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SUMMARY

Mechanosensitive channels protect bacteria against
lysis caused by a sudden drop in osmolarity in their
surroundings. Besides the channel of large conduc-
tance (MscL) and small conductance (MscS), Es-
cherichia coli has five additional paralogs of MscS
that are functional and widespread in the bacterial
kingdom. Here, we present the structure of YnaI by
cryo-electron microscopy to a resolution of 13 Å.
While the cytosolic vestibule is structurally similar
to that in MscS, additional density is seen in the
transmembrane (TM) region consistent with the pres-
ence of two additional TM helices predicted for YnaI.
The location of this density suggests that the extra
TM helices are tilted, which could induce local
membrane curvature extending the tension-sensing
paddles seen in MscS. Off-center lipid-accessible
cavities are seen that resemble gaps between the
sensor paddles in MscS. The conservation of the
tapered shape and the cavities in YnaI suggest a
mechanism similar to that of MscS.

INTRODUCTION

Bacterial cells are directly exposed to the environment, and

therefore must be able to adapt to sudden and drastic changes

in external solute composition. Sudden decreases of osmolyte

concentrations in the environment will cause a hypo-osmotic

shock. Water is drawn into the cell with its higher solute concen-

trations, and consequently the internal pressure will increase to

dangerous levels. In response, bacteria sense the increased

turgor pressure as increased membrane tension and gate me-

chanosensitive (MS) channels release solutes. This relieves the

pressure, preventing cell death.

Multiple MS channel genes are often found within a single

species. Escherichia coli, for example, has seven MS channels:

MscL, MscS, and five further homologs of MscS (Edwards

et al., 2012; Li et al., 2002, 2007; Schumann et al., 2010). It is

likely that this functional redundancy is required for a graded
Stru
emergency response mechanism that minimizes the unspecific

release of solutes and keeps the disturbance of homeostasis

to a minimum. At tensions close to the rupture of the mem-

brane, MscL is activated and forms the largest pore, whereas

at lower tensions MscS is triggered, which has much smaller

conductance.

Crystal structures of MscS (Bass et al., 2002; Lai et al.,

2013; Pliotas et al., 2012; Wang et al., 2008; Zhang et al.,

2012) show that the channel is formed by seven subunits.

Each of the subunits contributes three transmembrane (TM)

helices, TM1–3. TM1 and TM2 form a flexible paddle that is

likely to be involved in tension sensing. TM3 is a long kinked

helix, which consists of the TM pore-forming part, TM3a,

followed by TM3b that links the membrane part with a large

cytosolic domain. This domain forms an enclosed vestibule

at the entrance of the pore.

Sequence alignments show that all homologs ofMscS inE. coli

have an N-terminal extension while the cytosolic domains have

a similar size except for YbdG, which has a small insertion within

the cytosolic domain (Schumann et al., 2010). Analysis of the se-

quences also indicates that theseN-terminal extensions formTM

helices in addition to the three found inMscS. YnaI and YbdG are

predicted to contain two additional TM helices, whereas MscK,

YjeP, and YbiO are predicted to have eight additional helices

(Krogh et al., 2001). It is not fully understood whether these addi-

tional TM helices isolate the sensor paddle from direct contact to

the lipids, provide access routes for lipids to the sensor paddle

(Booth et al., 2011) or even extend the paddle.

Although it is generally agreed that the paddlesmust be impor-

tant for tension sensing and rotationally rearrange giving rise to

different conformations ofMscS (Wang et al., 2008), it is not clear

how they are actually sensing the tension in the membrane.

Recently, we demonstrated that lipids can intercalate between

the paddles in MscS, which may be important for the sensing

mechanism (C. Pliotas et al., personal communication). In addi-

tion, it was proposed that gating could be driven by a change of

local membrane curvature due to the tilted paddles (Phillips

et al., 2009). However, it is unclear whether these mechanisms

are transferable to the larger homologs.

Here, we present a first glimpse at the structure of one of the

larger homologs, YnaI, which suggests that the additional

N-terminal helices may induce membrane curvature and may

move and act as an extended sensor paddle. Furthermore, we
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Figure 1. Class Averages of Vitrified YnaI

Samples

(A) 2D class averages of vitrified YnaI. The class

averages were calculated with Relion. Only those

class averages are shown in which the particle

images could be aligned accurately. White arrow-

heads mark contact sites to neighboring particles

in the aggregates.

(B) Three 3D class averages. The upper row shows

a surface representation of the full class average;

the lower row shows the same view, with the front

half of the particle cut away. Arrows indicate extra

density due to contacts with neighboring particles.

The scale bar represents 5 nm.

See also Figure S1.
obtained evidence that the core of the membrane domain is fully

accessible to lipids, and saw lipid-filled pockets comparable

with the pockets seen between the sensor paddles in MscS.

