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Abstract
Tumor cells develop different strategies to cope with changing microenvironmental condi-

tions. A prominent example is the adaptive phenotypic switching between cell migration and

proliferation. While it has been shown that the migration-proliferation plasticity influences

tumor spread, it remains unclear how this particular phenotypic plasticity affects overall

tumor growth, in particular initiation and persistence. To address this problem, we formulate

and study a mathematical model of spatio-temporal tumor dynamics which incorporates the

microenvironmental influence through a local cell density dependence. Our analysis reveals

that two dynamic regimes can be distinguished. If cell motility is allowed to increase with

local cell density, any tumor cell population will persist in time, irrespective of its initial size.

On the contrary, if cell motility is assumed to decrease with respect to local cell density, any

tumor population below a certain size threshold will eventually extinguish, a fact usually

termed as Allee effect in ecology. These results suggest that strategies aimed at modulating

migration are worth to be explored as alternatives to those mainly focused at keeping tumor

proliferation under control.

Author Summary

Controlling tumor growth remains a major medical challenge. Current clinical therapies
focus on strategies to reduce tumor cell proliferation. However, during tumor progression,
tumor cells may switch between proliferative and migratory behaviors, thereby allowing
adaptation to microenvironmental changes that result in variations in local tumor cell
density. We herein explore by means of a mathematical model the impact of migration-
proliferation plasticity on tumor initiation and persistence. Our work suggests that small
tumors can become extinct solely by their intrinsic cell population dynamics if cell motility
decreases along with local cell density. In contrast, if cell motility increases with cell den-
sity, the tumor inevitably grows. Our model suggests that the regulation of cell migration

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004366 September 3, 2015 1 / 14

OPEN ACCESS

Citation: Böttger K, Hatzikirou H, Voss-Böhme A,
Cavalcanti-Adam EA, Herrero MA, Deutsch A (2015)
An Emerging Allee Effect Is Critical for Tumor
Initiation and Persistence. PLoS Comput Biol 11(9):
e1004366. doi:10.1371/journal.pcbi.1004366

Editor: Mark S Alber, University of Notre Dame,
UNITED STATES

Received: September 15, 2014

Accepted: June 1, 2015

Published: September 3, 2015

Copyright: Böttger et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the Free State
of Saxony and European Social Fund of the
European Union (ESF, grant GlioMath-Dresden). HH
acknowledges the support of the German Research
Foundation (DFG) within the Cluster of Excellence
‘Center for Advancing Electronics Dresden’ and the
German Ministry of Education and Research (BMBF)
within the project SYSIMIT-01ZX1308D. AVB and AD
acknowledge support by the German Ministry for
Education and Research (BMBF) through grant no.
0315734. EACA thanks the support from the Max

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004366&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


plays a key role in tumor growth as a whole, making this feature a potential target for clini-
cal studies.

Introduction
Tumor cells possess a remarkable phenotypic plasticity that allows for adaptation to changing
microenvironmental conditions [1, 2]. Well-known examples are the epithelial-mesenchymal
transition [3, 4] and the shift from ATP generation through oxidative phosphorylation to an
anaerobic, glycolytic metabolism, often referred to as the Warburg effect [5]. A further example
is phenotypic plasticity with respect to cell proliferation and migration [6], a phenomenon
related to the “go-or-grow”mechanism. Such a migration-proliferation dichotomy has been
observed for non-neoplastic cells [7, 8] as well as in the course of tumor development [9–11].
The precise molecular mechanisms underlying this dichotomy remain poorly understood. It
has been suggested that the switch between migrating and proliferative phenotypes is depen-
dent on the cells’microenvironment such as growth factor gradients [7], properties of the
extracellular matrix [12] or altered energy availability [13]. In this context, several mathemati-
cal models have shown that the migration-proliferation plasticity has a major impact on tumor
spread [14–19]. There is a growing body of evidence which suggests that local cell density is
correlated with gradients of nutrients, secreted factors, oxygen or toxic metabolites [20, 21].
Hence, local cell density can be considered as a core factor for analyzing the dependence of the
switch on the tumor microenvironment. However, while the consequences of density-depen-
dent migration-proliferation plasticity on local tumor spread, as an essential feature of tumor
invasion, have been explored already [14, 18, 19], the potential effects of this type of plasticity
on tumor initiation and persistence have not been investigated so far.

