areas of relatively low physiological oxygen tension where 

HIF-1α stabilization is maintained under non-pathological conditions.

Although the adult SVZ appears to be highly vascularized, cellular oxygen level within this 

niche environment has been estimated to be 2.5–3.0% under non-pathological conditions 

[38]. In the widely used mouse MCAO model of focal ischemia, the SVZ appears to be 

relatively spared from injury even though cellular pO2 within the SVZ falls to <1.3% [7]. 

Much evidence indicates that somatic stem cells throughout the body reside within hypoxic 

niches, where low oxygen tensions minimize oxidative stress and prevent premature 

differentiation and exhaustion of the stem cell pool [39]. Within bone marrow, 

hematopoietic stem cells (HSCs) maintain intracellular hypoxia and constitutive stabilization 

of HIF-1α [40]. Selective deletion of the HIF-1α gene within HSCs of adult mice results in 

depletion of the primitive stem cell population over time, and a near complete loss in their 
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ability to provide long-term bone marrow reconstitution following transplantation [41]. 

Similarly, selective HIF-1α gene deletion within nestin-expressing NSPCs of adult mouse 

brain using an inducible Cre-loxP approach leads to an approximate 50% reduction in the 

number of SVZ-NSPCs under non-pathological conditions [42]. Conditional deletion of 

HIF-1α from postnatal mouse neurons using a calcium/calmodulindependent kinase 

(αCamKII) promoter also results in attenuated proliferation and neuroblast formation in 

adult SGZ [25]. These studies suggest that HIF-1α plays an important role in maintaining 

NSPC homeostasis and neurogenesis in adult brain under non-pathological conditions.

2.3. O2 -independent mechanisms regulating HIF-1α stability

Several O2-independent mechanisms for HIF-1α stabilization also exist, and the levels of 

HIF-1α protein under non-pathological conditions can vary among tissues and cell types 

[43]. For example, heat shock protein 90 (Hsp90) can stabilize HIF-1α in an oxygen-

independent fashion, whereby Hsp90 binds to the PAS domain of HIF-1α and stabilizes it 

[44]. In the presence of pharmacological inhibitors of Hsp90, the Hsp90 binding site 

becomes occupied by RACK1 (receptor for activated C-kinase), which recruits ubiquitin 

ligase and targets HIF-1α for proteasomal degradation [45]. Interestingly, the ability of 

RACK1 to compete with Hsp90 under non-hypoxic conditions is linked to intracellular 

calcium levels and calcium-activated signal transduction cascades [46]. Hsp90 has been 

implicated in HIF-1α stabilization in embryonic neural stem cells [47]. HIF-1α activity is 

also regulated by cytokines, growth factors and other signaling events (reviewed in [48]). 

For example, PI-3K/AKT activity increases HIF-1α translation through mTOR (mammalian 

target of rapamycin) activation. The transactivation of HIF-1α is also regulated by the 

binding of FIH-1 (factor inhibiting HIF-1), which blocks binding of HIF-1α to the 

transcriptional co-activators necessary for target gene transcription.

As discussed below, NSPCs isolated from embryonic mouse telencephalon and postnatal 

SVZ also constitutively express HIF-1α under non-hypoxic conditions in culture. 

Biochemical analysis demonstrated that HIF-1α is not hydroxylated or ubiquitylated within 

cultured NSPCs, and does not associate with VHL, even though both 19 and 30 kD isoforms 

of VHL are expressed [26]. Immuno-electron microscopy of cultured NSPCs suggested that 

HIF-1α is sequestered in membranous cytoplasmic structures, which might prevent it from 

degradation processes [26]. It is important to note that in vitro regulation of HIF-1α may not 

reflect the same mechanisms that occur in vivo, since NSPCs are expanded under high 

growth factor conditions in culture, where mTOR signaling is robust [26]. On the other 

hand, NSPC niche environments in adult brain also represent areas of high growth factor 

signaling [49]. Further investigation is needed to determine the relative contribution of O2-

dependent vs. O2-independent signaling pathways regulating NSPC-HIF-1α stability under 

in vitro and in vivo conditions.
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3. Functional roles for HIF-1α in NSPCs

3.1. Does constitutive HIF-1 a stabilization maintain NSPC metabolic phenotype and ability 
to withstand sudden onset hypoxia?