We found that the tryptophanW184 at the portals of the cytosolic

domain is required for function.

RESULTS

Cryo-Electron Microscopy of YnaI
Electron micrographs showed that YnaI aggregated at one site

and had very little overlap to neighboring particles in the smaller

aggregates (Figure S1, arrows). We selected a total 34,700 of

YnaI channels, of which 18,985 particle images grouped into

well-defined classes in 2D classification. This subset was used

in further analysis. The 2D class averages showed predominantly

side views with two distinct moieties of different sizes (Figure 1).

The smaller moiety had a distinct central cavity, which resem-

bled the cytosolic domain of MscS and contained themajor con-

tact sites to other particles in the aggregates (Figure 1A, white

arrowheads).

Next, we calculated a 3D map using a previously determined

map of negatively stained particles as starting reference (see

Supplemental Information; Figure S1). To identify those parti-
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cles that were least disturbed by the

aggregation, we performed a 3D classifi-

cation of the aligned vitrified particles

into three classes. All three 3D classes

showed a similar shape of YnaI with ex-

tensions of different sizes at the top and

at the side of the cytosolic domain (Fig-

ure 1B, arrows). These extensions were

attributed to neighboring particles in

the aggregates. On the inside (Figure 1B),

all three classes had a similar distribu-

tion of cavities, with the cavity of the

cytoplasmic vestibule clearly resolved

and distinct cavities in the center and

at the side of the membrane part. For

further refinement, we used the particle

images of class 3 (7,202 particles) that

had the least additional density from

aggregation (Figure 1B, black arrows).

The refined map of class 3 (Figure 2;
accession number EMDB: 3035) had a resolution of 12.6 Å

(Figure S3).

Structure of the Cytosolic Domain
The structure of YnaI shows on one side a large vestibule,

which had an overall cross-correlation of 0.7 to the cytosolic

domain of MscS (see Figure S4 for local cross-correlation).

This domain provides in MscS stability (Rasmussen et al.,

2007; Schumann et al., 2004) and selectivity (Maksaev and

Haswell, 2012, 2013; Zhang et al., 2012), and is conserved be-

tween different channels of the MscS family. For structural

comparison, we fitted the structure of MscS in the non-con-

ducting state (PDB: 2OAU; Bass et al., 2002) into the electron

microscopy (EM) map of YnaI (Figure 2). The fit showed excel-

lent agreement of the cytosolic vestibule, but did not resolve

the portals and the openings in the b-barrel structure of the

vestibule. Furthermore, the EM map of YnaI had unaccounted

density beyond the C-terminal b barrel of MscS (Figure 2A,

arrow). This unaccounted density is most likely built by the

seven C-terminal residues of MscS that are not resolved in

the crystal structure plus the C-terminal purification tag of

YnaI and density from the neighboring particles in the YnaI

aggregates.



Figure 2. Surface Representation of Vitrified

YnaI with the Fitted Structure of MscS

(A) Different views of the surface representation of

YnaI. From left to right: top view; side view; slice

along the central, long axis of the side view; bottom

view. The arrow indicates the major contact site in

the aggregates. The ribbon presentation shows the

fitted MscS (PDB: 2OAU; Bass et al., 2002). The

green semi-circles with a diameter of 5 nm highlight

the likely position of the detergent micelle. The

upright scale bar represents 7.5 nm and highlights

the length of the membrane part of YnaI.

(B) Several 1-nm thick slices of YnaI are shown

parallel to the plane of membrane with the structure

of MscS (PDB: 2OAU) fitted. The position of the

slices is indicated with black bars in the central

slice shown in (A).

See also Figure S4.
Structure of the Membrane Domain
The membrane domain in YnaI was funnel shaped. The cytosol-

facing site was narrower and had the same diameter (8 nm)

as that of MscS. The diameter at the periplasm was 12.5 nm,

compared with 5.5 nm in MscS. The total length of the mem-

brane domain perpendicular to the plane of membrane was

7.5 nm, which was much larger than the 4.5 nm in MscS (Fig-

ure 2A). This difference in size was probably due to the two addi-

tional TM helices of YnaI and the tightly bound detergent micelle

(Figure 2A, green semi-circles of 5 nm diameter indicate the

extent of a typical dodecyl maltoside micelle) that are absent in

the crystal structure of MscS.