In this work we point out some aspects of the phenotypic plasticity between migratory and
proliferative phenotypes for tumor growth that have been unnoticed so far. To do this, we
make use of a suitable mathematical model to be described below. We note in this context that
mathematical models have proven successful for analyzing various aspects of tumor dynamics,
see for example [22–24]. More precisely, we formulate and study a model that allows to derive
the overall tumor cell population dynamics as an emergent property resulting from individual
cell behavior. This is achieved by means of a cellular automaton model which extends model
rules used in previous studies, where the impact of a migration-proliferation dichotomy has
been investigated with a clear focus on tumor invasion [19, 25, 26]. Here, for the first time, the
influence of a density-dependent migration-proliferation plasticity on tumor growth and per-
sistence is studied. In our model, the switch between migratory and proliferative phenotypes is
made explicitly dependent on the microenvironment, in particular on cell density. Analysis of
our model reveals that two dynamically different regimes can be distinguished. If cell motility
increases with local cell density, even a small initial tumor population will always grow. This
regime can be associated to a biological situation where contact inhibition of cell migration
(CIM) is downregulated. On the contrary, if cell motility decreases with local cell density,
which is the case if CIM is present, tumor colonies which are small enough can be driven to
extinction by the intrinsic cell population dynamics. We unveil that this behavior is a conse-
quence of negative growth rates emerging at low densities, a phenomenon called Allee effect in
ecology [27]. Accordingly, controlling tumor cell migration would have significant conse-
quences not just for tumor dissemination, but also for overall tumor progression. In fact, our
work predicts that tumors can potentially be driven to extinction if CIM is externally enhanced.
However, loss of such type of inhibition will invariably lead to tumor persistence.
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Materials and Methods

Model definition
We develop a stochastic, spatio-temporal cell-based model to study the effects of density-
dependent phenotypic plasticity. In this way we account for single cell behavior that depends
on the local, spatial microenvironment and for microscopic fluctuations which reflect cellular
and microenvironmental heterogeneity. To do that, a discrete model, namely a lattice-gas cellu-
lar automaton (LGCA) is defined. LGCA models are well-suited to model cell-cell interaction
and cell migration [28–30].

The LGCA model is described on a discrete d-dimensional regular lattice L with periodic
boundary conditions. Each lattice node r is connected to its b nearest neighbors by unit vectors
ci, i = 1, . . ., b, called velocity channels. The total number of channels per node is defined by
K� b, where K − b is an arbitrary number of channels with zero velocity, called rest channels.
Each channel can be occupied by at most one cell at a time. We consider a tumor population of
two mutually exclusive cell phenotypes, moving (m) and resting (r). Moving cells reside on the
velocity channels, indexed by i = 1, . . ., b, while resting cells are located within the rest chan-
nels, indexed by i = b + 1, . . ., K, of the lattice. The total number of cells at time k and node r is
given by n(r, k) = nm(r, k) + nr(r, k), where nm and nr denote the moving and resting cell num-
bers, respectively. The parameter K is a local cell number bound. This constraint is imposed,
since the maximal cell number in a given volume is limited in a biological tissue. Notice that K
corresponds to a carrying capacity density and thereby accounts for cell crowding effects.

The time evolution of our model is defined by the following rules:

(R1) cells of both phenotypes die with probability rd,

(R2) resting cells proliferate with probability rb unless the local carrying capacity is reached,
i.e. all rest channels are occupied,

(R3) cells may change their phenotype from moving to resting (respectively, from resting to
moving) with probability rs (respectively, 1 − rs),

(R4) moving cells perform independent random walks.

In the LGCA, rules (R1)-(R4) are realized by applying three operators: A cell reaction operator
changes the local cell numbers nr, nm on each node according to (R1)-(R3). A reorientation
operator randomly shuffles the configuration within the velocity channels at each node. By
applying a propagation operator, moving cells are shifted one lattice unit in directions deter-
mined by their velocities. Both reorientation and propagation steps define cell movement,
(R4). At each discrete time point k, the composition of the three operators is applied indepen-
dently at every node on the lattice to compute the configuration at time k + 1, see Fig 1(a) and
1(b) and S1 Text.

