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Abstract

The mechanisms of delivery of plant small RNAs to consumers must be investigated in
order to harness this technology to positively impact biotechnology. Two groups have used
honeysuckle (Lonicera japonica) feeding regimes to detect a plant-based small RNA,
termed MIR2911, in sera. Meanwhile, numerous groups have failed to detect dietary plant-
based small RNAs in consumers. Here we catalog levels of MIR2911 in different herbs, and
suggest that in particular herb MIR2911 levels are elevated. Feeding these different herb-
based diets to mice, we found MIR2911 levels in the sera and urine were associated with
dietary intake levels. Abundance was not the sole determinate of apparent RNA bioavail-
ability, as gavage-feeding large-doses of synthetic MIR2911 permitted only small transient
increases in serum levels. Dietary MIR2911 were not modified in circulation by association
with the host’s RNA-induced silencing complex, as the RNA did not co-immunoprecipitate
with AGO2. The stability of dietary MIR2911 in circulation differed from synthesized small
RNAs, as tail vein administration of various synthetic plant-based small RNAs resulted in
rapid clearance. However, synthetic MIR2911 appeared to be more stable than the other
plant miRNAs tested. Notably, this uptake of dietary MIR2911 was not related to perturba-
tions in the host’s microbiome or gut permeability. We suggest dietary uptake of MIR2911 is
commonplace in healthy consumers, and reproducible detection of plant-based small RNAs
in consumers depends on dietary abundance, RNA stability and digestion from within the
food-matrix.

Introduction

Nucleic acids from the diet are frequently used by molecular biologists to exert a strong influ-
ence on gene regulation in several organisms, most notably in worms (C. elegans), and the
hypothesis that similar regulation could occur in our bodies has generated intense interest [1].
Both plants and animals contain hundreds of different small RNAs, including microRNAs
(miRNAs) that are 19-24 nucleotides long [2]. In plants, miRNAs recognize their targets with
essentially perfect complementarity and effect RNA cleavage and degradation [3], while in
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animals, the endogenous miRNAs inhibit translation and alter transcript stability by binding to
target transcripts with largely imperfect complementarity [2]. A single type of miRNA can shift
the transcript profile of a cell, consistent with a pivotal role for miRNAs in establishing and
maintaining tissue identity [4]. In addition to functioning locally, a model has been suggested
whereby miRNAs are encapsulated by extracellular vesicles (EV's), which are shed from almost
all animal cell types and circulate to distant organs, with the potential to interact with specific
target cells [5]. Argonaute2 (AGO?2), the key effector protein of miRNA-mediated silencing, is
often bound to the circulating miRNAs for enhanced serum stability [6]. Many endogenous
small RNA species have been detected in circulation, and stable endogenous miRNAs in mam-
malian blood are emerging as a novel class of biomarkers for various diseases [7].

Small RNAs are abundant in numerous plant foods, and some display perfect complemen-
tarity to human genes [8]. A report challenging multiple paradigms, suggested that ingested
plant-based miRNAs are transferred to blood, accumulate in tissues, and regulate endogenous
gene expression in animals [9]. Subsequently, varying levels of success have been reported
regarding detection of exogenous dietary miRNAs in mammalian consumers [10-16]. To date,
plant-based dietary small RNAs have been difficult to detect in the sera of consumers fed a sin-
gle serving of the food [15, 17].