The EMmap of YnaI revealed a hollow cylinder in the center of

the membrane part, which formed a distinct pore at the inside

that was obstructed at both the cytosolic (Figure 3, red arrow)

and periplasmic side (Figure 3, blue arrow). In MscS the central

pore is formed by the seven tightly packed TM3 helices, which

fit well into the hollow cylinder in their closed conformation

(PDB: 2OAU; Bass et al., 2002), but are not accommodated in

their open conformation (PDB: 2VV5; Wang et al., 2008), sug-

gesting that YnaI was in a closed conformation. In the closed

state, the pore of MscS is sealed by the hydrophobic residues

L105 and L109 (corresponding L154 and M158 in YnaI), which

aligned well with the obstruction of the pore at the cytosolic

site of YnaI.

Sequence alignment ofMscS and YnaI showed that YnaI has a

49-amino-acid long extension at the N terminus. Furthermore,

structures of MscS lack the first 25 N-terminal amino acids.

This N-terminal region of MscS does not align with the sequence

of YnaI, and predictions of its structure have been made on the

basis of spectroscopic data and simulations (Anishkin et al.,

2008; Vásquez et al., 2008). Based on secondary structure pre-

diction by JPRED, YnaI had two more N-terminal helices (resi-

dues 3–31 and 41–67; Figure 4A). These predicted helices largely

overlapped with predictions of TM helices between 10–32 and

39–61 using TMHMM (Krogh et al., 2001).

To illustrate the possible contribution of the N-terminal helices

to the structure of YnaI, we have placed a homology model of

YnaI together with the predicted N-terminal helices in the EM

map (Figures 4B and 4C). Since we cannot resolve the helices
Stru
in our EM map, we have assumed that the additional helices

were similarly staggered and tilted as the helices are in the struc-

ture of MscS, and that the ends of the N-terminal helices were

close to the surface of the EM map of YnaI. Our illustration ac-

counts for most of the observed EM density apart from a belt

of fragmented density at the periplasmic side, which we think

is accounted for by the detergent micelle.

The Core TM Helices Are Accessible to Lipids
The off-center cavities in themembrane domain of YnaI (Figure 3;

green arrow) resembled crevices seen in the crystal structures

of MscS between the sensor paddles and TM3. Recently, we

proved lipid penetration into these crevices in MscS and hy-

pothesized that this could also be important for the sensing of

membrane tension (C. Pliotas et al., personal communication).

In YnaI, these cavities are shielded by 14 more helices than in

MscS. To test whether this had any impact on the accessibility

to lipids, we used collisional quenching of tryptophan fluores-

cence by bromine atoms attached to fatty acid chains of the

lipids (Kasha, 1952). Fluorescence quenching occurs if the tryp-

tophan is in van der Waals contact with the bromine atoms in the

lipids, and thus reports lipid contact for a particular location on a

membrane protein (East and Lee, 1982). We constructed a

mutant of YnaI where the five tryptophan residues were replaced

by phenylalanine (D5W), allowing introduction of new tryptophan

residues as probes. Based on sequence alignment of YnaI to

MscS, we chose three residues that were likely to line the cav-

ities: G152W, F168W, and the native tryptophan W201 (D4W).

These positions were homologous to A103W (TM3a), A119W

(TM3b), and I150W in E. coli MscS, respectively (Figures 5A

and 5D). We showed that G152W and F168Wwere highly acces-

sible to lipids (Figure 5C) as were the corresponding residues in

MscS (C. Pliotas et al., personal communication). YnaIW201 had

limited accessibility for lipids, similarly to the corresponding

MscS I150W. Emission spectra of MscS and YnaI samples

solubilized in n-dodecyl-b-D-maltopyranoside (DDM) showed

peak positions that correlated well with the lipid accessibility

(Figure 5B). The fatty acid tails of the phospholipids are predom-

inantly located where the tryptophan probes indicate a low-

polarity environment. There is good agreement of fluorescence
cture 23, 1705–1714, September 1, 2015 ª2015 The Authors 1707



Figure 3. Slices of the EM map of YnaI in Comparison with Fitted

Structures of Closed and Open MscS

The EM map of the fitted closed channel of MscS (PDB: 2OAU; Bass et al.,

2002; magenta) and fitted open channel of MscS (PDB: 2VV5; Wang et al.,

2008; blue) are shown. The left slice is parallel to the symmetry axis; the right

slice is perpendicular to the symmetry axis at the position indicated on the right

panel. The inner ring of helices, which forms the central pore of the open

channel (blue) in MscS, is not accommodated by the EM density, whereas the

inner ring of the closed channel (magenta) is accounted for by the EM density.