We hypothesize that the phenotypic switch between proliferative and migratory cell behav-
ior depends on the local cell density. We regard local cell density as the result of tumor cell
interactions with extracellular matrix components, chemical cues and other stromal cells.
Therefore, we model all these effects by means of their impact on cell density. We do not aim
to reproduce the switch process in all intracellular detail. Rather we coarse-grain the intracellu-
lar details into stochastic cell-based rules that allow for an analytically tractable model to pro-
vide a basic understanding of the underlying dynamics. Since it is not known how the
phenotypic switch depends on cell density, we decide for the most simple form which is
monotonous dependence. Then, two complementary types of plasticity can be distinguished:
attraction towards or repulsion from highly populated areas. In the attraction case, cell motility
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decreases with local cell density, so that proliferation is favored in densely populated areas. In
the repulsion case, cells tend to escape from highly populated regions, that is cell motility
increases with local cell density, and proliferation is favored in sparsely populated areas. The
switch probability rs(%) (respectively 1 − rs(%)) that a moving cell becomes resting (or a resting
cell becomes moving) is modeled as a sigmoidal shaped function rs:[0, 1]! (0,1) that depends
on the cell density % = n/K at the given node and two parameters κ 2 R and θ 2 (0,1),

rsð%Þ ¼
1

2
ð1þ tanh ðkð%� yÞÞÞ; % 2 ½0; 1�: ð1Þ

Fig 1. Cellular automatonmodel dynamics arise from repeated application of cell reactions and cell migration. (a) (left) Local state space at a given
node is divided into rest channels and velocity channels. The cells in the rest channels, marked in green, are of proliferative phenotype. The cells in the
velocity channels, marked in red, have the migratory phenotype. White channels denote absence of tumor cells. (right) Schematic illustration of model
reactions. (b) Example of application of the cell propagation operator in the CAmodel. Cells in the velocity channels before and after a propagation step; red
arrows denote the presence of a cell in the respective velocity channel. (c) and (d) Phenotypic plasticity in the CAmodel. Schematic illustration of the
phenotypic switch probability rs which depends on the cell density % in the microenvironment. The sign of the phenotypic switch parameter κ determines the
dynamic regime, κ > 0 results in attractive behavior (c) while repulsive behavior arises for κ < 0 (d).

doi:10.1371/journal.pcbi.1004366.g001
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The absolute value of κ specifies the intensity of the switch’ density dependence while its sign
determines whether the attraction case (κ> 0) or the repulsion case (κ< 0) holds. Parameter θ
represents the critical cell density value at which switching probabilities from one phenotype
into the other are equal. We remark that the functional form of the switching function has
been proposed in a previous study [19] where, however, tumor invasion behavior has been
studied. A plot of the switching probabilities Eq (1) is given in Fig 1(c) and 1(d).

Model analysis
We simulate the LGCAmodel on a two-dimensional square lattice (d=2, b=4) with 104 nodes.
We explore the impact of the switch intensity κ and the switch position θ on the persistence of
a growing tumor population. To this end, we investigate the total population growth rates in
the (κ, θ)-parameter space and identify the parameter regimes for population survival and
extinction. Proliferation and death probabilities are chosen such that 0< rd � rb � 1. The ini-
tial model condition reflects a biological situation where the tumor is small and spatially con-
strained. At the initial time a fixed number of moving and resting cells per node is placed in a
predefined radius from the lattice center. In the simulations, the initial cell density is varied by
changing the percentage of occupied nodes within this radius. The results do not depend on
the fixed initial radius (simulations not shown) but on the initial cell density.

Results

Emergent population growth dynamics
Fig 2 gives an overview of the observed cell population dynamics. In the repulsive case (κ< 0),
the population always persists, regardless of the initial population density. In the attractive case

Fig 2. Total population growth rate of the resting cell population depends on the phenotypic switch
parameters κ and θ. Initially, in a radius of 10 [unit length] from the center one rest and one velocity channel
per node are occupied. Parameters are rb = 0.2, rd = 0.01, K = 8. Simulations are performed for 1000 iteration
steps steps. The color indicates the total population growth rate of the resting cell population. The dark purple
region denotes population extinction. The black curve is given by the equality rs(%) = rd/rb, with % = 0.25. The
inequality derived in Eq (3) approximates the (θ, κ)-parameter region for which population extinction is
observed. The white star represents the specific (κ, θ)-values for which subsequent analysis of the frequency
of population extinction in Fig 3 is performed.

doi:10.1371/journal.pcbi.1004366.g002
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(κ> 0), either survival or extinction may be observed, where the particular behavior is depen-
dent on the specific values of κ and θ.