It is becoming increasingly apparent that oxygen levels have a profound effect within the 

stem cell niche and strongly influence the proliferation, self-renewal, and phenotypic fate 

choice of neural stem cells during normal development and disease [50] (reviewed in [51–

55]). Low oxygen tension promotes self-renewal of neural stem cells in culture and the 

preferential development of certain cell types upon differentiation. Disruption of oxygen 

availability by perinatal hypoxia/ischemia or following stroke in adulthood stimulates 

increased proliferation of cells within the SVZ and re-directed migration of SVZ-derivatives 

into the hypoxic brain region [56]. In culture, NSPCs are relatively resistant to brief periods 

of oxygen-glucose deprivation (OGD; a widely used in vitro model of cerebral ischemia) 

when compared to primary cortical neurons [19], which are highly dependent upon oxidative 

metabolism for survival [57].

Although studies have demonstrated that neural stem cells thrive under low oxygen 

conditions in cell culture, very little is known concerning the bioenergetics of NSPCs or how 

metabolic homeostasis is regulated in these cells. Such processes are likely to be 

fundamental for maintenance of the NSPC pool under normal conditions and following a 

metabolic insult such as cerebral ischemia and stroke. Much evidence indicates that adult 

stem cells from various tissues, embryonic stem cells derived from the inner cell mass of the 

blastocyst, and cancer stem cells all share common aspects of metabolic phenotype defined 

by high glycolytic flux, low oxygen consumption and minimal dependence on mitochondrial 

oxidative phosphorylation for ATP synthesis and survival [51,58–63]. It has been 

hypothesized that rapidly proliferating cells, such as cancer cells, utilize glycolysis under 

aerobic conditions to avoid free radical accumulation resulting from mitochondrial electron 

transport [64]. Reactive oxygen species are not only toxic to proliferating cells, but ROS 

production (e.g., superoxide and hydrogen peroxide), also signals stem cell differentiation 

[65,66]. This form of metabolism is thought to underlie self-renewal and maintenance of the 

undifferentiated state, but the molecular underpinnings driving this metabolic phenotype 

have not been fully established.

Neural stem cells are highly dependent upon the glycolytic and pentose phosphate arms of 

glucose metabolism, and display a relatively low requirement for oxidative metabolism. 

Both embryonic and adult neural stem cells survive prolonged periods of anoxic conditions 

in culture, but cannot withstand periods of glucose withdrawal even in the presence of the 

TCA substrate, pyruvate [67]. The high glucose requirement of NSPCs in culture appears to 

be due to dependence upon glycolysis for ATP production and for use of glycolytic 

intermediates in the pentose phosphate pathway (PPP), which provides ribose-5-phosphate 

(R5P) as substrate for nucleotide biosynthesis in proliferating cells and NADPH as an 

essential reducing equivalent for antioxidative processes and production of glutathione [68]. 

NSPC survival is impaired under conditions of glycolytic inhibition in the presence of 

pyruvate and by pharmacological inhibition of the PPP pathway. However, NSPCs display 

relative resistance to prolonged periods of hypoxia and pharmacological inhibition of 
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mitochondrial respiration, and also display increased lactate production and lactate 

dehydrogenase activity compared to primary cortical neurons [67].

HIF-1α functions in many cell types to reprogram cellular metabolism to promote 

glycolysis, influence the PPP pathway, and repress oxidative metabolism (reviewed in [48]; 

Fig. 3). This is accomplished by HIF-1α-mediated transcriptional upregulation of genes 

encoding glucose transporters, glycolytic enzymes and lactate dehydrogenase, which 

replenishes NAD+ for further glycolysis. In addition, HIF-1α represses the flux of pyruvate 

into acetyl-CoA, diverting carbon away from mitochondria and suppressing O2 

consumption, by stimulating the expression of pyruvate dehydrogenase kinase 1 (PDK-1). 

Further investigation is required to determine the extent to which HIF-1α drives metabolic 

phenotype in embryonic or adult NSPCs. Nevertheless, it appears that NSPCs are 

metabolically poised to withstand sudden onset hypoxia, yet their high dependence on 

glucose to provide glycolytic and PPP substrates may require close association with 

microvasculature.

