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Abstract

Motivation: Genetic heterogeneity, the fact that several sequence variants give rise to the same

phenotype, is a phenomenon that is of the utmost interest in the analysis of complex phenotypes.

Current approaches for finding regions in the genome that exhibit genetic heterogeneity suffer

from at least one of two shortcomings: (i) they require the definition of an exact interval in the gen-

ome that is to be tested for genetic heterogeneity, potentially missing intervals of high relevance,

or (ii) they suffer from an enormous multiple hypothesis testing problem due to the large number

of potential candidate intervals being tested, which results in either many false positives or a lack

of power to detect true intervals.

Results: Here, we present an approach that overcomes both problems: it allows one to automatic-

ally find all contiguous sequences of single nucleotide polymorphisms in the genome that are

jointly associated with the phenotype. It also solves both the inherent computational efficiency

problem and the statistical problem of multiple hypothesis testing, which are both caused by the

huge number of candidate intervals. We demonstrate on Arabidopsis thaliana genome-wide asso-

ciation study data that our approach can discover regions that exhibit genetic heterogeneity and

would be missed by single-locus mapping.

Conclusions: Our novel approach can contribute to the genome-wide discovery of intervals that

are involved in the genetic heterogeneity underlying complex phenotypes.

Availability and implementation: The code can be obtained at: http://www.bsse.ethz.ch/mlcb/

research/bioinformatics-and-computational-biology/sis.html.

Contact: felipe.llinares@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genetic heterogeneity is the phenomenon that several distinct se-

quence variants may give rise to the same phenotype (Burrell et al.,

2013); one refers to allelic heterogeneity if these variants are located

in the same gene, and to locus heterogeneity if they occur in several

distinct genes. This phenomenon is of the utmost importance to the

exploration of the genetic basis of complex phenotypes, as most

complex phenotypes have been found to be affected by numerous

loci, rather than a single locus (McClellan and King, 2010).

The common ways of computing associations between genotype

and phenotype are rather limited in their ability to detect genetic

heterogeneity. Standard genome-wide association studies (GWAS)

compute correlations between single genome positions, primarily

single nucleotide polymorphisms (SNPs) and the phenotype of inter-

est (Wellcome Trust Case Control Consortium, 2007). The smaller

the sample size and the more SNPs that are involved in a phenotype,

the less likely it is that genetic heterogeneity can be detected by this

type of single-locus mapping. Gene-based tests quantify whether or

not the number of sequence variants in one gene is enriched in cases

versus controls (Neale and Sham, 2004). Although this approach

does consider the combined effect of several SNPs, it is also restrict-

ive in the sense that it only checks entire genes for association. It will
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miss any variants that lead to genetic heterogeneity, but are not

located in or near the same gene.

Besides these two standard approaches to GWAS, many regres-

sion-based models for associating phenotype and genotype have

been proposed, such as Lasso models (e.g. Kim et al., 2009).

Although they are not limited to a single SNP or gene and thereby

assess all possible loci at once, these models are limited in the sense

that they cannot provide a measure of statistical significance for

their findings on the level of sets of SNPs. At best, these models may

provide a P-value that quantifies the probability that a certain SNP

contributes to the phenotypic variance. But they cannot account for

the inherent multiple hypothesis testing problem that is created by

checking arbitrary contiguous intervals in the genome for genetic

heterogeneity, let alone arbitrary sets of remote genetic loci.

The scale of this multiple testing problem in genetic heterogen-

eity search can be illustrated as follows: when considering all

possible intervals in a genome in a dataset with 106 SNPs, the num-

ber of tests one performs is quadratic in the number of SNPs in the

genome, i.e. approximately 5 � 1011 candidate intervals. When

ignoring the multiple testing problem, one will obtain billions of

false positives. If one performs the standard Bonferroni correction

(Bonferroni, 1936), which divides the significance threshold a
(typically 0.05 or 0.01) by the number of tests, then the corrected

threshold will be so low that hardly any finding will be statistically

significant.

We propose an algorithm for genome-wide detection of con-

tiguous intervals that may exhibit genetic heterogeneity with re-

spect to a given binary phenotype. More specifically, we search for

genomic intervals in which the occurrence of at least one type of

sequence variant (e.g. a point mutation or minority allele) is sig-

nificantly more frequent in one of the two phenotypic classes. The

fact that the sequence variant may occur at any SNP within the

interval allows us to detect genetic heterogeneity in this manner.

Our algorithm automatically finds the starting and end positions

of these intervals, while properly correcting for multiple hypothesis

testing and preserving statistical power. Central to this algorithm

is an approach by Tarone (1990), which allows one to reduce the

Bonferroni correction factor for multiple testing. We employ our

novel algorithm on 21 binary phenotypes from Arabidopsis thali-

ana and discover intervals of SNPs in the Arabidopsis genome that

are associated with 14 of these phenotypes, but could not be found

with previous methods.

2 Approach

We will first state our problem formally, then provide the necessary

background on statistical association testing and the multiple testing

problem, before presenting our approach to genetic heterogeneity

detection.

2.1 Problem statement: significant interval search
We are given a set of n individuals classified into two phenotypic

groups, n1 cases and n2 controls (Fig. 1). Each individual is

represented by an ordered sequence of L binary genotypes. The

sequence of binary genotypes can represent binary SNPs in a homo-

zygous setting or, more generally, a dominant/recessive encoding in

a heterozygous setting.

Our goal is to find all genomic intervals, such that the occur-

rence of at least one genotype encoded as 1 (for instance, a minor

allele or recessive genotype) within in each of these intervals is statis-

tically significantly associated with the occurrence of a phenotype of

interest.

The intervals found are promising candidates for regions of gen-

etic heterogeneity underlying phenotypic variation and should be

functionally investigated.

More formally, we are given a dataset ðsi; yiÞf gn
i¼1 where si is

the binary sequence of length L representing the i-th individual and

yi 2 Cases;Controlsf g is its corresponding binary phenotype.