In the midst of these findings, studies have measured circulating levels of a plant 26S ribo-
somal RNA-derived small RNA, previously referred to as miRNA MIR2911. A diet supple-
mented with Honeysuckle (Lonicera japonica), which naturally contains high levels of
MIR2911, promotes the passage of MIR2911 through the lining of the mouse gastrointestinal
(GI) tract, where it is then transferred to the bloodstream and subsequently, the lungs [18]. In
honeysuckle-fed animals, MIR2911 reached high levels in circulation within three days of con-
sumption and dissipated 48 hours after the honeysuckle was removed from the diet [19]. Given
the abundance of MIR2911 in honeysuckle and its apparent stability, it represents a model
small RNA to measure uptake parameters [18, 20]. In our previous study, a model has been
proposed where the dietary consumption of honeysuckle promotes uptake of MIR2911 by
affecting the permeability of the GI tract or influencing the microbiome within the GI tract
[19]; however, this has not been experimentally tested. Alternatively, the uptake of MIR2911
may be a more commonplace phenomenon that can occur when eating a variety of plant-based
foods. Here we have characterized MIR2911 levels in various foods and tested diets for their
capacity to promote serum and urine detection of MIR2911. We assayed whether this dietary
small RNA in peripheral blood could co-immunoprecipitate (co-IP) with a mouse anti-AGO2
antibody. We then examined dosage requirements and intestinal parameters that could impact
MIR2911 detection. Establishing dietary factors capable of promoting nucleic acid absorption
and retention is an invaluable foundation for future studies regarding functionality and gene-
targeted oral therapeutics.

Materials and Methods
Animal studies

The IACUC of Baylor College of Medicine approved the mouse feeding studies and all other
experimental procedures. All mice were obtained from the Center for Comparative Medicine
at Baylor College of Medicine. Male ICR mice at 8- to 10-weeks-old were used in all feeding
studies, which were replicated at least three times; the results shown are representative of the
biological replicates. Herb and flower diets for mice were prepared from finely ground plant
tissues obtained from various local Chinese herbal medicine and tonic stores. The plant-chow
diets were prepared by mixing finely ground chow, plant material, and water at 2:1:2 weight
ratios. Amoxicillin (50 mg/kg/day) and Trimethoprim Sulfa (TMS) (160 mg/kg/ml) were
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administered in the drinking water based on the assumption the mice were each drinking 5.0
ml of water per day [21]. Tail vein injections were done according to standard protocols [22];
50 fmol of each RNA was resuspended in 100 pl of phosphate buffered saline (PBS) and
injected into the lateral tail vein. Synthetic miRNAs were obtained from Integrated DNA Tech-
nologies. Antibiotics were obtained from Sigma.

Serum and urine collection and RNA extraction

Blood was collected via retro-orbital bleeding of mice and was allowed to coagulate at room
temperature for 1 h prior to sera isolation. Sera were separated by centrifugation at 800 x g for
10 min at room temperature followed by centrifugation at 10,000 x g at 4°C for 10 min to
remove all blood cells and debris. Clean urine samples free of feces were collected by holding
mice over parafilm and encouraging micturition [23]. Total RNA was extracted from 100 pL of
sera or 80 pL of urine using miRNeasy Mini Kit from Qiagen following manufacturer’s recom-
mendations. For urine samples, 1 pmol of synthetic MIR161 was spiked in as an exogenous
RNA control.

Analysis of miRNA levels by qRT-PCR

Tagman microRNA Assays for let-7dgi [24], miR-16, MIR161, MIR2911, MIR156a, MIR168a
and artificial miRNA C7 were obtained from Life Technologies. Total RNA equivalent to 10 uL
of sera or 8 uL of urine were used in each reverse transcription (RT) reaction. Of the 10 uL RT
product, 0.5 uL was used for each triplicated quantitative polymerase chain reaction (PCR). To
quantify miRNA levels in herbs and flowers, 10 mg of dried plant material were ground to fine
powder in liquid nitrogen and then subjected to RNA isolation using the miRNEASY kit (Qia-
gen); 1 pmol of synthetic MIR161 was spiked into the plant Qiazol lysate as an exogenous RNA
control. qRT-PCR was performed using a Biorad CFX96 Real-Time PCR Detection System,
and data were analyzed using Biorad CFX software. Delta-Delta-Ct method was used to calcu-
late relative levels of miRNAs. Absolute concentrations of miRNAs were calculated based on
standard curves obtained from serial dilutions of synthetic miRNAs. To verify the fidelity of
Tagman microRNA assay kit for MIR2911, the gPCR product was agarose gel-purified and
subcloned into pGEM-T Easy vector (Promega) and sequenced [25].