Further, we investigate the survival of populations in the attractive case. For a wide range of
different initial population densities, we record the frequency of extinction events. Sufficiently
long simulation runs are performed to ensure that survival, when observed, is not a transient
dynamical behavior (see S1 and S2 Videos). The results depicted in Fig 3(a) show that the
smaller the initial population density the higher the probability of population extinction.
Above a critical initial population density, the population always persists. Additionally, we
record the population size distributions after a certain number of time steps for different initial
cell densities, see Fig 3(b). One observes that low-density initial populations in the critical
regime show bimodal stationary size distribution, indicating the possibility of either population
extinction or persistence.

The observed emergent population behavior can be understood intuitively by considering
the feedback mechanisms on the cell scale, in particular the regulation of proliferative or migra-
tory behavior, for the different types of phenotypic plasticity (attractive or repulsive), see Fig 4.
In the repulsion case (κ< 0), increasing local cell density has a negative feedback on prolifera-
tion. In a sparsely populated environment, cells are predominantly resting. In this case, when
cell replication takes place, the resulting increase in local cell density triggers the switch to a
migratory phenotype. Migration of cells decreases local cell density which again triggers the
switch towards the resting cell phenotype. As a consequence, proliferation and migration phases
alternate, and the population always persists. In the attraction case (κ> 0), increasing local cell
density has a positive feedback on proliferation. Accordingly, cell proliferation leads to increased
cell density which implies further proliferation. On the other hand, migration of cells locally
decreases cell density that leads to more migratory cells. If the portion of resting cells in sparse
environment is large enough, cell replication dominates cell death. Thus, the positive feedback
on proliferation might result in population growth. However, if cells in sparse environment
almost exclusively migrate, they eventually die, and the result is population extinction.

Fig 3. Frequency of population extinction in the CAmodel depends on the initial population size. (a) Stochastic fluctuations lead to extinction or
growth. The figure shows the frequency of extinction events depending on averaged cell density ~% ¼ jLj�1

X
r2L %ðrÞ. (b) Probability density function (derived

by kernel density estimates, see S1 Text) of the averaged cell density after 5000 LGCA time steps for three different initial population densities. For each
initial configuration 40 simulation runs are performed. Model parameters are κ = 4.4, θ = 0.75, rb = 0.2, rd = 0.01, K = 8. Cases (i), (ii) and (iii) refer to different
initial population densities, which show bimodal (case (i) and (ii)) or unimodal (case (iii)) stationary size distributions.

doi:10.1371/journal.pcbi.1004366.g003
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Phenotypic plasticity gives rise to an Allee effect
The feedback mechanisms described above are just an intuitive picture of the emergent popula-
tion dynamics. To better understand the connection between individual cell scale and the pop-
ulation properties, we derive a mean-field description of our model. It facilitates to link the
microscopic interactions at the cellular level to effects that take place at the macroscopic scale.
In particular, it allows us to analytically investigate the existence of an extinction threshold.
The LGCA model is composed of a birth-death process describing the single-node cell reac-
tions and a cell-movement process which describes the exchange of cells between neighboring
nodes. Therefore, we derive mean-field approximations for each process separately first and
then combine the resulting descriptions into a partial differential equation (PDE) for the whole
tumor growth process. We then show that the resulting PDE, which exhibits a nonlinear diffu-
sion term, has a kinetic term which is of a bistable nature in a suitable parameter range.

Fig 4. Sketch of the feedbackmechanisms on single cell behavior (proliferative or migratory) for the different types of phenotypic plasticity
(attractive or repulsive). (a) In the attractive case, the positive feedback between cell proliferation and high local cell density results in population
persistence. However, positive feedback between cell migration and low local cell density might lead to population extinction if cell death overbalances
replication. (b) In the repulsive case, the negative feedback mechanism on the cell scale leads to a balance of the population growth.

doi:10.1371/journal.pcbi.1004366.g004
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Bistability is characterized by the presence of two stable steady states; one corresponds to the
situation where the tumor dies out and the other one where the tumor persists. Bistable
dynamics is significantly different from monostable dynamics, where only one stable steady
state exists which corresponds to the situation where the tumor always persists. It is important
to stress that the bistable behavior, which is already observed in the LGCA model, is preserved
after the mean-field approximation thereof, as shown by the form of the kinetic term appearing
on the corresponding PDE to be derived below.