Each si can itself be represented as an L-dimensional vector

si ¼ ðsi½0�; si½1�; . . . ; si½L� 1�Þ with binary entries si½j� 2 0; 1f g. We

denote the interval ðs; lÞ of length l starting at index s of a sequence

si as si½s; l� ¼ ðsi½s�; si½sþ 1�; . . . ; si½sþ l � 1�Þ. There are LðLþ1Þ
2 pos-

sible intervals as we vary l ¼ 1; . . . ;L and s ¼ 0; . . . ;L� l.

Finally, let gðsi½s; l�Þ be a binary random variable defined as

gðsi½s; l�Þ ¼ si½s� _ si½sþ 1� _ . . . _ si½sþ l � 1�, where _ denotes the

binary OR operator. Note that gðsi½s; l�Þ takes value 1 if the subse-

quence si½s; l� contains at least one non-zero entry and value 0 other-

wise. Intuitively, gðsi½s; l�Þ indicates whether the i-th individual has

one or more minor alleles in the genomic region determined by the

interval ðs; lÞ or not.

The problem we solve in this article is that of finding all intervals

ðs; lÞ with l ¼ 1; . . . ;L and s ¼ 0; . . . ;L� l such that the random

variable gðs½s; l�Þ is statistically associated with the phenotype y after

correction for multiple hypothesis testing.

2.2 Statistical background
2.2.1 Statistical model

For each interval ðs; lÞ, the data f gðsi½s; l�Þ; yi gn
i¼1 can be arranged

in the form of a 2�2 contingency table:

Variables gðs½s; l�Þ ¼ 1 gðs½s; l�Þ ¼ 0 Row totals

y ¼ Cases as;l n1 � as;l n1

y ¼ Controls xs;l � as;l n2 � ðxs;l � as;lÞ n2

Col. totals xs;l n� xs;l n

By the definition of gðs½s; l�Þ; xs;l is the number of individuals in

the dataset which have one or more minor alleles within the genomic

interval ðs; lÞ. Similarly, as;l has the same interpretation but re-

stricted only to cases.

In this article, the strength of the association between the pheno-

type y and the random variables gðs½s; l�Þ will be evaluated using

Fisher’s exact test (Fisher, 1922). We denote the P-value obtained by

applying Fisher’s exact test to the 2�2 contingency table corres-

ponding to the genomic interval ðs; lÞ as ps;l. An interval ðs; lÞ will be

deemed to be significantly associated with the phenotype if ps;l � d,

with d being the corrected significance threshold.

Fig. 1. Schematic illustration of the problem of detecting genomic intervals

that may exhibit genetic heterogeneity
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Our work can be readily extended to use other test statistics instead

of Fisher’s exact test such as, for instance, the v2-test (Pearson, 1900).

2.2.2 Multiple hypothesis testing

To solve the significant interval search problem we must perform a

statistical association test such as Fisher’s exact test for each of the
LðLþ1Þ

2 possible intervals ðs; lÞ. This means that for usual values of L

in the order of 105 or 106, tens or hundreds of billions of hypotheses

are being tested simultaneously.

This creates a challenging multiple hypothesis testing problem

which would result in a crippling amount of false positives if mul-

tiple testing is not taken into account. Therefore, in this article, we

chose to focus on approaches which strictly control the Family Wise

Error Rate (FWER), defined as the probability of generating one or

more false positives.

FWER control requires using testing procedures which guarantee

that FWER � a with a being the desired significance level. To this

end, one usually chooses the corrected significance threshold d ap-

propriately. Ideally, the optimal d� would be obtained by solving the

following optimization problem

d� ¼ max djFWERðdÞ � af g;

as it would yield the highest power, i.e. the probability of detecting

true positives, while still strictly controlling the FWER.

However, since evaluating FWERðdÞ in closed form is not pos-

sible in general, the most popular approaches resort to sub-optimal

solutions. For instance, the well-known Bonferroni correction

(Bonferroni, 1936) is equivalent to simplifying the original problem

by using the bound FWERðdÞ � dD, where D is the total number of

statistical association tests being performed. When dD is used in-

stead of FWERðdÞ in the optimization problem above, it leads to the

well-known correction d�bon ¼ a=D. Despite being popular due to its

simplicity, the Bonferroni correction is often overly conservative,

i.e. FWERðd�bonÞ � d�bonD in practice. More importantly, in our

setup where D ¼ LðLþ1Þ
2 is a huge number, the Bonferroni correction

is too severely under-powered.

An alternative to the lack of power of the Bonferroni correction

is to use permutation-testing methods, such as the Westfall–Young

(WY) permutation testing procedure (Westfall and Young, 1993), to

empirically estimate FWERðdÞ.
In WY permutation testing, we generate a resampled dataset by

randomly permuting the class labels with respect to the individuals,

obtaining a new dataset in which no interval is statistically associated

with the (permuted) class labels. Then we compute the minimum

P-value across all LðLþ1Þ
2 intervals, pmin ¼ minðs;lÞps;l, and compare it

with d. If pmin > d, then no interval is significant and there are no false

positives in the resampled dataset; otherwise there are one or more

false positives. If we repeat this a sufficiently large number of times J,

obtaining J different minimum P-values p
ðjÞ
min

n oJ

j¼1
, one can compute

an empirical estimate of the FWER as

FWERðdÞ ¼ 1

J

XJ

j¼1

1 p
ðjÞ
min � d

h i
;

where 1[�] takes value 1 if its argument is true and 0 otherwise. The

optimal corrected significance threshold d�wy which solves the original

optimization problem can then be estimated as the a-quantile of the

set p
ðjÞ
min

n oJ

j¼1
. Although the WY permutation testing procedure solves

the power limitation of the Bonferroni correction by empirically esti-

mating the high-dimensional dependence structure of the P-values for

all LðLþ1Þ
2 intervals, the computational effort required to compute

p
ðjÞ
min

n oJ

j¼1
is unfeasible for reasonable values of J, say 103 or 104.

Although proving theoretically that the WY permutation-testing pro-

cedure achieves strong FWER control is challenging, often requiring

the assumption of hard-to-verify technical conditions such as the sub-

set pivotality condition, permutation-based testing is widely applied

in computational biology as empirical evidence often suggests that

strong FWER control is in fact achieved.

