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Abstract

Monogenic diseases usually demonstrate Mendelian inheritance and are caused by highly 

penetrant genetic variants of a single gene. In contrast, genetically-complex diseases arise from a 

combination of multiple genetic and environmental factors. The concept of autoinflammation 

originally emerged from the identification of individual, activating lesions of the innate immune 

system as the molecular basis of the hereditary periodic fever syndromes. In addition to these rare, 

monogenic forms of autoinflammation, genetically-complex autoinflammatory diseases like the 

periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome, chronic 

recurrent multifocal osteomyelitis (CRMO), Behçet’s disease, and systemic arthritis also fulfill the 

definition of autoinflammatory diseases - namely the development of apparently unprovoked 

episodes of inflammation without identifiable exogenous triggers and in the absence of 

autoimmunity. Interestingly, investigations of these genetically-complex autoinflammatory 

diseases have implicated both innate and adaptive immune abnormalities, blurring the line 

between autoinflammation and autoimmunity. This reinforces the paradigm of concerted innate 

and adaptive immune dysfunction leading to genetically-complex autoinflammatory phenotypes.
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Introduction

The concept of autoinflammation was born in the context of the monogenic hereditary 

periodic fever syndromes [1], where it was intended as a direct contrast to autoimmunity, 

referring to instances where inflammation was present in the absence of either high titer 

autoantibodies or clonally-expanded, autoreactive T cells. This dichotomy has provided a 

useful framework for the consideration and classification of immune-mediated diseases, 

with autoimmunity representing adaptive immune dysfunction and autoinflammation 

representing innate immune dysfunction. However, this construct is limited by the fact that 

dysfunction of the innate and adaptive immune systems are not mutually exclusive, even 

among monogenic forms of autoinflammation [2, 3]. Unlike the monogenic 
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autoinflammatory diseases, which are caused by highly penetrant mutations of single genes, 

the group of genetically-complex or polygenic autoinflammatory diseases are influenced by 

the interactions of multiple genetic and environmental risk factors. In addition to their 

genetic complexity, these diseases are also immunologically complex, reflecting the 

interplay of multiple risk factors that contribute to dysfunction of both innate and adaptive 

immunity. This review highlights recent advances in the understanding of genetically-

complex autoinflammatory diseases, including periodic fever with cervical adenitis, 

pharyngitis, and aphthous stomatitis (PFAPA), the autoinflammatory diseases of the bone, 

Behçet’s disease (BD), and systemic arthritis.

Periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis (PFAPA) 

syndrome

The PFAPA syndrome is marked by recurrent episodes of oro-pharyngeal and systemic 

inflammation. Although its name is suggestive of a stereotypical clinical presentation, a 

recent study of 301 PFAPA patients highlighted the phenotypic heterogeneity of this 

syndrome, revealing that only 44% of PFAPA patients had all 4 of the namesake features, 

while 76% of patients presented with additional symptoms [4]. Despite its occasional 

transmission in an autosomal dominant or autosomal recessive pattern, PFAPA most 

frequently develops sporadically or clustered within families without a clear Mendelian 

pattern of inheritance. In one such case, a single child with a syndromic form of PFAPA was 

found to have a de novo chromosomal translocation that included a microdeletion of SPAG7 

(Table 1) [5]. The function of SPAG7 is unknown, but it is expressed in two tissues relevant 

to PFAPA, the tonsils and the lymph nodes [5]. Additionally, it is overexpressed in 

peripheral blood mononuclear cells (PBMC) from individuals seropositive for human 

parvovirus B19, as compared to PBMC from seronegative individuals, pointing to a 

potential role for SPAG7 in anti-viral immunity [6]. Another recent study examined the 

hereditary periodic fever syndrome genes in PFAPA patients, identifying enrichment of 

NLRP3 and MEFV variants among a subset of PFAPA patients [7]. Moreover, this study 

identified dysregulated IL-1β production in PFAPA patient monocytes [7]. Finally, a recent 

ex vivo investigation of neutrophils identified increased production of intracellular oxygen 

free radicals, increased priming, and decreased apoptosis in PFAPA neutrophils during 

disease flares, as compared to either PFAPA neutrophils from periods of quiescent disease 

or neutrophils from febrile, non-PFAPA patients [8].

Chronic recurrent multifocal osteomyelitis and autoinflammation of the 

bone

The autoinflammatory syndromes of the bone, which include chronic non-bacterial 

osteomyelitis (CNO), chronic recurrent multifocal osteomyelitis (CRMO), and the synovitis, 

acne, pustulosis, hyperostosis and osteitis (SAPHO) syndrome each manifest sterile, 

inflammatory lesions of the bone. Our genetic understanding of these disorders is largely 

derived from investigations of human osteoinflammatory syndromes, including those caused 

by recessively inherited mutations of LPIN2, IL1RN, and RAG1 (Table 1) [9-11]. 

Additionally, there are two murine models of CRMO caused by mutations of Pstpip2, 
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however no causative mutation of PSTPIP2 has been identified in human disease [12, 13]. 