The positions L105 and L109 of the hydrophobic seal of MscS are indicated by

balls and sticks. The green arrow indicates the off-center membrane-

embedded cavities that are also seen in the crystal structure of MscS. The red

arrow highlights the cytosolic constriction, and the blue arrow the peri-

plasmatic constriction of the pore.
properties between YnaI and MscS for these three residues,

suggesting conservation of the lipid-filled cavities next to

the pore-forming helices in these two proteins as indicated by

the structural similarity of the EM map of YnaI. However, YnaI

D5W L154W did not follow this trend. L154W was highly

quenched, indicating greater lipid accessibility than its MscS

counterpart, the pore-facing L105W (C. Pliotas et al., personal

communication). Moving just two residues along the helix, how-

ever, restores the behavioral correlation, as G152W fluores-

cence data agree well with the MscS counterpart A103W. A

possible explanation for the anomaly of the L154W data may

be provided by the glycine-rich sequence GGIGG (Figure 5D)

adjacent to L154W in YnaI. This sequence could introduce

high flexibility and enable accessibility to lipids, e.g. by partial

unwinding of the helix in YnaI.

Position of the First TM Relative to the Lipid Bilayer
Analysis of the sequence of YnaI (Krogh et al., 2001) and hydro-

phobicity plots suggested that YnaI had two additional TM heli-

ces N-terminal to the three conserved TM helices found inMscS.

The fluorescence of one turn of the predicted first TM helix from

V14W to F17W was investigated. All mutants showed high lipid

accessibility, with the highest for V14W and the lowest for

I16W (Figure 6A), confirming their location in the lipid bilayer.

Emission peak positions for I15W and I16W were more red

shifted than for V14W and F17W (Figure 6B), characteristic of a

more hydrophilic environment. If a simple helical model is

made (using PyMol v1.7.1), it can be seen that on both adjacent

turns hydrophilic residues, N12 and S19, face in the same direc-
1708 Structure 23, 1705–1714, September 1, 2015 ª2015 The Autho
tion as I15W and I16W (Figure 6D). Therefore, it seemed likely

that a helical structure was present and that this face of the helix

was in contact with another TM helix, which is often promoted by

formation of hydrogen bonds (Adamian and Liang, 2002). On this

face of the helix, C20 and S27 may form additional hydrogen

bondswith their side chains to neighboring helices. Lipids bromi-

nated at different positions along the fatty acid chain allow

depth-dependent quenching experiments, which inform on the

relative position of the tryptophan probe within the bilayer (Bolen

and Holloway, 1990). Only F17W showed depth dependence in

the quenching (Figure S5). The distribution analysis (Ladokhin,

1997, 2014) suggested that F17W was 7 ± 1 Å away from the

membrane center (Figure 6C; dispersion s = 3.4 ± 0.7 E; area

parameter S = 12 ± 2), which agreed well with the predicted

extend of the first TM helix from residues 10 to 32 (Figure 6D;

Krogh et al., 2001).

Tryptophan W184 Is Required for Function
Wild-type (WT) YnaI provides less protection in osmotic down-

shock assays than MscS, requiring induction when expressed

from the pTrc plasmid (Edwards et al., 2012). When assayed

for function, the tryptophan mutants used for the fluorescence

experiments in this study failed to protect cells against hypo-os-

motic shock (Figure S6) while the corresponding MscS mutants

retained functionality (C. Pliotas et al., personal communication).

The similarity of spectroscopic properties between YnaI and

MscS (Figure 5B) indicated that structural features are similarly

independent of functionality. However, we sought to obtain evi-

dence that structural conclusions drawn from our fluorescence

experiments hold true for the active and native form of YnaI.

Structures obtained from negatively stained particles of the

mutants D5W G152W and F168W were similar to those of WT,

indicating that these mutations do not cause a gross change in

structure (Figure S7).

Several mutants of the native tryptophan residues were tested

for functionality to better understand the cause of the loss of

function. The double mutant W29F/W201F (D2W) is functional

(Figure S6). These are the two tryptophan residues predicted

to be located in the membrane domain. D2W shows no quench-

ing by brominated lipids (Figure 7), consistent with the prediction

that the three remaining tryptophan residues are located close

together at the portals in the cytosolic domain away from

the membrane. The related mutant W29F (D1W) is active and

reports the quenching of tryptophan W201 by brominated lipids.

The small quenching seen is consistent with that seen for W201

in the tryptophan-free background reported above (D4W) but

with the constant, non-quenchable contributions from the three

cytosolic tryptophan residues. Similarly, quenching of W201 is

seen in the mutant D3W (Figure 7; see below).

The mutant W29F/W184Y (D2Wb) is inactive while W29F/

W299Y/W302Y (D3W) is active, which shows that W184 is

required for function and cannot be substituted even by the con-

servative mutation to tyrosine (Figure S6). The role of tryptophan

residues in YnaI and MscS are clearly different because the two

residues of MscS in the cytosolic domain are located at the sub-

unit interface and are important for complex stability (Rasmussen

et al., 2007). Phenylalanine mutations can retain stability of the

heptameric MscS complex, and function is not influenced (Ras-

mussen et al., 2007). On the other hand, the three tryptophan
rs



Figure 4. Structure Prediction for YnaI
(A) Secondary structure prediction of the N-terminal region (1–114) of YnaI. The positions of the predicted TM helices (TMHMM) are underlined. The prediction in

the upper row is based on homology modeling with the Swiss-Model server. Prediction in the lower row is done with JPred. Longer helical regions are highlighted

as squares.