Next, we review the concept of the minimum attainable P-value

for discrete test statistics, which we will extensively exploit in our

contribution.

2.2.3 The concept of minimum attainable P-value

Tarone was the first to discuss in (Tarone, 1990) the existence of a

minimum attainable P-value when discrete test statistics, such as

Fisher’s exact test, are used. The idea is simple: since the test statistic

is discrete, it can only take a finite set of values and there exists a

minimum attainable P-value strictly greater than 0. As Tarone

showed, one can exploit that to obtain an improved Bonferroni cor-

rection factor which exhibits a great increase in statistical power in

many cases of interest.

In the context of 2�2 contingency tables, a large class of test

statistics considers the table margins xs;l, n1 and n2 to be constant

and, as a consequence, knowing the value of one of the four inner

cell counts determines the value of the other three, i.e. the table has

a single degree of freedom. Relevant examples are Fisher’s exact

test, the v2-test and the Cochran–Mantel–Haenszel test (Mantel and

Haenszel, 1959), among others. If we choose as;l as the cell count of

reference (regardless of which of the four cell counts is chosen as the

independent random variable one obtains exactly the same results,

thus, we use as;l without loss of generality), then

as;l 2 amin; . . . ; amaxf g where amin ¼ maxð0; xs;l � n2Þ and

amax ¼ minðxs;l; n1Þ are the minimum and maximum possible values

of the cell count as;l consistent with the table margins. Thus, there

are at most amax � amin þ 1 different attainable values for the

test statistic and corresponding P-values. One can then compute

the minimum attainable P-value as Wðxs;l; n1; n2Þ ¼ min

ps;lðas;l; xs;l;n1; n2Þjas;l 2 ½amin; amax�
� �

. (In our setup, the table mar-

ginals n1 and n2 are constant for all LðLþ1Þ
2 intervals and only the

margin xs;l depends on the interval ðs; lÞ. Thus, we omit the depend-

ence of Wðxs;l; n1;n2Þ on n1 and n2 from now on.)

The concept of the minimum attainable P-value Wðxs;lÞ has pro-

found implications for multiple hypothesis testing problems involv-

ing discrete test statistics. Intuitively, it quantifies the strongest

association that we could ever observe just based on the table mar-

gins. When applied to the significant interval search problem, if Wð
xs;lÞ > d then we know that the interval ðs; lÞ can never be significant

regardless of the actual value of as;l. More importantly, when test

statistics are used which consider the table margins fixed, one can

prune those intervals from the search space without affecting the

FWER.

More formally, we define ITðdÞ ¼ f ðs; lÞjWðxðs; lÞÞ � d g as the

set of testable intervals at corrected significance level d. All inter-

vals which are not in ITðdÞ can never achieve significance at level d
and are thus called non-testable at that level. The FWER at signifi-

cance level d can then be upper bounded by djITðdÞj, motivating

the following procedure to find the corrected significance thresh-

old d�:

d�tar ¼ max djdjITðdÞj � af g

Like the Bonferroni correction, Tarone’s method also ignores the

dependence structure between test statistics, thus being less powerful

i242 F.Llinares-López et al.



than permutation-based testing approaches. On the other hand, by

exploiting the discreteness of the test statistic, it has greatly

increased statistical power when compared with a standard

Bonferroni correction. The method as proposed by Tarone had to be

solved by a brute-force approach requiring computation of the min-

imum attainable P-values for every single test. When a very large

number of tests have to be performed, that is unfeasible due to the

daunting computational complexity involved. Nonetheless, by care-

fully designing context-dependent pruning techniques, Tarone’s

method was successfully applied recently to association rule mining

(Minato et al., 2014; Terada et al., 2013) and graph mining

(Sugiyama et al., 2015).

However, all of those approaches cannot work directly with the

exact minimum attainable P-value function WðxÞ. Instead, they used

a surrogate function ŴðxÞ which greatly overestimates the potential

for significance when the margin x is close to n. Since that situation

is commonly encountered in the significant interval search problem,

especially for sufficiently large intervals, the existing methods can-

not be readily extended to our task.

Next, we present our contribution: two alternative algorithms to

solve the significant interval search problem by making use of the

exact minimum attainable P-value; one based on Tarone’s method

and another on WY permutation testing.

2.3 Our approach: significant interval search with fast

automatic interval search and FAIS-WY
Here, we describe the Fast Automatic Interval Search (FAIS) algo-

rithm and its Westfall–Young-based counterpart, FAIS-WY. Both

methods exploit the concept of minimum attainable P-value re-

viewed in Section 2.2.3 along with a novel pruning technique to ob-

tain a corrected significance threshold d� for the significant interval

search problem. However, their exact goal differs: FAIS provides a

computationally efficient way to apply Tarone’s method to the sig-

nificant interval search problem whereas FAIS-WY makes applying

the WY permutation testing procedure to the significant interval

search problem feasible. That is, FAIS computes d�tar whereas

FAIS-WY computes d�wy. In practice, FAIS-WY is more computa-

tionally demanding than FAIS but has increased statistical power.

The main body of FAIS and FAIS-WY is presented as Algorithm 1,

which emphasizes the common structure between both methods. The

general idea is to initialize the tentative corrected significance threshold

d to the largest possible value such that all intervals are initially testable.

Intervals ðs; lÞ are then sequentially enumerated in increasing order of

length and, if they are testable at the current level d, they are processed

leading to an adjustment of d to ensure that the respective FWER-

related target is satisfied: djITðdÞj � a for FAIS and FWERðdÞ � a,

with FWERðdÞ estimated via WY-permutations for FAIS-WY. Finally,

intervals are pruned from the search space, if possible.

Therefore, we need to have an efficient way to check whether an

interval ðs; lÞ is testable and a way to determine when all intervals

containing the current interval ðs; lÞ can be pruned from the search

space. We address each of those points next.