Two recent studies of the murine chronic multifocal osteomyelitis (cmo) model have 

provided insight into the pathophysiology CNO. One study revealed that cmo neutrophils 

produce excessive amounts of IL-1β, and that its production is inflammasome-independent 

[14]. Another study demonstrated that by altering the composition of the intestinal 

microbiome with dietary manipulations, it was possible to modify the expression of sterile 

osteomyelitis phenotype [15]. Furthermore, recent human immunologic studies have 

identified increased Th17 cells in the peripheral blood of SAPHO patients [16], reduced 

IL-10 production by stimulated monocytes from CRMO patients [17], and increased 

expression of the inflammasome-related genes, IL1B, CAS1, and ASC, in PBMC from 

CRMO patients [18].

Behçet’s Disease

BD, which is marked by recurrent oro-genital ulceration, together with ocular, cutaneous, 

vascular, and gastrointestinal inflammation, has a relatively high heritability among the 

genetically-complex autoinflammatory diseases. Family- and population-based genetic 

studies of BD continue to expand the list of known BD susceptibility genes (Table 1), which 

has grown to include important cytokines, chemokines, and signaling molecules that 

implicate both innate and adaptive immune mechanisms in its pathogenesis. The largest risk 

factor for BD remains the class I Human Leukocyte Antigen (HLA) molecule, HLA-B*51 

[19]. However, a recent study of a large Turkish case-control collection identified multiple 

class I HLA alleles that strongly influenced BD susceptibility, demonstrating that the role of 

the class I HLA locus in BD extends beyond HLA-B*51 [20]. Strikingly, many genes 

implicated in BD also influence susceptibility to the seronegative spondyloarthropathies, 

including ankylosing spondylitis and psoriasis. For example, in each of these diseases, risk 

variants of ERAP1 influence disease risk through epistasis with the disease-associated class I 

HLA allele [21-23]. Taken together, these observations strongly suggest that shared 

pathophysiologic mechanisms exist among these class I HLA-associated diseases [21].

Systemic arthritis (Systemic juvenile idiopathic arthritis and adult-onset 

Still’s disease)

Systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still’s disease (AOSD) are both 

forms of systemic arthritis, with the primary difference between them being the age of onset. 

Systemic arthritis is a rare condition that includes the development of chronic arthritis, 

together with recurrent episodes of systemic inflammation that are marked by fever, 

evanescent skin rash, generalized lymphoid hyperplasia, thrombocytosis, and 

hyperferritinemia. Individuals with systemic arthritis are also at high risk of developing 

macrophage activation syndrome, a potentially fatal cytokine storm syndrome. Studies of 

anti-cytokine therapies (anti-IL-1 and anti-IL-6) have demonstrated the beneficial effects of 

these agents for many sJIA patients [24, 25]. However, because these therapies are neither 

universally tolerated nor universally effective, there remains a need to develop novel 

therapeutic agents to treat sJIA. Two recent studies have provided new clues into genetic 

underpinnings of systemic arthritis (Table 1). The first study, an ongoing genome-wide 

association study of sJIA patients from 9 countries, has identified a strong association 
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between sJIA and HLA-DRB1*11 and has revealed another bona fide sJIA susceptibility 

locus at chr1:p36.32 [26]. The second study investigated a recessively-inherited, sJIA-like 

inflammatory disease that was identified in several consanguineous Saudi Arabian families 

[27]. In every affected family member, the authors identified homozygous founder 

mutations of LACC1, which encodes an antioxidant protein that also influences 

susceptibility to both inflammatory bowel disease and leprosy.

Conclusion

As we continue to pursue the causes of genetically-complex autoinflammatory diseases, we 

expect to uncover both innate and adaptive immune mechanisms that contribute to their 

pathogeneses. Because of the rare nature of many of these diseases, population-based 

genetic studies are challenging, requiring collaborative efforts to assemble adequately 

powered cohorts in which to perform association studies. Alternatively, monogenic or 

familial forms of genetically-complex autoinflammatory diseases will continue to provide a 

unique perspective of disease pathogenesis, given that in these cases a single genetic lesion 

is capable of producing an otherwise complex, polygenic phenotype.
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Genes involved in the genetically complex autoinflammatory diseases

Disease
Causative genes in

monogenic forms of
disease

Risk genes in
polygenic forms of disease

PFAPA SPAG7 [5] NLRP3 [7]
MEFV [7]

Chronic non-bacterial
osteomyelitis

LPIN2 [9]
IL1RN [10]
RAG1 [11]
Pstpip2 [12, 13]

chr18 q21.3 – chr18 q22 [28]

Behçet’s disease chr12p12 – chr12p13 [29]
chr6p22 – chr6p24 [29]
NEMO [30]
TNFAIP3 [31]
TNFRSF9 [31]

HLA-B [19, 20]
HLA-A [20]
IL10 [32, 33]
IL23R [32, 33]
CCR1 [21]
STAT4 [21]
KLRC4 [21]
ERAP1 [21]
MEFV [34]
TLR4 [34]
TNFAIP3 [35]
TRAF5 [36]
TRAF3IP2 [36]
FUT2 [37]

Systemic arthritis

• Adult-onset Still’s disease

• Systemic juvenile idiopathic arthritis)

LACC1 [27] HLA-DRB1 [26]
chr1 p36.32 [26]

Semin Immunopathol. Author manuscript; available in PMC 2016 July 01.