Preparation of synthetic miRNAs

Synthetic miRNAs were obtained from Integrated DNA Technologies. The sequence of the
miRNAs were as follows: MIR-2911 5-GGCCGGGGGACGGGCUGGGA-3’; MIR-168a 5’-
UCGCUUGGUGCAGAUCGGGAC-3’; MIR168a* 5-CCCGCCUUGCACCAAGUGAAU-3;
C7 5-GGAUCAUCUCAAGUCUUACGU3’; C7* 5-ACGUAAGACUUGAGAUGAUCC-3%
MIR156a 5’- UGACAGAAGAGAGUGAGCAC-3’; MIR161 5- UCAAUGCAUUGAAAGU
GACUA-3’ (asterisk denotes passenger strand). For gavage feeding, miRNAs were diluted in
RNase-free PBS, and each animal was fed 400 pmols of each miRNA in 500 pL volume. For tail
vein injection, the miRNAs were diluted similarly in PBS with each mouse receiving 50 fmols
in 100 uL volume.

AGO2 Immunoprecipitation

For immunoprecipitation, 250 pl of each sera sample was incubated overnight at 4°C with 3 ug
of mouse monoclonal anti-AGO2 antibody (Santa Cruz Biotechnology) followed by immuno-
precipitation with 25 pl of Protein L Agarose beads (Santa Cruz Biotechnology) for 4 hours at
4°C. Following purification, RNA was extracted from immunoprecipitates and unbound
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fractions using the miRNeasy Mini Kit (Qiagen) and 1 pmol of synthetic MIR161 was spiked
into the Qiazol lysates as an exogenous RNA control. miRNA levels were quantified by
qRT-PCR using TagMan microRNA Assays as described above.

Cultivation of fecal bacteria

Mouse fecal material was weighed and homogenized in 1X PBS to a concentration of 0.1 g/mL
[26]. Fecal homogenates were then serial diluted and plated on Luria-broth plates without
selection. Plates were incubated at 37°C overnight, post-incubation colony number were
counted and the approximate number of bacteria per gram of feces was calculated.

FITC-dextran permeability assay

Intestinal permeability was assessed by oral administration of FITC-dextran 4000 (Sigma).
Food and water were withdrawn for 4 h, and mice were subsequently gavaged with FITC-dex-
tran solution (60 mg/100 g body weight). Serum was collected 4 h post-gavage feeding, and
FITC-dextran measurements were performed in duplicate by fluorometry (excitation, 490 nm;
emission, 530nm; Cytofluor 2300, Millipore). Serial dilutions of FITC-dextran in PBS were
used to calculate a standard curve.

Drug administration

Cisplatin (Pfaltz and Bauer) was dissolved in sterile 0.9% saline at a concentration of 1 mg/mL.
Mice were given a single intraperitoneal injection of either saline or cisplatin (15 mg/kg body
weight).

Statistical analysis

Statistical analyses were performed with the student T-Test formula in Microsoft Excel. Signifi-
cance was set at P < 0.05. Data are presented as means + SEMs.