2.3.1 Testability

Let d0; d1; :::; d n
2b c

n o
be the image of WðxÞ sorted in a monotonic-

ally decreasing sequence. Notice that there are only n
2

� �
þ 1 differ-

ent values because WðxÞ is symmetric around n=2 (Fig. 2). Now,

we define the testable region RðdÞ as the set R dð Þ 	 0;n½ � such that

xs;l 2 RðdÞ , ðs; lÞ 2 ITðdÞ. In other words, the interval ðs; lÞ is

testable at level d if and only if the margin xs;l of interval ðs; lÞ be-

longs to RðdÞ. Two important properties of the testable regions

RðdÞ are:

PROPERTY 1: 8 d 2 ½dk; dk�1Þ;ITðdÞ ¼ ITðdkÞ ) RðdÞ ¼ RðdkÞ 
 Rk

PROPERTY 2: (i) if dk < Wð n
2

� �
Þ, the region Rk is the union of

two symmetric intervals, i.e. Rk ¼ ½rk
l ;r

k
u� [ ½n� rk

u; n� rk
l �; (ii) if

dk � Wð n
2

� �
Þ the region is composed of a single interval,

Rk ¼ ½rk
l ;n� rk

l �.

Property 1 states that, since WðxÞ attains only n
2

� �
þ 1 different

values, there are only n
2

� �
þ 1 different sets of testable intervals

ITðdÞ and corresponding testable regions RðdÞ. Thus, it suffices to

consider only the n
2

� �
þ 1 cases corresponding to d0; d1; :::; d n

2b c
n o

defined above, with testable regions RðdkÞ 
 Rk.

Property 2, along with the symmetry of WðxÞ, implies that the re-

gions RðdkÞ are easy to describe and can in fact be computed by

starting from Rðd0Þ ¼ ½0;n� and iteratively ‘shrinking’ them to ob-

tain RðdkÞ from Rðdk�1Þ. The computational complexity of each

such step is negligible (O(1)). The two different shapes that testable

regions Rk can take are described in Figure 2.

In summary, to check if an interval ðs; lÞ is testable at level

d 2 ½dk; dk�1Þ one just needs to check if xs;l 2 Rk or not.

Algorithm 1. FAIS and FAIS-WY main body

1: function Main

2: init_specific()

3: interval queue ð0; 1Þ; ð1; 1Þ; . . . ; ðL� 1;1Þf g
4: Set k 1 and compute dk, Rk and rk

l

5: while interval queue is not empty do

6: ðs; lÞ  intervalqueue:popðÞ
7: Compute gðsi½s; l�Þ8 i ¼ 1; . . . ;n

8: xs;l ¼
Pn

i¼1 gðsi½s; l�Þ
9: if xs;l 2 Rk then

10: process_interval_specific()

11: end if

12: if xs;l � n� rk
l and xs�1;l � n� rk

l then

13: intervalqueue:appendððs� 1; l þ 1ÞÞ
14: end if

15: end while

16: end function
Fig. 2. Minimum attainable p-value W(x) for n¼60, n1¼15 (blue dots)
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2.3.2 Pruning

We exploit the following fact: intervals ðs0; l0Þ containing the interval

ðs; lÞ have margins xs0;l0 � xs;l. Thus, if the interval ðs; lÞ is non-test-

able and xs;l > n� rk
l , no interval containing it can be testable and

we can prune the search space. Notice that an interval ðs; lÞ can be

non-testable, i.e. xs;l =2Rk, and yet the search space will not be

pruned if xs;l < n� rk
l .

Thus, if we enumerate intervals in increasing order of length,

every time an interval with xs;l > n� rk
l is found to be non-testable,

any other interval which contains it can be deemed to be non-test-

able too without needing to inspect it.

2.3.3 Detailed description of the pseudocode

Next, we describe in greater detail the pseudocode common to FAIS

and FAIS-WY in Algorithm 1 in order to discuss the specific aspects

of each of the two algorithms.

Initialization: In Line 2 the variables specific to FAIS or

FAIS-WY are initialized. Key to the enumeration procedure is the

variable intervalqueue, which is initialized in Line 3 by pushing

all length 1 intervals. Finally, the tentative corrected significance

threshold is initialized to d ¼ d1, which is the largest value that WðxÞ
can take other than the trivial value d0 ¼ 1, and the corresponding

testability region Rk and its left-most point rk
l is obtained.

Enumeration process: Between lines 5 and 15 one finds the core

of the algorithm; a while loop which analyzes the intervals con-

tained in the queue one by one, iteratively adding new intervals

which cannot be pruned to the queue during the process. The loop

naturally stops once the queue becomes empty.

Within the loop, first of all, the interval ðs; lÞ located at the head

of the queue is popped (Line 6). The values of the random variable g

ðsi½s; l�Þ are then evaluated for all n individuals, and the correspond-

ing margin xs;l is computed (Lines 7 and 8). Next, in Line 9, one

checks if the interval ðs; lÞ is testable at the current corrected signifi-

cance level dk. If xs;l =2Rk, then the interval is not testable and does

not need to be processed. In contrast, if xs;l 2 Rk, the interval is test-

able at the current significance threshold dk and we must process it,

appropriately decreasing dk and shrinking Rk, thus also decreasing

n� rk
l . How that processing step is made is what sets FAIS and

FAIS-WY apart algorithmically and statistically and will be dis-

cussed later.

Finally, pruning occurs in Line 12. We know that if either

the current interval being processed ðs; lÞ or the preceding interval

ðs� 1; lÞ are non-testable with margin x > n� rk
l , then the interval

ðs� 1; l þ 1Þ cannot possibly be testable and does not need to be ap-

pended to the queue of intervals to be processed. Note also that if ei-

ther interval ðs; lÞ or interval ðs� 1; lÞ had been previously pruned

due to this criteria, interval ðs� 1; l þ 1Þ will be pruned too. In other

words, pruning propagates from shorter intervals to longer length

intervals containing them. As n� rk
l decreases as intervals are pro-

cessed, the algorithm naturally ends after all testable intervals at the

final d� have been enumerated.

FAIS specific functions: In Algorithm 2, we describe how FAIS

processes the testable intervals. The key idea is to keep an nþ1-

dimensional vector of counters c, originally initialized with all zero

entries, such that c½k� is the number of intervals processed so far

which had xs;l ¼ k. Thus,
P

x2Rk
c½x� equals the number of testable

intervals at the corrected significance threshold dk found so far.