If cell migration is neglected in the LGCA dynamics, the deterministic net changes occur-
ring in the cell density of a given node between two consecutive times k and k+1 are deter-
mined by cell reactions only. Scaling time and transition rates such that the microscopic time k
corresponds to the macroscopic time t = τk, τ� 1, one obtains two ordinary differential equa-
tions for the migratory and proliferative cell density, respectively. However, such a system is
hard to analyze analytically because of non-linearities which arise from the phenotypic switch-
ing. In order to facilitate analytical treatment, like bifurcation analysis, we assume that the
switch dynamics is much faster than cell number changes due to proliferation and death. Fur-
thermore, we consider the system to be in equilibrium with respect to the switching dynamics.
Hence, for low cell density, the fractions of resting and moving cells are given by rs(ρ) and 1 −
rs(ρ), respectively (see S1 Text). The overall macroscopic growth term of the LGCAmodel can
then be approximated by

FðrÞ ¼ RbrsðrÞrð1� rÞ � Rdr; ð2Þ
with ρ: = ρm + ρr, where ρm and ρr is the mean cell density of moving and resting cells, respec-
tively, at a given position. The parameters Rb and Rd relate the models’ proliferation and death
parameters, rb and rd, to the corresponding real time step length τ. If the average cell cycle time
of a cell is given by Tb and the average life time of a cell by Td, then Rb = 1/Tb � rb/τ and Rd =
1/Td � rd/τ (see S1 Text).

Stability analysis of the macroscopic net growth term F(ρ) shows that the behavior depends
mainly on the type of phenotypic plasticity, attractive (κ> 0) or repulsive (κ< 0) (see S1 Text
and S1 Fig). More precisely, one finds that there are essentially two regimes, a monostable one
for κ< 0 and those values of κ> 0 for which rs(%)rb > rd for small density values %, and a bis-
table one for κ> 0 and

rsð%Þrb < rd: ð3Þ

In the monostable regime, the cell density stabilizes at high density values where the exact loca-
tion of the stable state is determined by the carrying capacity. In the bistable regime, addition-
ally to the stable high-density state, the extinction state is stable. The critical region where κ>

0 and rs(%)rb = rd for small density values % is depicted in Fig 2 for % = 0.25. This is in good
agreement with the simulation results. The stability of the extinction state in the bistable regime
is due to the fact that the per capita growth rate F(ρ)/ρ is negative for small density values, see
Fig 5. Such negative density-dependence is termed Allee effect in the ecological literature and
has been attributed strong impact on population persistence and invasion properties [31].
Here, the Allee effect emerges as a consequence of the phenotypic plasticity with respect to
migratory and proliferative tumor phenotypes.

Phenotypic plasticity leads to density-dependent migration
The mean-field approximation for the LGCA cell movement process, detailed in S1 Text, is
also derived under the assumption that the switch dynamics are much faster than cell prolifera-
tion and death dynamics. Since then, for low cell densities, a density-dependent portion rs(ρ) of
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cells is in the resting state, the diffusion coefficient turns out to be density-dependent. The
LGCA migration process is isotropic with respect to the principal lattice directions. Along any
direction, the diffusion equation for the mean-field cell migration in the macroscopic limit is
given by

@tr ¼ @x ðDðrÞ@xrÞ; t � 0: ð4Þ

where the diffusion coefficient satisfies

DðrÞ ¼ D
1� rsð0Þ

2
� r0sð0Þr� 3

2
r00s ð0Þr2

� �
; r � 1; ð5Þ

with D being the diffusive scaling constant that is related to the single cell motility.
Combining the mean-field descriptions for the cell reaction and the cell migration pro-

cesses, we obtain a single partial differential equation (PDE),

@tr ¼ @x ðDðrÞ@xrÞ þ FðrÞ; ð6Þ

where the macroscopic growth term is given in Eq (2) and the density-dependent diffusion
coefficient is given in Eq (5).