3.2. Vasculotrophic and neurotrophic support by NSPC-HIF-1α regulation of VEGF: role in 
maintaining the angiogenic niche and promoting brain repair following stroke

HIF-1α activates the transcription of vascular endothelial growth factor (VEGF) and other 

angiogenic growth factor genes [69] and is required for normal embryonic vascular 

development [70]. Systemic deletion of the HIF-1α gene is embryonic lethal, associated 

with malformation of the heart and cardiovascular system [71], whereas conditional deletion 

of HIF-1α within nestin+ stem cells of the developing nervous system results in regression 

of vasculature and massive neuronal apoptosis [72]. VEGF is not only a potent angiogenic 

factor, but also exerts direct neurotrophic signaling and stimulates adult neurogenesis 

[73,74]. The vascular and neurotrophic effects of VEGF are mediated by the receptor 

tyrosine kinase, VEGFR-2 (Flk-/KDR). Exogenous administration of VEGF following 

experimental stroke reduces infarct size and improves neurological performance, due to both 

direct neuroprotective effects of VEGF and stimulation of angiogenesis [75]. Transgenic 

mice that overexpress VEGF display increased neurogenesis, decreased infarct volume and 

improved motor function [76].

Embryonic and adult NSPCs constitutively express HIF-1α and release soluble VEGF under 

non-hypoxic conditions in culture [17,19]. HIF-1α and VEGF are coordinately upregulated 

approximately 2-fold within 24 h following transient exposure of NSPCs to oxygen and 

glucose deprivation, or following more prolonged periods of hypoxia alone. Reducing 

HIF-1α expression using siRNA or C re-mediated HIF-1α gene deletion attenuates the 

ability of NSPCs to survive ischemic conditions [26,42]. Although HIF-1α gene deletion 

attenuates VEGF release by at least 50%, pharmacological inhibition of VEGF signaling has 

no effect on the ability of NSPCs to withstand ischemia in culture. On the other hand, both 

brain endothelial cells and embryonic cortical neurons undergo cell death within 24 h 

following exposure to hypoxia/ischemia in culture, but are entirely protected by embryonic 

or adult NSPCs placed in transwell co-culture or by medium conditioned by NSPCs. Both 

the endothelial and neurotrophic effects are blocked by pharmacological inhibitors of 

VEGF-VEGFR2 signaling [17,19] (Fig. 4).
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Complex bi-directional signaling occurs between NSPCs and vasculature under non-

pathological and stroke conditions (reviewed by [18,56,77,78]). NSPCs in adult brain reside 

in specialized microvascular niche environments that are important for supporting many 

aspects of neural stem cell function [77]. Within the adult SVZ, primitive stem cell 

astrocytes (type B cells), transit amplifying cells (type C) and neuroblasts (type A cells), 

display unique anatomical associations with endothelial cells [79]. Type B astrocyte stem 

cells maintain contact with SVZ endothelial cells through endfoot-like processes [80]. 

Transition of type B astrocyte stem cells to proliferative transit amplifying cells is thought to 

involve activation of type B astrocytes through stromal-derived factor 1 (SDF1)-CXC 

chemokine receptor 4 (CXCR4) signaling, where endothelial cells release SDF-1 to activate 

CXCR4 receptors expressed by NSPCs [81]. Endothelial cells within the SVZ also release 

factors that maintain the undifferentiated state and expand neural stem cells in culture [82]. 

Disruption of α6β1 integrin-laminin interaction blocks both NSPC adhesion to the 

vasculature and NSPC proliferation [82].

NSPCs are also found in close association with the vasculature during migration into 

ischemic brain regions following stroke [12,16] (Fig. 5). Re-routing of NSPCs toward areas 

of ischemic injury is dependent on SDF1-CXCR4 signaling [16,83,84]. SDF-1-induced 

migration of adult NSPCs is mediated by matrix metalloproteinases [85]. HIF-1α signaling 

increases CXCR4 receptor expression in many cell types [86,87] and may promote matrix 

metalloproteinase-mediated migration of neural stem cells in response to hypoxia [88]. 

Thus, potential roles for NSPC-HIF1α include (a) maintaining the vascular niche by driving 

constitutive VEGF release and (b) promoting activation and migration of NSPCs through 

CXCR4 and MMP regulation. If so, one would anticipate that interference with HIF-1α 

signaling in the adult NSPC population might destabilize the SVZ vasculature and also 

impair the activation and migration of NSPCs leading to an impairment of both the NSPC 

cytogenic response and the angiogenic component of stroke recovery.