Every time a new testable interval ðs; lÞ is found, the correspond-

ing counter c½xs;l� is increased by one making the improved

Bonferroni bound ð
P

x2Rk
c½x�Þdk increase too. If the bound is still

lower than a, nothing needs to be done. However, when it becomes

larger, we know that the current testability threshold dk is too large.

Thus, in line 7, we increase k, reducing dk and effectively shrinking

the testability region Rk until the condition ð
P

x2Rk
c½x�Þdk � a is

satisfied again.

FAIS-WY specific functions: At initialization, we generate all J

shuffled phenotypes yðjÞ
� �J

j¼1
at once and initialize p

ðjÞ
min

n oJ

j¼1
. Upon

finding a testable interval, one must compute the corresponding

Fisher’s exact test P-values for all J randomly shuffled phenotype

vectors yðjÞ
� �J

j¼1
, updating the minimum P-values across all intervals

processed so far, p
ðjÞ
min

n oJ

j¼1
if needed. Then, the condition for

decreasing the threshold simply becomes FWERðdÞ > a, where

FWERðdÞ is the empirical FWER estimation obtained using the J

minimum P-values obtained so far.

This approach is well-defined mainly due to two properties

of the FWER estimator: (i) if the significance threshold dk re-

mains fixed, inspecting a new interval can never make FWERðdkÞ
decrease; and (ii) FWERðdÞ can be evaluated exactly for all d � dk

using only the set of intervals satisfying xs;l 2 Rk. Thanks to those

two properties, the algorithm follows an iterative cycle of interval

enumeration, FWER estimation and significance threshold adjust-

ment which continues until all intervals belonging to a certain Rk�

have been enumerated. Finally, d� can be obtained as the a-quantile

of p
ðjÞ
min

n oJ

j¼1
.

2.3.4 Enumeration of significant intervals

Once the corrected significance threshold d� has been obtained,

either with FAIS or FAIS-WY, we execute a slightly modified

Algorithm 2. FAIS specific functions

1: function init_FAIS

2: c 0nþ1

3: end function

4: function process_interval_FAIS

5: c½xðs; lÞ�  c½xðs; lÞ� þ 1

6: while ð
P

x2Rk
c½x�Þdk > a do

7: Set k kþ 1 and recompute dk, Rk and rk
l

8: end while

9: end function

Algorithm 3. FAIS-WY specific functions

1: function init_FAIS-WY

2: for j ¼ 1; . . . ; J do

3: yðjÞ  rand permuteðyÞ
4: p

ðjÞ
min  1

5: end for

6: end function

7: function process_interval_FAIS-WY

8: for j ¼ 1; . . . ; J do

9: Compute p
ðjÞ
s;l

10: p
ðjÞ
min  minðpðjÞmin; p

ðjÞ
s;lÞ

11: end for

12: while FWERðdÞ > a do

13: Set k kþ 1 and recompute dk, Rk and rk
l

14: end while

15: end function
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version of Algorithm 1 so that dk in Line 4 is directly initialized to

d�. Then the process_interval() function evaluates

as;l ¼
P

ijyi¼1gðsi½s; l�Þ, computes the corresponding P-value accord-

ing to Fisher’s exact test and outputs those intervals such that

ps;l � d�. Note that in this case, the significance threshold dk does

not change along the execution of the algorithm.

2.3.5 Filtering of overlapping significant intervals

Due to the way the problem is formulated, it is common to

have clusters of overlapping significant intervals which introduce re-

dundancy in the findings. As a post-processing step, only the most

significant interval in the cluster, i.e. the one with the smallest

P-value, is kept. As the most significant interval is guaranteed to be

kept by this post-processing scheme, the FWER is unchanged

and thus the computation of the significance threshold d� is un-

affected. We illustrated this filtering process in Figure

(Supplementary Fig. S1).

3 Experiments

We evaluate the ability of FAIS and FAIS-WY to detect genome-

wide contiguous intervals that may exhibit genetic heterogeneity on

simulated data as well as on data from an association mapping study

in Arabidopsis thaliana. As benchmarks, we use BRUTE, the ‘brute

force’ method using the Bonferroni correction, BRUTE-WY, the

Westfall–Young version of BRUTE, and UFE, the univariate Fisher’s

Exact Test, which only checks for a significant difference in single

SNPs.

3.1 Results on simulated data
In this simulation study two aspects of our algorithm are investi-

gated, (a) its accuracy, and (b) its speed. The protocol used for the

construction of simulated datasets is identical in both cases.

Following the notation in Section 2.1, we have n binary se-

quences of length L, where the first n1 sequences have label y

¼ Cases and the remaining n2 have label y ¼ Controls. Initially,

every entry si½j� of each sequence si is sampled from a Bernoulli dis-

tribution with parameter p0, i.e.

si½j� � Bð1; p0Þ; i ¼ 1;2; . . . n; j ¼ 1; . . . ;L

so that si½j� ¼ 1 with probability p0, which is essentially the

background noise. We now prepare lmax significant intervals

ðd;1Þ; ð2d; 2Þ; . . . ; ðdlmax; lmaxÞ with d > lmax. In other words, the

parameter d is the (approximate) space between successive

significant intervals, and each sequence has a significant interval of

length 1 at position d, followed by a significant interval of length 2

starting from the position 2d, and so on. Then for every sequence

si (i ¼ 1;2; . . . ; n1) for the cases, elements in significant intervals si½dl; l�
(l ¼ 1; 2; . . . ; lmax) are replaced with new sequences such that the prob-

ability of at least one 1 occurring in each si½dl; l� is equal to pcase. This is

achieved by sampling each element in si½dl; l� from a Bernoulli distribu-

tion with parameter 1� ð1� pcaseÞl. The same procedure is performed

for the sequences si (i ¼ n1 þ 1;n1 þ 2; . . . ; n) for the controls using

pcon instead of pcase. With this setup, we set the length of each sequence

to be L ¼ d 
 ðlmax þ 1Þ.