Results
Assaying MIR2911 levels in flowers and herbs

On the basis that honeysuckle contains high levels of MIR2911, we assayed various other
medicinal or edible herbs for the presence of MIR2911 by qRT-PCR (Table 1). Due to the stor-
age issues with seasonal herbs, we restricted our survey to dried plant parts from local markets.
These dried herbs and flowers were generally used as traditional Chinese medicines or as tea.
Given that MIR2911 is derived from ribosomal RNA, we postulated that flowering tissues that
were undergoing high levels of cell division would contain high levels of this plant-based small
RNA. The sophora displayed the highest levels of MIR2911 at 6736 fmol/g while honeysuckle
had 5000 fm/g. Chamomile (3056 fmol/g), blue mallow (1126 fmol/g) and ginseng flowers (277
tmol/g) displayed robust levels of MIR2911 compared to willow bark and chow (approx. 2
fmol/g). Meanwhile, hibiscus had almost no MIR2911 (0.2 fmol/g). It is notable that certain
flowers, like lavender, appeared to contain substances that interfered with the RT-PCR reac-
tions used to quantify both MIR2911 and the exogenous spike-in control. Our calculations of
MIR2911 levels were based on normalization to the exogenous spike-in MIR161. If normaliza-
tion was not possible, as was the case with lavender, no values were recorded.
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Table 1. Content of MIR2911 in various herbs and flowers. Quantification of MIR2911 levels in various
dried herbs and flowers. The calculation of MIR2911 concentration is based on a standard curve and normali-
zation to the exogenous spiked-in MIR161.

Herbs & Flowers MIR2911 (fmol/g)
Sophora 6736.2
Honeysuckle 5000
Chamomile 3056.6
Blue Mallow 1126.6
Ginseng flowers 277.8
Willow bark 2.9
Chow 23
Hibiscus 0.2
Lavender ND

ND: No Detection for both MIR2911 and the spike-in MIR161 control.

doi:10.1371/journal.pone.0137516.t001

Circulating levels of plant-based MIR2911 in animals fed herbal diets

Using a modified chow-based diet supplemented with ground herbs or flowers, we analyzed
plant-derived MIR2911 levels in the sera and urine of mice seven days after initiating feeding.
Fold differences in circulating MIR2911 levels in herbal diet-fed animals compared to chow-fed
animals were as follows: honeysuckle, 39-fold higher (207 fM); chamomile, 27-fold higher (147
fM); sophora, 22-fold higher (120 fM); lavender, 13-fold higher (71 fM); blue mallow, 12-fold
higher (64 fM); ginseng, 5-fold higher (25 fM). No significant change was detected in either hibis-
cus (3 M) or willow bark (6 fM). Fold differences in the level of MIR2911 in the urine samples of
mice fed herbal diets compared to chow were as follows: honeysuckle, 160-fold higher (264 fM);
chamomile, 82-fold higher (135 fM); lavender, 17-fold higher (28 M) (Fig 1). To verify the fidel-
ity of the qRT-PCR assay kit for MIR2911 with serum samples that have relatively small quanti-
ties of MIR2911, the qPCR product was subcloned and sequenced. The presence of the full
sequence of mature MIR2911 in the gPCR amplicon was confirmed.

Testing synthetic MIR2911 serum detection

Since we observed an approximate correlation between the dietary content of MIR2911 in the
herbal and flower diets and the levels detected in sera (Table 1, Fig 2), we sought to test whether
synthetic MIR2911 gavage fed at high doses can be absorbed in chow-fed animals. After single-
dose feeding of 400 pmols of 2’-O methylated (plant-specific) synthetic MIR2911, serum
MIR2911 levels in the mice were elevated by roughly 1-fold within 30 min after gavage feeding,
but decreased to background levels approximately 1 hour after the gavage treatment (Fig 2).

Assessing association of serum MIR2911 with AGO2

Circulating small RNAs are resistant to RNase activity, extreme pH and temperature fluctua-
tions [27]. One mechanism for this protection is association with an RNA-binding protein
such as Argonaute 2 (AGO2) [6, 28]. We assayed the sera to determine if MIR2911 was associ-
ated AGO2 by performing co-immunoprecipitation with anti-AGO2 antibodies. Immunopre-
cipitation demonstrated that approximately 99% of MIR2911 was not associated with AGO2
and remained in the unbound fraction, while we recovered approximately equal concentrations
of endogenous miR-16 in immunoprecipitates and the unbound fraction of sera from herb-fed
animals and control mice (Fig 3).
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Fig 1. Serum and urine MIR2911 levels in mice fed various herb- or flower-containing diets. (A) Detection of MIR2911 in sera from mice fed various
herb and flower diets. (B) Detection of MIR2911 in urine from mice fed various herb and flower diets. For (A) and (B), mice were fed diets for 7 days before
RNA was isolated form serum and urine samples and analyzed. N = 5. Asterisk: p<0.05 between chow and herb diet fed mice. Experiment replicated at least

three times with each diet.

