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Introduction

Optical coherence tomography (OCT) is a powerful 
imaging system for acquiring 3D volumetric images of 
tissues non-invasively. In simple terms, OCT can be 
considered as echography with light (1). Unlike echography 
which is done by sound waves, OCT imaging is not time-
of-flight based but rather produces the image based on the 
interference patterns. Figure 1 shows a typical retinal OCT 
image with false color. Throughout the past two decades, 
new developments in the OCT imaging system have 
improved the acquisition time and also the quality of the 
acquired images. Nowadays taking µm-level volume images 
of the tissues is very common especially in ophthalmology 

and retinal imaging. Due to the volume of data generated in 
a clinical setting, there is a need for robust and automated 
analysis techniques to fully leverage the capabilities of OCT 
imaging (3).

In this paper we will discuss the three main aspects of 
automated retinal OCT image processing: noise reduction, 
segmentation and image registration. The process of OCT 
image acquisition results in the formation of irregular 
granular pattern called speckle. Speckle degrades the quality 
of the image and affects subsequent processing and analysis. 
Therefore, the first step in OCT image processing involves 
attenuation of speckle.

Delineating micro-structures in the image is of particular 
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importance in OCT image processing for ophthalmology. 
For example, measuring the thickness of various layers in 
the retina is important for early diagnosis and tracking of 
diseases such as glaucoma. Therefore image segmentation 
plays a significant role in OCT image analysis. Moreover, 
given that OCT imaging is used to study microscopic 
feature sizes, minor fixation instability during image 
acquisition can grossly affect image quality. With hundreds 
of cross-sectional slices being acquired to construct 
volumetric data, eye movements can affect alignment of 
these slice images. Furthermore, image registration may 
also be used in tracking the progress of tissue degeneration 
over time.

This article is organized as follows: section 2 is an 
overview of OCT imaging and different techniques that 
are used to acquire and reconstruct the images. Section  
3 focuses on noise reduction techniques. In section 4, a few 
techniques for OCT image segmentation, with a focus on 
retinal layer segmentation are reviewed. Section 5 contains 
an overview of the use of image registration techniques in 
OCT image analysis. Finally, section 6 concludes the article 
with pointers on some of the future paths that can be taken 
for further investigations. 

OCT imaging systems

OCT imaging is based on the interference pattern between 
a split and later re-combined broadband optical field (3). 
Figure 2 displays a typical OCT imaging system. The light 
beam from the source is exposed to a beam splitter and 
travels in two paths: one toward a moving reference mirror 
and the other to the sample to be imaged. The reflected 
light from both the reference mirror and the sample are 
fed to a photo detector in order to observe the interference 

pattern. The sample usually contains particles (or layers) 
with different refractive indices and the variation between 
their differences causes intensity peaks in the interference 
pattern detected by the photo detector.

The first widely available OCT imaging system in 
biomedical imaging is called time-domain OCT (TD-
OCT) in which a reference mirror is translated to match 
the optical path from reflections within the sample (2). TD-
OCTs usually use a super luminescent diode (SLD) as the 
light source (3). Unlike the TD-OCT, in Fourier-domain 
OCT (FD-OCT) there is no need for moving parts in the 
design of the imaging system to obtain the axial scans (4) 
since the reference path length is fixed and the detection 
system is replaced with a spectrometer. Considering a 50:50 
beam-splitter and after some simplifications, the expression 
for the detected frequency spectrum can be expressed as (3):

( ) ( ) ( )( )21 1
4

I S Hω ω ω= +
 

[1]

where S(ω) is the intensity spectrum and H(ω) is the 
sample’s frequency domain response function. The time 
domain interference pattern can be derived using an N 
point discrete fast Fourier transform (FFT), each point 
being corresponding to an intensity measurement at each 
detector in the detector array. The rate at which the data 
can be transferred from the detector to the computer can 
have a big impact on the scan rate. With one dimensional 
detectors, this is not usually the problem, but using 2D 
detectors requires massive transfer rates, in the order of 

Figure 1 Optical coherence tomography of human retina and 
optic nerve [(Reprinted with permission) (2)].
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Figure 2 A typical optical coherence tomography (OCT)  
system [(Reprinted with permission) (3)].
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several gigabytes per second. The use of CCD sensors for 
buffering the data during the scan and retrieving it at a later 
time can be useful as been previously mentioned in (3). 
Of course other configurations of FD-OCT can be used. 
Swept-Source OCT (SS-OCT) is one of the very well-
known and widely used FD-OCTs in which using a single 
detector allows for the source spectrum to be swept and 
the intensity of component frequency to be detected (5). 
Overall, because of not having any moving parts, the speed 
of FD-OCT systems in acquiring images is very high in 
comparison to TD-OCT.