3.1.1 Power and FWER

Recall that the statistical power is defined as 1� b, where b is the

Type II error, i.e. the probability of a false negative occurring. To in-

vestigate the power of FAIS, FAIS-WY, BRUTE and UFE, we run a

simulation with the following parameter settings: n1 ¼ 100 cases, n2

¼ 100 controls,

d ¼ 1000; lmax ¼ 10; a ¼ 0:05; p0 ¼ 0:1; pcon ¼ 0:2;

and we vary pcase from 0.2 to 0.9 to see how the power of the algo-

rithm varies with respect to changes in pcase. Note that pcase ¼ 0:2

corresponds to the situation where there is no difference between

the cases and controls. Also note that BRUTE-WY is not considered

in this experiment because it will give the same results as FAIS-WY.

With these parameter choices, each sequence si in the cases contains

10 significant intervals si½1000; 1�; si½2000; 2�, . . . , si½10000; 10�.
Each algorithm runs over this simulated dataset and identifies a

list of significant intervals. These significant intervals are then

clustered according to overlapping sets of intervals and the most

significant interval is picked up as the representative in each cluster,

as discussed in Section 2.3.5. That way, we obtain the resulting list

of (disjoint) significant intervals—one for each overlapping

cluster—ðs�i ; l�i Þ for i ¼ 1;2; . . . ;M. If one of these intervals ðs�i ; l�i Þ
overlaps a true significant interval (dl, l), we say that (dl, l) has been

successfully detected. Otherwise if ðs�i ; l�i Þ does not overlap any true

significant interval, then it is a false detection.

Results are shown in Figure 3. This shows that FAIS-WY has

more power than FAIS, which has significantly more power than

BRUTE, which in turn has significantly more power than UFE for

pcase in the range ð0:4; 0:8Þ. In the Supplementary Material,

Supplementary Figs S5 and S6 show that the increase in power is

similar for intervals of different lengths (except for UFE, which per-

forms poorly for longer intervals).

3.1.2 Running time comparisons

Figure 4 compares the runtimes of FAIS, FAISWY, BRUTE and

BRUTE-WY for parameters n¼100 and J¼100 (number of permuta-

tions) while varying the sequence length L. UFE is not included be-

cause it is simply linear in L. Note that the axes are log-scaled: for

L � 100000, FAIS-WY takes 26.56 s, while BRUTE takes 30 min and

BRUTE-WY takes � 24 h. Further experiments were done for varying

n and J (Supplementary Material), which shows that the WY methods

are approximately linear in n and J. Extrapolating from these values,

if J¼10000, then FAIS-WY would take � 40 min, while BRUTE-WY

would take � 100 days. Other simulations in the Supplementary

Material show that the runtime of FAIS and FAIS-WY scales ap-

proximately linearly in the number of cases and controls.

3.2 Heterogeneity detection in Arabidopsis thaliana
To evaluate our methods on real data, we downloaded a widely

used Arabidopsis thaliana GWAS dataset by Atwell et al. (2010)

Fig. 3. A figure comparing the power of FAIS-WY, FAIS, BRUTE and UFE as

the value of pcase varies
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from the online resource easyGWAS (Grimm et al., 2012). This

dataset is a large collection of 107 continuous and dichotomous

phenotypes for at most 194 inbred lines and a total of 214 051

SNPs. All 21 dichotomous defense- and developmental-related

phenotypes were selected for further analysis (Table 1). Because the

genotypes are homozygous, we encoded the major allele as 0 and

the minor allele as 1. For this study, we did not apply a minor allele

frequency filtering. The significance level for FAIS/FAIS-WY and

all other methods was set to a ¼ 0:05. We measured the extent of

population structure for each phenotype by computing the genomic

control inflation factor k using a logistic regression. Phenotypes in

Table 1 are ordered by increasing values of k.

We ran two univariate association mapping methods to detect

single SNPs that are significantly associated with a given phenotype:

UFE Test and a state-of-the-art linear mixed model (FaSTLMM) to

account for confounding due to population structure (Lippert et al.,

2011). To estimate the genetic similarity between individuals in the

LMM we computed a realized relationship kinship matrix (Hayes

et al., 2009). We applied a Bonferroni correction to account for mul-

tiple hypothesis testing for these two methods. In Table 1, we re-

ported the number of significant hits detected by the two univariate

methods as well as the number of novel intervals detected by FAIS

and FAIS-WY. We configured the methods in such a way that only

intervals of length 2 or more are tested. For all methods, we

observed a clear trend of detecting more significantly associated

SNPs or intervals with increasing population structure (measured

using genomic control k). Note that this is even true when using a

LMM, which is able to account for confounding due to population

stratification. We further observed that FAIS detects a total of 57

intervals, whereas FAIS-WY detects a total of 217 intervals across

all 21 dichotomous phenotypes, which is on average 3.8 times more

intervals than detected by FAIS. FAIS-WY is able to detect more sig-

nificant intervals because it implicitly takes into account correlations

between SNPs and hence leads to a less stringent corrected signifi-

cance threshold, as shown in Supplementary Table S1.

Because our method cannot explicitly correct for confounding

due to population structure, we investigated how many of our sig-

nificant intervals contain or are in close proximity (10 kb up- or

down-stream) to a ‘confounded’ SNP—a SNP found to be signifi-

cantly associated by UFE (a UFE ‘hit’), but not found to be signifi-

cantly associated by a LMM, that is able to correct for population

structure. We used a 10 kb window since linkage disequilibrium

(LD) decays on average within 10 kb in Arabidopsis thaliana (Kim

et al., 2007). We found that only 6.9% (15 intervals) among all

significant intervals (217) were close to such a confounded SNP

(Fig. 5). Even for the phenotype with strongest population structure

(YEL), only one of the intervals contained such a confounded SNP

(Supplementary Fig. S2). Eventually, we excluded all intervals that

contained or were in close proximity to any significant hit found

with an UFE or a LMM. A set of 152 intervals, that is 70% of all de-

tected intervals, was left (Fig. 5). Those can be deemed as truly novel

intervals that cannot be detected with a univariate method.