doi:10.1371/journal.pone.0137516.g001

Clearance of circulating plant-based small RNAs

In vivo delivery of small RNAs faces many challenges including limited stability in serum and
rapid blood clearance [29]. Our data suggest that dietary MIR2911 is stabilized in sera without
binding AGO2 (Fig 3). Could the secondary structure of MIR2911 afford protection from
RNase activity in the sera? To test this notion, we assayed clearance of synthetic plant-based
small RNAs directly from circulation. A cocktail of four different plant-based small RNAs
(MIR2911, MIR168a, MIR156a, and MIR161) and custom designed siRNA MIRC7 were
directly injected into the mouse tail vein and sera was collected from the mice at 5 min, 30 min,
1 h, 3 h, and 24 h post injection. The concentration of the intravenous dose is based on the con-
centrations of abundant circulatory miRNAs such as miR-16 [19]. As many previous reports
have documented [29, 30], clearance of these small RNAs was rapid. Interestingly, MIR2911
levels were substantially higher at 5 minutes after injection compared to the other miRNAs
administered at equal dosages. After 3 h the apparent clearance of all the small RNAs tested
was complete (Fig 4).

Impact of the gut microbiome on MIR2911 absorption

Gut microbes have coevolved with the host to perform a number of functions in the host animals
[31]. When we examined the fecal bacterial content of animals fed honeysuckle, they exhibited
more than a 100-fold increase in their microbiome titer, as measured by the increased number of
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Fig 2. Time course analysis of absorption of gavage fed synthetic MIR2911 Time course analysis of
serum MIR2911 levels in mice gavage fed 400 pmols synthetic MIR2911 at 0.5 hour, 1 hour, 3 hours
after gavage feeding. Mice were pre-fed chow diet. N = 5. Experiment replicated three times.

doi:10.1371/journal.pone.0137516.9002

colonies observed compared to chow-fed animals. This increase in bacterial titer was due to the
honeysuckle and not MIR2911, as gavage feeding of the synthetic 2911 alone did not alter the
microbiome content (data not shown). To test whether these microbiome changes were responsi-
ble for MIR2911 serum detection, we administered antibiotics Amoxicillin and TMS orally to
mice while they were simultaneously fed the honeysuckle diet. We observed a sharp decrease in
fecal bacteria titer within 1 day after beginning the antibiotic treatment. This change persisted
over the course of a week. Despite the fact that the levels of fecal bacteria were suppressed to lev-
els lower than chow-fed controls, we observed levels of MIR2911 in the sera of mice fed honey-
suckle plus antibiotics that were indistinguishable from mice fed honeysuckle without antibiotics
(Fig 5). We also assayed the microbiome of mice fed other herbal and flower diets. Chamomile-,
sophora-, lavender-, ginseng-, and blue mallow- containing diets did not yield an increase in
microbiome density compared to mice fed a chow diet (S1 Fig).

Quantifying intestinal permeability in honeysuckle-fed animals

To examine potential intestinal changes caused by honeysuckle feeding that may potentiate small
RNA uptake, we used the non-metabolizable macromolecule FITC-dextran 4000 as a permeability
probe [32]. Integrity of the gut epithelial barrier in honeysuckle-fed animals was assessed by gavage
feeding mice with the 4 kD FITC-dextran molecule and measuring its translocation into circula-
tion. We detected no difference in permeability to FITC-dextran in the honeysuckle-fed animals
compared to the chow-fed animals. Cisplatin treatment was used as a positive control for increased
permeability, as this chemical is known to promote increased gut permeability [33] (Fig 6).