3.3. HIF-1α regulation of NSPC lineage fate by Notch1 and Wnt/β-catenin signaling

Hypoxia enhances the proliferation and multipotency of both human and rodent NSPCs, and 

can impact developmental outcome during NSPC differentiation. Recent studies have 

demonstrated that HIF-1α mediates the effects of low pO2 on proliferation and 

differentiation of several stem cell types in culture through direct physical association of the 

HIF-1α subunit with Notch and Wnt/β-catenin signaling components [25,27–29].

In neural stem cells, Notch signaling prevents terminal differentiation and preserves a pool 

of stem cells by preventing exit from the cell cycle and maturation [89,90]. In embryonic 

NSPCs and embryonic P19 carcinoma cells, hypoxia enhances Notch signaling via direct 

HIF-1α binding to activated Notch-1 (NICD), leading to enhanced stabilization of NICD 

and potentiated transcription of Notch-1 target genes [28]. Using mice genetically 

engineered to inducibly knock in or knock out Notch signaling in postnatal NSPCs, Breunig 

et al. [91] recently demonstrated that loss of Notch signaling depleted the progenitor pool 

and skewed differentiation toward the neuronal lineage, while over activation of Notch 

signaling decreased cell cycle exit and increased the size of the progenitor pool. Similar 

findings were recently reported by Ables et al., using inducible nestin-Cre:YFP:Notch1fl/fl 
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transgenic mice [92]. Notch-1 signaling is initiated by ligand binding, which stimulates 

proteolytic cleavage of Notch-1 to liberate an intracellular domain (Notch intracellular 

domain; NICD). The NICD translocates to the nucleus and interacts with a transcriptional 

activation complex to inhibit transcriptional effectors such as neurogenin and Mash1, but 

can also stimulate neuronal differentiation of a small number of ependymal cells under 

conditions of focal ischemia [93]. Although previous studies have indicated that HIF-1α 

potentiates Notch signaling in embryonic NSCs, P19 carcinoma [28] and med-uloblastoma 

precursors [94], this has not been studied extensively in postnatal NSPCs, and the subset of 

Notch target genes regulated by HIF-1α potentiation have not been elucidated.

Components of the Wnt/β-catenin pathway are also expressed within the adult SVZ and 

SGZ [95–98], and are upregulated in SVZ following stroke [98]. Wnt/β-catenin stimulates 

neuronal lineage commitment in NSPCs via activation of the proneural transcription factor 

NeuroD1 [97,99,100]. Activation of the Wnt signaling pathway leads to dephosphorylation, 

stabilization and nuclear translocation of β-catenin. Stabilized β-catenin then complexes with 

the TCF-leukocyte enhancer factor (TCF/LEF) which binds to TCF/LEF response elements 

within the promoter region of proneural gene NeuroD1, and thereby triggers neuronal 

differentiation of adult NSPCs. In non-neuronal cell types, including colon carcinoma and 

hematopoietic stem cells, Wnt/β-catenin signaling is down-regulated in hypoxia leading to 

enhanced growth and impaired differentiation [27,29]. Hypoxic repression of Wnt/β-catenin 

signaling in non-neuronal cells is mediated by direct binding of HIf-1α to β-catenin and 

inhibition of β-catenin binding to TCF/LEF transcription factor. Mazumdar et al. [25], 

recently reported that in embryonic stem cells and isolated embryonic neural stem cells, 

HIF-1α modulates Wnt/β-catenin signaling by enhancing β-catenin activation and 

expression of TCF/LEF. HIF-1α gene deletion in postnatal NSPCs in culture stimulates 

reciprocal changes in the intracellular levels of NICD (decreased) and β-catenin (increase) 

[26], and shifts lineage fate in culture and following MCAO [42]. These finding suggest that 

HIF-1α regulation of Notch and Wnt signaling may be important in regulating the balance 

between self-renewal and differentiation of NSPCs under non-hypoxic conditions and 

stroke.

4. Conclusions

Focal cerebral ischemia stimulates proliferation and heterotypic migration of SVZ-derived 

progenitors into the ischemic brain parenchyma. This is a multilineage cytogenic response in 

which NSPCs of the SVZ generate new oligodendrocyte progenitors, astrocytes and 

neuroblasts that persist within the peri-infarct region. Successful therapeutic targeting of 

NSPCs for functional brain repair will require the ability to maintain an adequate and viable 

stem cell pool and the ability to direct the differentiation and survival of desired lineages. 