3.3 Biological annotation and interpretation
We used the tool snpEFF (Cingolani et al., 2012) to annotate all

genetic variants found in the most significant intervals of FAIS-WY

Table 1. Number of intervals found by FAIS and FAIS-WY

Phenotype name Number of samples Percentage of cases k-GC UFE hits LMM hits FAIS hits FAIS-WY hits

Chlorosis 16 176 47.73 1.01 0 0 0 0

Chlorosis 10 177 15.82 1.02 0 1 0 0

Leaf roll 22 176 17.61 1.17 0 0 0 0

Emco5 86 80.23 1.18 0 4 0 1

Emoy 76 53.95 1.18 1 2 0 0

Hiks1 84 60.71 1.2 0 1 0 0

Noco2 87 55.17 1.25 1 0 0 1

Anthocyanin 16 176 39.77 1.33 0 0 0 1

Anthocyanin 10 177 18.64 1.44 0 1 0 1

Anthocyanin 22 177 36.16 1.47 0 0 0 1

Emwa1 85 62.35 1.5 0 0 0 1

avrRpt2 89 80.9 1.52 5 8 2 5

avrB 87 63.22 1.63 16 14 13 15

Leaf roll 16 176 21.02 1.65 0 1 0 1

avrRpm1 84 66.67 1.68 15 14 13 14

Chlorosis 22 176 62.5 1.71 2 0 0 3

Leaf roll 10 177 55.93 1.79 1 1 1 3

avrPphB 90 51.11 1.92 14 9 7 16

LES 95 22.11 2.22 8 9 1 11

LY 95 30.53 2.54 36 2 9 40

YEL 95 8.42 3.41 21 76 11 103

Phenotypes are ordered with increasing population structure measured by the inflation factor k using a logistic regression. FAIS finds a total of 57 significant

intervals, whereas FAIS-WY finds a total of 217 significant intervals.

Fig. 4. A figure comparing the speed of FAIS, FAIS-WY, BRUTE and BRUTE-WY

as the length of the stream varies. Note that the axes are log-scaled (base 10)
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that do not contain a significant hit found by an UFE

(Supplementary Table S2)—referred to as noUFE filtering—and that

do not contain or are in close proximity to any significant hit found

with an UFE or a LMM—referred to as stringent filtering

(Supplementary Table S3).

For each of the bacterial pathogenesis factors in our dataset

(avrB, avrRpm1, avrPhpB and avrRpt2), the plant receptor that

mediates the defense response was previously known (Grant et al.,

1995, 1998; Mauricio et al., 2003; Warren et al., 1998; Yu et al.,

1993) and had also been detected in previous GWA studies

(Aranzana et al., 2005; Atwell et al., 2010). Under the noUFE filter-

ing, the most significant intervals for avrPhpB and avrRpt2 were

found in close proximity (<10 kb) to the corresponding R-genes

[RESISTANCE TO PSEUDOMONAS SYRINGAE 5 (RPS5) and

RESISTANCE TO PSEUDOMONAS SYRINGAE 2 (RPS2), re-

spectively]. The same was true for the lesioning phenotype, where

the most significant interval was found just upstream of the known

causal gene ACCELERATED CELL DEATH (ACD6) (Todesco

et al., 2010). All of these genes are known to have more than one al-

lele that is maintained across different lineages (Stahl et al., 1999;

Tian et al., 2002; Todesco et al., 2010). If these alleles arose inde-

pendently in different genetic backgrounds, individuals that share

the same allele would have different nearby polymorphisms. Thus,

these intervals of genetic heterogeneity might reflect close linkage to

a true causal polymorphism that is maintained by selection in differ-

ent lineages.

After filtering out intervals that were <10 kb from a previous

UFE or LMM hit (stringent filtering), the most significant inter-

val for the avrPhpB was found to be �18 kb upstream of RPS5.

There is a cluster of genes encoding flavin monooxygenase (FMO)

family proteins in this region and a member of this family,

FMO1, has previously been shown to be an important regulator of

R-gene-mediated defenses (Bartsch et al., 2006). Under these filter-

ing criteria, the most significant interval for avrRpt2 was found in a

region nearby two R-genes. For lesioning, the most significant inter-

val encoded a chloroquine resistance transporter, which was

previously shown to be important for resistance to Phytophthora

brassicae (Maughan et al., 2010).

For all other phenotypes, the most significant interval did not

change between the noUFE and stringent filtering. For the avrB

phenotype, the most significantly associated interval contained

AT3G07195 (Supplementary Tables S2 and S3), a gene that encodes

a paralog of the negative immune system regulator RPM1

INTERACTING PROTEIN 4 (RIN4) (Liu et al., 2011; Mackey

et al., 2002). This interval was also identified in association with the

response to another bacterial pathogenesis factor, avrRpm1 where it

was the second-most significant interval. Because both avrB and

avrRpm1 are detected by the host immune receptor RESISTANCE

TO PSEUDOMONAS SYRINGAE PV MACULICOLA (Rpm1)

through modification of RIN4 (Belkhadir et al., 2004; Mackey

et al., 2002), it suggests a plausible role for this RIN4 paralog in

mediating natural variation in response to the activity of these bac-

terial virulence determinants.

We also found that two phenotypes that are not related to de-

fense had intervals that contained a cluster of two or more paralogs.

In the case of leaf rolling at 10
�
C (Leaf roll 10), the most significant

interval covered a cluster of receptor-like proteins. For the lesioning

or yellowing phenotype (LY), there was a cluster of RING domain/

U-box proteins in the most significant interval. Thus, intervals

of genetic heterogeneity may reflect copy number variation or

rearrangements that are common features of paralog clusters

(reviewed in _Zmieńko et al. 2014).

For other phenotypes, the polymorphisms in the interval itself

may have a role in explaining the phenotype. The most significant

intervals for two of the phenotypes that indicated reduced chloro-

plast function (YEL and Chlorosis 22) contained a gene that

encoded a protein that was predicted to be localized to the

chloroplast.

Taken together, these results suggest that intervals of genetic het-

erogeneity associated with biological traits may result from (i) link-

age to an allele that is maintained independently in different

lineages, (ii) structural variation in the region or (iii) true genetic het-

erogeneity within a gene that is responsible for the phenotype.