Discussion

By analyzing animals fed numerous plant-based diets high in MIR2911, we demonstrated
consistent dietary delivery of a plant-based small RNAs into circulation. Previously, we
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Fig 3. Serum MIR2911 is not associated primarily with AGO2. (A) Quantification of MIR2911 in AGO2-associated immunoprecipitates and unbound
fractions of serum from animals fed an herb-based diet or a standard chow diet. (B) miR-16 immunoprecipitation was analyzed as an endogenous control for
AGO2 precipitation. Levels of MIR2911 and miR-16 were each normalized to spiked-in exogenous MIR161. This experiment is representative of more than
five different experiments done with herbal-fed mice (honeysuckle, chamomile).

doi:10.1371/journal.pone.0137516.9003

demonstrated the dietary origins of this small RNA using digital drop PCR [19], and here we
have sequenced the qPCR product to further validate that this is an exogenous RNA. Given the
controversy surrounding this area of inquiry [1], we have focused our efforts here on dietary
components and uptake parameters. We realize there are differences in the nutritional content
of our herbal diets (Table 1); however, we consistently observed an association between plant
MIR2911 content and circulatory MIR2911 levels in the consumer (Table 1, Fig 1). Further-
more, animals fed diets low in MIR2911 (willow bark, hibiscus, chow) never displayed circulat-
ing levels of the diet-based small RNA above background levels.

The serum MIR2911 levels after honeysuckle feeding (max. levels 207 M) reported here are
almost 6-fold lower than those recently reported by a group using gavage feeding [18]. Our
results demonstrated that in sera the majority of the circulating MIR2911 was not bound by
AGO2 (Fig 3). Conversely, the honeysuckle gavage feeding study suggests that the majority of
MIR2911 is associated with AGO2 [18]. Future work will have to discern if these differences
are due to the dietary delivery or procedural differences between the labs.

We have documented increased circulating levels of MIR2911 when using diets containing
honeysuckle, sophora, chamomile, lavender, blue mallow and ginseng. The amount of small
RNAs in the food is certainly an important component when considering the efficacy of detec-
tion. It has been shown that cow’s milk contains an assortment of abundant miRNAs, and
nutritionally relevant amounts of cow’s milk may be sufficient to alter human gene expression
[15]. Like our MIR2911-containing plant foods, the milk dosages of miRNAs are many times
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doi:10.1371/journal.pone.0137516.g004

higher than those of the rice miRNAs reported to alter liver function [10]. No locus in the
mouse genome appears to encode for a MIR2911-like small RNA [19], thus unlike the milk
studies, our study is not complicated by ambiguities regarding assignment of small RNA origin
between the dietary sources and the consumer [34]. This milk study also discounted the rele-
vance of plant-based miRNAs when they failed to detect circulating levels of a single plant-
derived miRNA in consumers. It should be noted that the vegetables they fed to the consumers,
for a single serving, contained only 50 fmol/g of the measured miRNA, about 1/100 the concen-
tration of MIR2911 in honeysuckle (Table 1). A new paradigm of cell-to-cell transfer of circu-
lating miRNAs has been proposed and demonstrated in immune cell types [35]. This studies
demonstrates that femtomolar amounts of a specific miRNA alters the fate of a targeted cell
[35]. This work may change the way we view circulating miRNAs, as it demonstrates that cur-
rently undetectable amounts of miRNAs can have biological functions.

Previous work has suggested that MIR2911 is remarkably stable during RNase treatment
and boiling [18]. In agreement with these observations, we found that MIR2911 was more sta-
ble than the other plant-based miRNAs tested in circulation following administration via tail
vein injection (Fig 4). The stability of MIR2911 may be due to its high GC content. In fact,
experiments that lower the GC content appear to decrease the half-life of this RNA [18]. The
uptake and functionality of dietary RNAs in consuming populations faces major obstacles
including stability of the RNA and delivery across cellular barriers [36]. By comparing the sta-
bility of ingested plant-based small RNAs versus those directly injected into the circulation, we
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Fig 5. Antibiotic treatments do not appear to impact MIR2911 serum detection in honeysuckle fed
mice. Analysis of serum MIR2911 levels in mice fed honeysuckle (HS), mice fed honeysuckle and treated
with antibiotics (HS+Ab), and mice fed chow. Mice were fed the diets for 7 days before analysis of serum
MIR2911 levels. N = 5. Experiment replicated more than three times with each diet and condition.

doi:10.1371/journal.pone.0137516.g005

can infer that the processes of absorption and transportation protect dietary small RNAs. This
scenario has been proposed by others [18] and certainly warrants further mechanistic studies.