Scalar reaction-diffusion equations such as Eq (6) are comparatively easier to analyze than
the original LGCAmodel, particularly in the simplified case where the diffusion coefficient D(ρ)
is constant and the kinetic term is either purely monostable or bistable. For instance, in any of
these situations, the resulting equation admits a particular type of solutions, traveling waves,
which have been used as a paradigm to describe tumor invasion [32]. As recalled in [33], semi-
linear equations admit front travelling waves of the form u(x, t) = U(x − ct) = U(z), where U(z)
connects two steady states of the equation as z tends to ±1. In the bistable case, the wave speed
is uniquely determined and can be positive or negative, depending on the precise form of F(ρ).
In contrast, in the monostable case, infinitely many (only positive) wave speeds are possible, all

Fig 5. Per capita growth rate of the mean-field description Eq (2) depends on the type of phenotypic
plasticity. In the repulsion case (κ < 0), the per-capita growth rate for small densities is always positive
(purple line). In the attraction case (κ > 0), the per-capita growth rate is reduced at low density (brown line)
and can even become negative (Allee effect, orange line). Model parameters are rb = 0.2, rd = 0.01, K = 8.

doi:10.1371/journal.pcbi.1004366.g005

Emerging Allee Effect Is Critical for Tumor Initiation and Persistence

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004366 September 3, 2015 9 / 14



of which should satisfy an explicit lower bound [34, 35]. Here, we are not interested in exploring
the existence of traveling waves for the highly nonlinear Eq (6), since such particular type of
solutions cannot keep track of extinction phenomena as those stressed in this work. We rather
wish to point out another important difference between the monostable and bistable cases,
which has been thoroughly discussed in the case of linear diffusivity. Namely, in the monostable
case, invasion cannot be stopped once it starts [36, 37], whereas solutions corresponding to suf-
ficiently small initial populations may eventually become extinct in the bistable case [38]. This
issue is, for nonlinear diffusion, an interesting target for further theoretical studies.

Discussion
In this work, we studied the effect of plasticity between migratory and proliferative behavior on
tumor growth by means of a cellular automaton model. The trigger for the phenotypic switch
was assumed to depend on the microenvironment via the local cell density. We found that this
migration-proliferation plasticity has dramatic consequences for tumor growth. Two parame-
ter regions with respect to the migratory cell behavior can be distinguished where fundamen-
tally different tumor growth dynamics at the tissue scale are observed. In one case, called
repulsive regime here, the tumor cell population will inevitably grow. In the other case, called
attractive regime, we identified conditions under which sufficiently small tumors die out and
tumor growth is only observed if the tumor size is above a certain threshold. We revealed that
the extinction behavior is a consequence of an emergent negative net cell growth rate at low
cell densities, a phenomenon known as Allee effect in ecology.

Comparing to previous studies [14, 18, 19] that investigate the effect of migration-prolifera-
tion plasticity with respect to the late phase of invasion and tumor spread, here we focus on an
early phase of tumor growth and in particular initiation and persistence. Tektonidis et al. [19]
have shown that glioma invasion data can be explained by assuming that the switching rates
increase with increasing cell density while constant switching rates failed. However, it is not
ruled out in this study that other parameter combinations, which might correspond to the
attractive or repulsive case in our model, fit the data equally well. Finally, the authors in [19]
refer to in vitro invasion data of a high-grade glioma cell line that according to our current
results are likely to correspond to the repulsive case.

The Allee effect seems to have been overlooked so far in the context of tumor growth and
persistence. In our study, the Allee effect emerges from the specific regulation of the migration-
proliferation plasticity at the cellular scale and has not been assumed a priori. Since the Allee
effect has been shown in ecology to change optimal control decisions, costs of control and the
estimation of the risk posed by potentially invasive species [31], we expect it to be critical for
tumor growth control as well. We point out that the Allee effect observed here is actually sto-
chastic, displayed by the discrete cellular automaton model. This means that it is not an artifact
arising from the mean-field approximation where stochastic effects are averaged out. In fact,
our model actually accounts for stochastic fluctuations that may be particularly relevant for
small to moderate size populations, a situation that may be relevant for tumor initiation.