4 Discussion and conclusion

We have presented an algorithm for detecting genomic intervals of

SNPs that may jointly explain the genetic heterogeneity underlying a

phenotype of interest. On data from Arabidopsis thaliana, we dis-

cover novel genomic regions that may be involved in the genetic het-

erogeneity of several defense and developmental phenotypes.

Our method improves the state of the art in two important ways:

First, it automatically finds the starting and ending positions of these

intervals in the genome, while current approaches require the defin-

ition of a fixed starting and ending point for each interval. Second,

despite the huge number of intervals that we are testing, we can

properly account for the resulting problem of multiple hypothesis test-

ing without losing statistical power, that is the ability to detect true

intervals. Hence, our algorithm combines in a unique way the ability

to efficiently mine the genome for intervals of genetic heterogeneity

with a proper way to measure the statistical significance of our

findings.

Our method is based on a number of assumptions, which should

be overcome in future work in order to further extend the applicabil-

ity of our method. First, we do not model confounders such as popu-

lation structure. That is, we do not account for the fact that there

may be distinct subpopulations of individuals in our sample (Lippert

et al., 2011). We envision extending our method in this direction by

Fig. 5. Proportion of novel intervals among all intervals found by FAIS-WY,

across all phenotypes. The green part shows the proportion of novel intervals

found by FAIS-WY. The red part (UFE 6 10 kb\LMM 6 10 kb) are intervals con-

taining an UFE hit or are in close proximity (610 kb) to one and the hit could

not be found with a LMM. The blue part (LMM 6 10 kb\UFE 6 10 kb) are inter-

vals containing a LMM hit or are in close proximity (610 kb) to one and the hit

could not be found with an UFE. The purple part (LMM 6 10 kb\UFE 6 10 kb)

are intervals that contain both, a hit (610 kb) found with an UFE and a LMM
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conducting meta-analyses, that is searching significant intervals in

different subpopulations and then combining these results, e.g. via

the Cochran–Mantel–Haenszel test (Mantel and Haenszel, 1959),

while still accounting for multiple testing. Second, the method is

encoding-sensitive in the sense that changing the binary encoding of

a particular SNP will affect the results, and potentially lead to an

interval being missed. As in many multi-locus interaction models

(e.g. Kam-Thong et al., 2012), it is an open problem how to over-

come this coding-sensitivity, while retaining the computational effi-

ciency and statistical power of our current method.

Third, we here consider contiguous intervals of SNPs that exhibit

genetic heterogeneity, rather than arbitrary sets of SNPs anywhere

in the genome. This decision is based on the computational and stat-

istical consideration that the number of candidate sets is quadratic

in the number of SNPs in our setting, but exponential in the size of

the candidate sets in the general setting. Still, it is an important ques-

tion to ask whether our approach here can be extended to detect

groups of SNPs in gene pathways (Wang et al., 2010) that may ex-

plain the genetic heterogeneity of a given phenotype.

Based on our results, we propose three reasons that explain why

an interval of genetic heterogeneity is associated with a phenotype.

First, regions flanking a locus that is under balancing selection ex-

hibit polymorphisms that are linked to the segregating alleles

(Hudson and Kaplan, 1988) and this can give rise to genetic hetero-

geneity that is associated with a phenotype that is governed by the

locus under selection. All three of the R-genes (Rpm1, Rps5 and

Rps2) that govern the responses to the four bacterial pathogenesis

factors (avrB, avrRpm1, avrPhpB and avrRpt2) in our phenotype

dataset were previously found to be under balancing selection

(Mauricio et al., 2003; Stahl et al., 1999; Tian et al., 2002). We

found that at least one of the significant intervals of genetic hetero-

geneity for each of these bacterial pathogenesis factor phenotypes

was in the region flanking the corresponding R-gene

(Supplementary Table S2). Because all of these phenotypes also had

a hit in previous UFE test or LMM GWAS for the cognate R-gene,

these intervals were filtered out under the no UFE criteria. The same

was true for the lesioning phenotype, where the most significant

interval that did not contain a significant hit found by an UFE was

near the causal ACD6 locus, which is also thought to be under bal-

ancing selection (Todesco et al., 2010). Thus, it is possible that inter-

vals of genetic heterogeneity that we detected for other phenotypes

in our dataset may also have resulted from linkage to a locus under

balancing selection that was previously missed by a univariate or

LMM approach.

Second, regions such as multi-copy gene clusters undergo fre-

quent structural rearrangements (McHale et al., 2012) that might

become associated with different polymorphisms. Under the most

stringent filtering criteria, we found that the most significant interval

for four phenotypes (avrPhpB, avrRpt2, LY and Leaf roll 10) over-

lapped or was adjacent to a multi-copy gene cluster. Therefore,

intervals of genetic heterogeneity may reflect structural variation

that is missed by single SNP GWAS.

Third, genetic heterogeneity may arise within a gene that under-

lies a phenotype. Our analysis uncovered a potential role for a RIN4

paralog in determining resistance to the bacterial pathogenesis fac-

tors avrB and avrRpm1, but not for avrRpt2 or avrPphB. The host

immune receptor Rpm1 recognizes avrB and avrRpm1 (Belkhadir

et al., 2004; Mackey et al., 2002), avrRpt2 is detected by another re-

ceptor (Rps2) (Axtell and Staskawicz, 2003) and avrPphB is per-

ceived by a third receptor, Rps5 (Shao et al., 2003). All of these

interactions are indirect and the virulence factors are not themselves

directly recognized by the receptors, but detected through their

modifications of targeted host proteins according to the Guard

Hypothesis (Jones and Dangl, 2006). For avrB, avrRpm1 and

avrRpt2, the target host protein (guardee) is RIN4, while avrPphB

targets the unrelated host protein PBS (Shao et al., 2003). The fact

that we detected a RIN4 ortholog in a novel interval for responses

to two of the three pathogenesis factors targeting RIN4 suggests the

intriguing possibility of natural variation in a guardee contributing

to pathogen resistance, similar to what has been observed for the to-

mato guardee RCR3 (Hörger et al., 2012).

In short, we see exciting challenges for future work, but also

high potential for the method present here to help in the discovery

of genetic heterogeneity at a genome-wide level.
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