Our previous study proposes a model where gut and kidney perturbations facilitate detec-
tion of plant-based miRNAs in sera of consumers [19]. The gut microbiome can rapidly switch
between herbivorous and carnivorous functional profiles [37], and we speculated that certain
bacteria might facilitate the uptake of plant-based small RNAs [38]. However, while the honey-
suckle diet altered fecal bacteria counts, this change did not appear to impact dietary transfer
of MIR2911 (Fig 5). In agreement with this finding, other herbal diets such as chamomile and
sophora did not appear to alter the animal microbiome but still facilitated the serum detection
of MIR2911 (Fig 1 and S1 Fig). However, our studies do not rule out the possibility that gut
bacteria are required for dietary small RNA uptake. In fact, extracellular bacterial RNAs may
also participate in intercellular communication [38]. In the future, more meaningful insights
may be obtained using molecular tools, e.g. high-throughput 16S rRNA amplicon sequencing
and/or anaerobic culturing, and more clearly defined antibiotic regimes.

The intestine allows the absorption of nutrients while simultaneously functioning as a bar-
rier [39]. We previously demonstrated that gut architecture is not modified by honeysuckle
feeding [19], consequently we tested whether the herb-based diets could alter the permeability
of the gut to facilitate serum detection, and we demonstrated that permeability is not altered in
the honeysuckle fed animals (Fig 6). In fact, our data suggest that a single large oral dose (400
pmol) of synthetic MIR2911 into a healthy animal is sufficient to promote short-term serum
detection (< 30 min), though only at a small fold difference compared to the non-gavage fed
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controls (Fig 2). This gavage dosage of MIR2911 is equivalent to 40 days of mice eating the
honeysuckle diet, thus we venture the difference in serum detection between the diets and
gavage fed animals could be due to metabolic changes that affect uptake of dietary RN As occur-
ring during the prolonged feeding. Alternatively, the MIR2911 from plant materials maybe bet-
ter protected from digestion than synthetic forms in the GI tract, or persistent presentation of
MIR2911 via food particles in the GI tract ensures a constant input level at the intestinal epi-
thelial interface, thus facilitating more efficient absorption. Certainly given that MIR2911 is
not associated with AGO2 (Fig 3), this study leaves open the possibility that MIR2911 is pro-
tected after uptake within exosomes. Could MIR2911 be protected by plant derived exosome-
like nanoparticles [40] or are these exosomes derived from the consumer? Regardless, our find-
ings here suggest that under specific dietary conditions, no gut pathology is required to facili-
tate uptake.

Dietary small RNAs may be differentially absorbed and circulated within the consumer.
Certainly the functionality of both endogenous and dietary circulating small RNAs remains
controversial [41]. Nonetheless, we should not disparage the dietary-RNA concept based solely
on the failure to replicate initial findings [10]. A valuable lesson can be drawn from the work
presented here: high dosages of food-based RNAs facilitated transmission to healthy consum-
ers; we speculate that dietary uptake of RN As will be effective through prolonged exposure to
elevated levels of highly stable small RNAs. Considering the impact that dietary small RN As
could have on nutrition, health-care [18, 42], and agbiotechnology further work regarding the
nuances of dietary RNA delivery and functionality are warranted.
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Supporting Information

S1 Fig. Fecal bacteria titer from mice fed various herbal and flower diets. Fecal bacterial
titer for mice on various herbal and flower diets were measured after mice were fed 7 days.
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