In our model, the microenvironmental influence on the phenotypic switch between mov-
ing and proliferative cell behaviors is incorporated through a local cell density dependence.
This is a plausible assumption since further potential environmental influences such as nutri-
ent and oxygen supply, molecular signal gradients or other cell-cell interactions are mediated
through and correlate with the local cell density. Note that this reduction of the underlying
complexity is not a drawback of the model but allows to reveal inherent organizational princi-
ples. We expect that important population features like persistence and extinction could still
be observed if the dependence of plasticity on local density is resolved into a more precise
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dependence on particular cell-microenvironment interactions, a subject that we intend to
address in the future.

The stochasticity of our model incorporates heterogeneity of the microenvironment in its
simplest form. Studying the implications of heterogeneity was not the focus of the current
investigation as it would increase the model complexity and limit analytical investigations.
However, ecological studies show that in many situations environmental heterogeneity has
minor effects in growth dynamics where the Allee effect is present [39, 40]. In the future, inves-
tigations are required to analyze the importance of heterogeneity for specific tumors.

The Allee effect might have further implications for tumor spread. Here, we derived a
mean-field description for the tumor cell density which is given by a reaction-diffusion equa-
tion with density-dependent diffusion coefficient and a potentially bistable reaction term. The
behavior of solutions of fully nonlinear equations as Eq (6) is less known, although preliminary
theoretical results [41] indicate a wealth of possible behaviors, including standing waves, oscil-
latory front and monotonic front solutions. It therefore seems that the Allee effect has a signifi-
cant impact on population dispersal, which may be particularly relevant in the case of tumor
dissemination.

Recently, in some tumors, the existence of a migration-proliferation dichotomy has been
questioned [42]. It has been shown that individual cells in human malignant melanoma and
lung cancer cell lines exhibit either migratory or proliferative behavior, but on the population
level, migration and proliferation occur simultaneously. Experimental limitations due to the
used in vitro approaches do not lead to a conclusive picture yet. Our contribution with respect
to this discussion consists of two points. First, we provide a theoretical model which might
help to resolve the differences between observations at the cellular and the population level.
Second, for tumors with an established migration-proliferation plasticity at the cellular level,
we provide predictions on overall tumor growth.

Our results might shed some light on the interpretation of recent experiments on tumor
progression. For cell lines cultured from low-grade tumors, characterized by low cell density
and well-differentiated tumor cells, it has been observed that they have low chances of persis-
tence and low reproducibility in vivo and in vitro [6, 12, 43, 44]. On the contrary, cell lines
from high-grade tumors, which are characterized by increased cellular density and less differ-
entiated cells, repeatedly persist. Until now, the underlying mechanisms that lead to such dif-
ferent behaviors are unclear. We conjecture that the behavior of low-grade tumors resembles
the attractive regime in our model while high-grade tumors behave as in the repulsive model
regime. We suggest that the emergence of an Allee effect in low-grade tumors explains the exis-
tence of subcritical populations with low persistence probabilities. In contrast, the high-grade
tumor cells always persist. Thus, we propose that the progression to malignancy may result
from altered adaption to the cellular microenvironment with respect to the regulation of cell
migration and proliferation. Concretely, we conjecture the glioma progression from low-grade
glioma tumors to high-grade secondary gliomas corresponds to the evolution of attractive to
repulsive cell dynamics, i.e. change in the sign of parameter κ.

The theoretical findings in our study might also provide suggestions for the design of new
tumor therapies. Standard tumor therapy, such as chemo- and radiotherapy, are directed
towards controlling cell proliferation. However, a recent study demonstrated that neoadjuvant
chemotherapy selects for more migratory phenotypes at the expense of proliferative ones [45].
Our study shows that a possible therapeutic approach for malignant tumors is to combine con-
ventional therapies with adjuvant treatments that restore sufficient contact inhibition of cell
migration (CIM). In our model, CIM relates to a situation where cell motility decreases with
increasing local cell density (attractive regime). In this case, if CIM is enforced, our model pre-
dicts that a sufficiently small tumor may die out due to the intrinsic cell population dynamics.
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On the contrary, if cell motility increases with local cell density (repulsive regime), which corre-
sponds to CIM downregulation, any tumor inevitably grows and recurrence cannot be pre-
vented. It is well known that malignant tumor cells lose sensitivity to contact inhibition of
migration [46, 47]. Our study suggests that this is not only a bystander effect but might be a
key determinant of tumor’s fate. Further investigations are required for the experimental vali-
dation of our hypothesis.
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