(B) Homology model of YnaI (red) fitted into the EM map of YnaI. The predicted transmembrane helices in the N-terminal region are shown in blue (TM1), cyan

(TM2), and yellow (TM3). The placement is arbitrary and aims at visualizing the possible extent of YnaI. The placement is based on assuming a tilt similar to the

helices in the structure of MscS, keeping the heliceswithin the density of the YnaImap and leaving continuous space at the likely position of the detergent micelle.

(C) 1-nm thick slices through the membrane part of YnaI with the symmetry-related copies. The approximate positions of the slices are indicated in (B).
residues in the cytosolic domain of YnaI are not predicted to be at

the subunit interface. All mutations we tested form stable hepta-

meric complexes, but the function is lost by mutation of W184.

The single tryptophan in MscS close to the membrane interface,

W16, is functionally sensitive to mutation while this is not the

case for the only tryptophan in YnaI on a TM helix, W29, as far

as we can tell from our downshock assay. The lack of tryptophan

residues at the membrane-water interfaces in MS channels is

striking and has been proposed to be important for their function

(Booth et al., 2007, 2011). Usually tryptophan residues serve as

‘‘anchors’’ to localize membrane proteins in the membrane (Kill-

ian and von Heijne, 2000).

In summary, we see similar quenching for W201 in two active

mutants, althoughwith constant fluorescence contributions from

the cytosolic tryptophan residues overlaid, compared withW201

in the tryptophan-free background (Figure 7). Furthermore, the

gross structure of two other mutants was similar to that of WT

(Figure S7). Therefore, it seems reasonable to assume that the

pockets seen in the membrane domain are also filled with lipids

in the native YnaI. Interestingly, we saw a functional contribution

of W184 at the portals of the cytosolic domain. MscS homologs

often seem to have a tryptophan at this position while in the case

of E. coli MscS itself, tyrosine Y135 is aligned (Figure 5D). W184

is far away from the membrane regions investigated by fluores-

cence in this study.

DISCUSSION

We have reconstructed the 3D structure of YnaI at intermediate

resolution. The map confirms that YnaI has a seven-fold sym-

metric organization similar to that of the related MscS, with an

almost identical organization of the C-terminal cytosolic domain

and a significantly larger membrane domain, which was consis-

tent with the N-terminal extension of YnaI and the presence of a

detergent micelle.

The size of the central pore in the EMmap of YnaI agreed very

well with the diameter of the pore formed by TM3a helices in

closed structures of MscS. Furthermore, the seal region toward
Stru
the cytosolic site of the pore has the highest sequence homology

between YnaI and MscS, and the seal residues L154 and M158

are of similar size to L105 and L109 in MscS.

Electrophysiological characterization of YnaI showed very

different properties of a conducting open state between YnaI

and MscS (Edwards et al., 2012). YnaI opens less frequently

and appears to require more pressure for activation, and the

conductance is much smaller (Edwards et al., 2012). There

may be several reasons for this. One could be the second

constriction of the pore toward the periplasm in YnaI (Figure 3,

blue arrow), which could stabilize the closed state and might

restrict the pore size in the open state. For example, the large

side chain of L142 could cause this second constriction. Another

reason could be an extended sensor paddle (four TM instead of

two in MscS), which forms a larger interaction interface with the

lipids and so might require larger tension for changing the lipid

content and, thus, for driving conformational switching. The

off-center cavities in the EM map of YnaI agree in their position

with cavities seen between TM3 and the sensor paddle in the

crystal structures of MscS, suggesting that the inner core of

the sensor paddle is structurally preserved despite the two addi-

tional TM helices in YnaI. Our fluorescence experiments on tryp-

tophan mutants confirmed that three residues that are predicted

to be exposed to the cavity in YnaI are similarly accessible to

lipids as the corresponding residues in MscS.

Several MscS crystal structures from different organisms

produced by different laboratories agree on structural features

of the membrane domain (Bass et al., 2002; Lai et al., 2013;

Wang et al., 2008; Zhang et al., 2012), which seem also be

conserved in YnaI seen in our EM study. However, molecular dy-

namics (MD) simulations were performed by two independent

groups who proposed that the gaps and tilted paddles are an

artifact of crystallography and are not present in the active

MscS in the membrane (Anishkin et al., 2008; Vásquez et al.,

2008). One of these studies constrained its simulation on exper-

imental continuous-wave electron spin resonance data, how-

ever, without distance measurements (Vásquez et al., 2008).

