Skip to main content
. 2015 Sep 3;16:237. doi: 10.1186/s12891-015-0700-5

Table 2.

Logistic regression for receipt of screening

Univariable Final Multivariable Modela
OR (95 % CI) OR (95 % CI)
Age ≥50 versus <50 1.69 (1.31-2.18) 1.68 (1.29-2.18)
Sex Female vs Male 0.94 (0.68-1.33)
Race Caucasian Ref
Black or African American 1.31 (1.01-1.69)
Asian 0.69 (0.29-1.62)
Other or unknown 0.74 (0.45-1.21)
Hypertension 2.65 (1.72-4.10) 2.12 (1.35-3.32)
Hyperlipidemia Diagnosis 1.61 (0.58-4.46)
Diabetes mellitus 2.22 (1.61-3.07) 2.06 (1.48-2.87)
Obesity 2.62 (1.61-4.27) 2.52 (1.51-4.19)
BMIa 1.04 (1.01-1.07)
BMI Categorya Normal (18.5-24.9) REF
Overweight (25–29.9) 1.66 (0.93-2.96)
Obese (≥30) 2.17 (1.24-3.78)
Underweight (<18.5) 0.40 (0.10-1.62)
Peripheral Arterial Disease 1.92 (0.17-21.3)
Tobacco use Current smoker vs non-smoker or past-smoker (n = 348) 0.70 (0.41-1.18)

The c-statistic (equivalent to area under the curve) for the model was 0.63 for the association between the predicted probabilities and observed responses for the final multivariable model

aGiven the large amount of missing data for BMI and the risk for selection bias in using a complete case analysis, we have instead used a binary variable for obesity identified using ICD9 codes. The OR of 1.04 is for each unit increase in BMI