Ultimately, an understanding of the complex molecular regulation of these processes will be 

needed. Here, we have focused on potential mechanisms by which HIF-1α facilitates stem 

cell survival, self-renewal and differentiation (Fig. 6). Constitutive stabilization of HIF-1α 

in adult neural stem cells may render these cells poised to survive sudden onset hypoxia and 

promote the activation and migration of these cells into the injured brain parenchyma. 

HIF-1α may also be important in maintaining the vascular niche environment and promoting 

angiogenesis through transcriptional modulation of VEGF. Finally, HIF-1α represents an 
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intrinsic regulator of NSPC multipotency and developmental outcome upon differentiation. 

Future development of small molecule regulators of HIF-1α stability and signaling may 

ultimately prove useful to therapeutically target endogenous NSPCs for enhancing recovery 

and repair in the adult brain.
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Fig. 1. 
Stroke induces a multilineage response from adult SVZ. Nestin-CreERT2 :YFP mice were 

used to fate map nestin+ derivatives following stroke [12]. (A) Confocal images of YFP+ 

cells that populate the ischemic striatum by 2-weeks following 60 min transient MCAO. 

Phenotypic fate mapping was performed using markers for migrating neuroblasts (DCX), 

oligodendrocyte lineage (Olig2) and astrocytes (GFAP). Scale bars = 100 μm (YFP only and 

YFP/GFAP images), 20 μm (YFP/DCX and YFP/Olig2 images). (B) At 6-weeks post-

MCAO, the relative distribution of YFP+ cells within the ischemic brain parenchyma 

includes approximately 45% astrocytes, 20% oligodendrocyte progenitors (OPCs), 20% 

neuroblasts and 5% postmitotic neurons.
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Fig. 2. 
(A) O2-dependent regulation of HIF-1α stability. Under normoxic conditions, HIF-1α is 

hydroxylated (-OH) by prolyl hydroxylase (PHD), leading to association with von Hippel-

Lindau (VHL) protein and rapid proteasomal degradation. Under hypoxic conditions, 

HIF-1α is not hydroxylated and binds to HIF-1β (ARNT) to regulate target gene 

transcription through HRE (HIF response elements) in promoter regions. bHLH, basic helix-

loop-helix; PAS, Per-Arnt-Sim; ODD, oxygen-dependent degradation domain; TAD, 

transactivator domain. (B) HIF-1α expression in SVZ under non-pathological conditions. 

Tangential section through adult mouse SVZ demonstrating localization of HIF-1α 

immunofluorescence (red) under non-pathological conditions (blue, DAPI nuclear stain). 

Scale bar= 20μm. For methodological details, please see Roitbak et al. [26]. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of the article.)
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Fig. 3. 
HIF-1α regulation of metabolic phenotype. HIF-1α regulates metabolism in many cell types 

by promoting glycolysis and inhibiting mitochondrial oxidative phosphorylation. This 

metabolic regulation facilitates cellular adaptations to low oxygen conditions. LDH, lactate 

dehydrogenase; TCA, tricarboxylic acid cycle; ETC, electron transport chain.
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Fig. 4. 
Vasculotrophic and neurotrophic influence of NSPCs. Embryonic and adult NSPCs protect 

endothelial cells and cortical neurons against ischemic conditions in culture via HIF-1α-

regulated VEGF release [17,19].
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Fig. 5. 
NSPC association with vasculature post-MCAO. Boxed regions on left depict areas shown 

in higher power in A and B. Dual immunofluorescence for YFP (green) and GLUT-1 (red) 

demonstrate YFP+ processes from radial glial-like cells in the SVZ that contact vasculature 

via endfeet (B). YFP reporter+ cells that migrate into the ischemic border zone are also 

associated with cerebral blood vessels (B) at 6 weeks following 60-min MCAO. For 

methodological details, please see [12].
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Fig. 6. 
Multiple roles for HIF-1α in NSPC function and SVZ response to focal cerebral ischemia. 

Schematic depicting multiple potential roles for HIF-1α in NSPC function and SVZ 

response to focal cerebral ischemia. NSPC-HIF-1α is important for the maintenance of 

NSPCs in both SVZ and SGZ and modulates lineage fate of NSPCs in culture. NSPC-

HIF-1α is also likely to be important in viability as well as proliferative and migratory 

responses of NSPCs following ischemic injury.
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