Because of these contradicting views of the membrane domain
cture 23, 1705–1714, September 1, 2015 ª2015 The Authors 1709



Figure 5. Lipid Accessibility of the TM Core

Region of YnaI

(A) Crystal structure of MscS (PDB: 2OAU; Bass

et al., 2002) showing the cavities between the

‘‘sensor paddles’’ and the pore-forming helices.

For clarity only two subunits are shown (yellow and

gray), but the pore-forming helices TM3a from all

subunits to indicate the pore (light-blue; back),

MscS A103W (red), and L105W (blue) on TM3a

facing away or into the pore, respectively, are

shown. A119W (green) on TM3b and I150W

(magenta) protruding between TM3b helices into

the cavities were used for fluorescence studies

and homologs residues in YnaI identified by

sequence alignment.

(B) Correlation of fluorescence properties between

YnaI (red) and MscS (black). The peak position of

emission spectra of detergent-solubilized samples

(open circles) and the fractional quenching (F0� F)/

F0 of samples reconstituted into bilayers con-

taining brominated or non-brominated lipids are

shown (closed circles). Mean values with SD are

indicated (n R 3; see Table S1).

(C) Fluorescence emission spectra of YnaI mutants

reconstituted into non-brominated lipids (black) or

brominated lipids (colored according to homolog

MscS residues in A).

(D) Sequence alignment between YnaI and MscS indicating the chosen residues for the fluorescence study. Conserved residues are shown

in gray. An orange box indicates the position of tryptophan W184, which aligns with tyrosine Y135 of MscS.

See also Figure S6 and Table S1.
structure, a follow-up study was performed in which distances

of MscS reconstituted into membranes were measured by

pulsed electron-electron double resonance (PELDOR) (Ward

et al., 2014). These data agreed with the crystal structures and

not with the MD simulations. Our recent fluorescence quenching

data on MscS (C. Pliotas et al., personal communication) and

YnaI in this study provide an independent experimental

approach to the PELDOR experiments, showing that the gaps

between the paddles are present and filled with lipids when

these MS channels are located in the membrane. Thus, consid-

ering the currently available evidence, we believe that structural

features suggested by the crystal structures are more likely

to represent the active form of MscS and, indeed, homology

of YnaI.

We noticed that the thickness of the membrane domain of

YnaI perpendicular to the plane of the membrane was signifi-

cantly larger than the typical width of a membrane and also as

observed for MscS. We can exclude that this is caused by an

extended N-terminal domain in the periplasm, as the predicted

first TM helix showed strong lipid interaction and the depth-

dependent fluorescence quenching agreed with the proposed

location of this TM relative to the membrane. The highly charged

loops between TM1 and TM2 and between TM3 and TM4 also

give a good estimation for the length of the TM helices, which

is similar to those in MscS. It therefore seemed unlikely that

the membrane domain of the channel of YnaI had an extraordi-

narily large hydrophobic extent perpendicular to the plane of

membrane that could lead to an atypical stretching of the

membrane in the vicinity of the channels (Figure 8A). The likely

position of the detergent micelle at the bottom of the channel

suggested that the hydrophobic domain of the membrane-
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embedded part was further away from the cytosolic domain as

in MscS (Figure 8B). This is probably caused by the outer ring

of additional N-terminal helices in YnaI being vertically displaced

toward the periplasm. A good indication for such a displace-

ment is the fact that the diameter of the membrane part at the

cytosol is the same in MscS and YnaI, which would be too small

to accommodate the additional 14 N-terminal helices in YnaI

at the same level close to the cytosol. However, toward the

periplasm the diameter of YnaI increased, in contrast to MscS,

providing plenty of space for an additional ring of helices, in

agreement with a displacement toward the periplasm.

The preserved off-center cavities of YnaI suggested that the

TM helices were most likely tilted similarly to those in MscS.

Such tilted helices would induce local tension in the membrane

that could increase the local curvature of the membrane (Fig-

ure 8C), which is in agreement with simulations and models of

MscS (C. Pliotas et al., personal communication) (Phillips et al.,

2009; Sotomayor and Schulten, 2004).

In summary, we illustrate an unusual overall shape of themem-

brane domain of YnaI which is best explained with four similarly

tilted TM helices that probably form an extended sensor paddle

compared with that of MscS. The sensor paddle fully maintains

lipid accessibility to the core of the channel. Similar to the

proposal for MscS, changes in the curvature of the membrane

could represent the tension-sensingmechanisms. The proposed

extension of the sensor paddle would provide a larger lipid inter-

action interface, and thus would require larger tensions for

changing the lipid content and thus for triggering the opening

of the YnaI channel, as observed in patch-clamp experiments

(Edwards et al., 2012). The presence of seven distinct ‘‘knobs’’

in this part of the EM map also supports the presence of seven
rs



Figure 6. Fluorescence of YnaI V14W to

F17W on the Proposed First TM Helix

(A) Lipid contacts were determined by reconstitu-

tion into brominated and non-brominated lipids.

Fractional quenching (F0 � F)/F0 is shown as mean

with SD.

(B) Emission peak positions of detergent-solubi-

lized samples.

(C) Distribution analysis (blue line) of depth-

dependent fluorescence quenching with three

different brominated lipids for mutant F17W (black

circles). Mean values with SD are shown (n = 5).

(D) Helical model (produced with PyMol) of the

TM helix (residues 10–30) including the residues

used for the fluorescence experiments. Hydro-

philic residues are shown in orange. The prediction

of this TM helix is in agreement with the results

shown in (C) considering the positioning of F17W.

See also Figures S5, S6; Table S1.
defined sensor paddles, in contrast to an isolating ring of 14

evenly distributed TMs.
EXPERIMENTAL PROCEDURES

Purification of YnaI

Purification of YnaI was performed as described in detail previously (Edwards

et al., 2012). In brief, YnaI was expressed from a pTrc99A vector in E. coli strain

MJF641 missing all seven genes of the known MS channels (Edwards et al.,

2012). Expression was induced for 4 hr at 30�C with 0.8 mM isopropyl b-D-

1-thiogalactopyranoside. Cell pellets were stored at �80�C until further use.

Cells were lysed by a single passage through a French press, and membranes
Stru
were collected by ultracentrifugation at 100,000 3 g for 1 hr at 4�C. Mem-

branes were then solubilized in 1% DDM (Glycon) for 1 hr at 4�C and were

loaded onto a prepacked Ni-nitrilotriacetic agarose column (Sigma) using a

C-terminal His6-tag on YnaI. After washing and elution, the peak fraction

was further purified on a size-exclusion Superose 6 10/300 column (GEHealth-

care). The MscS mutant YFF I150W was purified following a protocol very

similar to that for YnaI and was described earlier (Rasmussen et al., 2010). A

size-exclusion Superdex200 10/300 column (GE Healthcare) was used in

this case.

Sample Preparation for EM

Quantifoil Grids (1.2/1.3) were glow discharged for 1 min in a Quorumtech mini

sputter coater (Quorumtech SC7620) at 35 mA and used within 1 hr. Grids were
Figure 7. Quenching of W201 in Different

Mutants and Properties of Tryptophan

Mutants

Quenching of BrPC for the mutants D4W, D1W,

D2W, D3W, and D4Wb are shown in the first

row. For comparison of the quenching of W201

the constant, non-quenchable contributions of the

cytosolic tryptophan residues were eliminated by

subtracting spectra of D2W and D4Wb from D1W

andD3W, respectively (second row). Fluorescence

intensities in both rows are each normalized for

protein concentration. The table on the bottom

gives an overview of the used mutants, showing

that W184 is required for function. The two tryp-

tophan residues located in the membrane region

have an orange background. The quenching by

BrPC is given without and with correction for

the fluorescence contributions of the cytosolic

tryptophan residues.

See also Figures S6 and S7.
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Figure 8. Interaction of YnaI with the Membrane

Schematic drawing of how YnaI (gray) could shape the membrane. Size and

shape of YnaI are based on the EM map. The hydrophobic core (orange) and

headgroup regions (blue) of the membrane are indicated. The tensions in

the membrane are likely to put forces onto the transmembrane part of YnaI.

The direction of the forces is indicated by arrows.

(A) The large size of the membrane part could cause a local increase of the

width of the membrane to bury the membrane part completely.

(B) However, the likely position of the detergent micelle suggests that the

hydrophobic part is located further away from the cytosolic domain at the

bottom of the channel.

(C) The tilt of the helices could induce a local curvature of the membrane as

indicated.
mounted in a plunge freezer with an environmental chamber (Bellare et al.,

1988). The chamber was humidified with two water-soaked sponges and

kept at room temperature. 2 ml of concentrated YnaI solution (2.2 mg/ml)

was applied to the grid and then blotted for 15 s with two layers of filter paper

(Whatman No. 1). For consistent results the filter paper was kept in a humidi-

fied box for at least 1 hr before use. After blotting the grid was plunged into

liquid ethane, which was cooled by a bath of liquid nitrogen. The ethane was

prevented from freezing by a heating unit. Grids were transferred to grid boxes

and stored in liquid nitrogen until use (within 2 months).

Electron Microscopy

EM was done with an FEI-F20 electron microscope with field emission gun

and a TVIPS F416 4k 3 4k CMOS camera. The microscope was operated

at 200 kV, spot size 5, with a C2 condenser aperture and an objective aper-

ture of 100 mm diameter. For data acquisition of negatively stained samples

at room temperature, a standard room temperature holder was used. Vitri-

fied samples were transferred with a Gatan 626 cryo-holder with a match-

ing Gatan transfer station. Image acquisition was done semi-automatically

with EM tools (TVIPS; see Supplemental Experimental Procedures for more

details).
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Image Processing

Particles were manually selected with e2boxer of the EMAN 2 package (Tang

et al., 2007) using the auto-center option and windowed with a box size of

256 3 256 pixels. For each micrograph the defocus was determined with

ctffind3 (Mindell and Grigorieff, 2003). Further image processing was done

with Relion (Scheres, 2012) (for more details see Supplemental Information).

Fitting of Atomic Models to EM Maps

Fitting of the models of MscS (PDB: 2OAU [Bass et al., 2002] and 2VV5 [Wang

et al., 2008]) was done with the ‘‘fit into map’’ option of Chimera (Pettersen

et al., 2004). The homology model of YnaI was generated using the automated

mode of the Swiss-Model server (Kiefer et al., 2009). The homology model of

YnaI was placed into the EM map using the match maker option of Chimera

and aligning the homology model to one of the chains of the fitted MscS

cannel. The models of the individual helices (poly-Ala-chain of appropriate

length) were generated with the ‘‘built’’ option of the structure-editing tool of

Chimera. The helices were manually placed in the EM map.

Fluorescence Experiments

The five native tryptophan residues in YnaI were replaced by phenylalanine,

and new tryptophan residues were introduced by site-directed mutagen-

esis (Stratagene). Furthermore, several intermediate mutants were obtained

whereby some of the tryptophan residues were replaced by phenylalanine or

tyrosine. A mutant with only one of the native tryptophan residues remaining,

W201 (D4W), was also used. The mutant forms were purified as described for

WT YnaI, and resulted in homogeneous heptameric YnaI complexes. Then

YnaI was reconstituted into lipid bilayers in the same way as described earlier

(Carney et al., 2006). In short, DDM-solubilized YnaI was mixed with cholate-

solubilized lipids at a ratio of 1:100 (mol/mol) and incubated at room tempera-

ture for 15 min. Then YnaI was reconstituted into bilayers by diluting into a

buffer containing 40 mM HEPES (pH 7.2), 100 mM KCl, and 1 mM EGTA. After

5 min of incubation at 20�C, fluorescence spectra were recorded using an

FLS920 spectrometer (Edinburgh Instruments) with an excitation wavelength

of 295 nm and emission from 300 to 420 nm. Spectra were compared for

reconstitution into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC; Avanti

Polar Lipids) or 1,2-di-(9,10-dibromo)stearoyl-sn-glycero-3-phosphocholine

(BrPC). The fractional quenching was calculated by (F0 � F)/F0, where F0 is

the fluorescence intensity at 340 nm for samples reconstituted into DOPC

and F for reconstitution into BrPC. Emission spectra were also recorded

for DDM-solubilized YnaI samples. For depth-dependent quenching experi-

ments, YnaI was reconstituted into 1-oleoyl-2-palmitoyl-sn-glycero-3-phos-

phocholine as non-brominated reference sample and into brominated lipids,

1-palmitoyl-2-(6,7-dibromo)stearoyl-sn-glycero-3-phosphocholine or similar

lipids with bromination at 9,10- or the 11,12-positions (all obtained from Avanti

Polar Lipids). Data were analyzed according to Ladokhin (1997) with distribu-

tion analysis using Gaussian functions and the program Origin 8.0 for fitting.
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The quenching of the W201 fluorescence in the mutants W29F (D1W)

and W29F/W299Y/W302Y (D3W) were determined by following procedure.

The mutant forms were reconstituted in DOPC and BrPC as described above,

and the fluorescence was measured. The intensity was normalized by the final

protein concentration, ignoring the inner filter effect because of low absorption.

The same was done for the corresponding control mutants that have the addi-

tional W210F mutation, resulting in W29F/W201F (D2W) and W29F/W201F/

W299Y/W302Y (D4Wb), respectively. Emission spectra of the control mutants

were subtracted from the former spectra and the fractional quenching was

calculated as above. The concentration of the original samples before reconsti-

tution were determined by UV-Vis spectroscopy using the extinction coeffi-

cients ε280nm = 38.29 mM�1 cm�1 (for D1W), ε280nm = 32.89 mM�1 cm�1 (for

D2W), ε280nm = 27.39 mM�1 cm�1 (for D3W), and ε280nm = 21.89 mM�1 cm�1

(for D4W).
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