Quantum OCT (Q-OCT) takes advantage of quantum 
nature of light, rather than its classical behavior, for  
imaging (6). Full field OCT (FF-OCT) is another optical 
coherence imaging technique in which a CCD camera 
is placed at the output, instead of the single detector of 
the TD-OCT, to capture a 2D en face image in a single 
exposure (7). Taking into account the polarization state of 
the light, polarization-sensitive OCT (PS-OCT) is another 
technique for imaging the birefringence within a biological 
sample (8). Doppler OCT (D-OCT) which is also called 
optical Doppler tomography (ODT) is a combination of an 
OCT imaging system and laser Doppler flowmetry. This 
system allows for the quantitative imaging of fluid flow in a 
highly scattering medium; such as monitoring in vivo blood 
flow beneath the skin (9). Discussing these different OCT 
imaging systems is not the main focus of the current work 
and therefore, the reader is referred to (3,10-12).

Noise reduction

Speckle is a fundamental property of signals and images 
acquired by narrow-band detection systems like Synthetic 
Aperture Radar (SAR), ultrasound and OCT. In OCT, 

not only the optical properties of the system, but also the 
motion of the subject to be imaged, size and temporal 
coherence of the light source, multiple scattering, phase 
deviation of the beam and aperture of the detector can 
affect the speckle (13). Two main processes affect the spatial 
coherence of the returning light beam which is used for 
image reconstruction: (I) multiple back-scattering of the 
beam; and (II) random delays for the forward-propagating 
and returning beam caused by multiple forward scattering. 
In the case of tissue imaging, since the tissue is packed with 
sub-wavelength diameter particles which act as scatterers, 
both of these phenomena contribute to the creation of 
speckle. As been previously studied (13), two types of 
speckle are present in OCT images: signal-carrying speckle 
which originates from the sample volume in the focal zone; 
and signal-degrading speckle which is created by multiple-
scattered out-of-focus light. The latter kind is what that is 
considered as speckle noise. Figure 3 displays the common 
scene in retinal OCT imaging; a highly noisy image.

The distribution of the speckle can be represented 
with a Rayleigh distribution. Speckle is considered as a 
multiplicative noise, in contrast to Gaussian additive noise. 
Due to the limited dynamic range of displays, OCT signals 
are usually compressed by a logarithmic operator applied to 
the intensity information. Following this, the multiplicative 
speckle noise is transformed to additive noise that can be 
further treated (14).

OCT noise reduction techniques can be divided into 
two major classes: (I) methods of noise reduction during 
the acquisition time and (II) post-processing techniques. 
In the first class, compounding techniques, multiple 
uncorrelated recordings are averaged. Among them, spatial  
compounding (15), angular compounding (16), polarization 
compounding (17) and frequency compounding (18) can 
be mentioned. Usually the methods from the first class 
are not preferred since they require multiple scanning 
of the same data which prolongs the acquisition time. In 
addition, these techniques can be very restrictive in terms 
of different OCT imaging systems in use. Therefore, use of 
more general post-processing techniques is more favorable. 
In the literature, many of post-processing methods have 
been proposed for speckle noise reduction of OCT images. 
There are few classic techniques for noise reduction that are 
successfully used in OCT images: Lee (19), Kuan et al. (20) 
and Frost et al. (21) filters.

The class of methods for speckle reduction based on the 
well-known anisotropic diffusion method (22) is of high 
interest in the literature. The nonlinear Partial Differential 

Figure 3 Typical retinal optical coherence tomography (OCT) 
image degraded by speckle noise.
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Equation (PDE) for smoothing the image I can be 
formulated as follows:

( )I div d I I
t
∂  = ∇ ⋅∇ ∂ 

[2]

where ( )I div d I I
t
∂  = ∇ ⋅∇ ∂

 is the gradient operator, div is the divergence 
operator, |·| represents the magnitude and d(x) is the 
diffusion coefficient. The initial condition for this PDE 
is I(t=0)=I0. Different types of functions considered for 
d(x) result in different types of filters. Choosing the 
diffusion coefficient function to be constant results in a 
linear diffusion equation with homogeneous diffusivity 
which its solution is equivalent to smoothing the image 
with a Gaussian filter. In this case, the filter makes the 
noise within regions smoother, while blurring the edges 
at the same time. Making the diffusion coefficient image 
dependent results in a nonlinear diffusion equation. Due 
to its poor performance in the case of very noisy images, 
there are different variations of this method in the literature  
(23-25). In (14) a complete comparison is provided for 
regular anisotropic diffusion and complex anisotropic 
diffusion approaches for denoising of OCT images. For the 
nonlinear complex diffusion, the equation is as follows:

 
[3]

where ( )Im I  is the imaginary value and the diffusion 
coefficient is defined as:

 
[4]

with k being the threshold parameter and ,
2 2
π πθ − ∈ 

 
 being 

the phase angle. A smooth second derivative of the image 
factored by θ at time t is considered as the imaginary part in 
the above equations. This serves as a robust edge detector 
which provides better performance in comparison to the 
regular nonlinear diffusion approach.

Another example of using anisotropic diffusion is  
in (26) where an interval type-II fuzzy approach is used 
for determining the diffusivity function of the anisotropic 
diffusion. Starting from a Prewitt operator for detecting 
the edges in the image followed by Gaussian and median 
filtering, the process of defining the diffusion coefficient 
is carried out by first determining two linguistic variables, 
edge value and noise level. This results in the definition 
of two fuzzy variables; edginess measure and noisiness 
measure. After assigning the membership functions to these 
variables, with added uncertainty of course, the fuzzy set of 
rules is defined. Here, only one rule suffices: IF edginess 

measure is low AND noisiness measure is high, THEN the 
diffusion coefficient has a high value. Finally the diffusion 
coefficient is derived by type reducing and de-fuzzifying of 
the output of the fuzzy system and is used for finding the 
solution of the anisotropic diffusion process. 

Another important group of widely used methods for de-
speckling of OCT images takes advantage of multiscale/
multiresolution geometric representation techniques (1,27). 
The main reason for this is that these representations 
compress the essential information of the image into a 
few large coefficients while noise is spread among all of 
the coefficients. Generally, for such methods a transform 
domain that provides a sparse representation of images 
and an optimal threshold is needed. Using the optimal 
threshold, hard- or soft-thresholding can be done for 
coefficient shrinkage in order to reduce the noise. This 
threshold can be a constant or even better, sub-band 
adaptive or spatially adaptive. For example, in OCT images, 
since it is known that most of the features are horizontal, 
higher thresholds can be applied to the vertical coefficients. 
Wavelet transform is one example of such methods which 
has been widely used in this area (28). Applying this 
wavelet transform on the logarithmic image in which the 
multiplicative noise is transformed to an additive noise, the 
wavelet coefficients are extracted as:

( ) ( ) ( )0 0 0
, , ,j k j k j kw y v= + 

[5]

where ( )0
,j ky  are  the noise-free coeff ic ients ,  ( )0

,j kv  the 
noise contribution, o the sub-band orientation, j the 
decomposition level and k the spatial coordinate. Taking a 
soft-thresholding approach with ( )0

,j kT  as threshold, the new 
set of wavelet coefficients can be derived as:

( ) ( )( ) ( ) ( )0 0 0 0
, , , ,ˆ sgn max ,0j k j k j k j kw w w T = × −  

[6]

The threshold is computed based on the ratio of the 
noise variance to the standard deviation of the Generalized 
Gaussian Distribution (GGD) random variables that 
describe the noise free coefficients. The final result is 
reconstructed by simply performing the inverse wavelet 
transform. Even though wavelet transform has shown 
promising results, its lack of directionality imposes some 
limitations in properly denoising OCT images. This can 
be further improved by use of dual-tree complex wavelet 
transform (DT-CWT) which doubles the directional 
information of wavelet transform (29). Still, there are better 
transform domains which offer more proper representations 
for OCT images. In the past few years, the use of Curvelet 
transform (30,31), Contourlet transform (32,33) and Ripplet 

( )( )( )Imd I I
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transform (34) showed promising results in the de-noising 
of OCT images, with the procedure almost the same as the 
method mentioned above, with slight differences regarding 
the type of threshold (hard or soft) and the method of 
defining the threshold. Figure 4 shows the result of curvelet 
coefficients shrinkage for speckle noise reduction.

Compressive sensing and sparse representation are new 
directions that are taken for image acquisition and noise 
reduction. Very recent examples (35,36) use dictionary 
learning and sparse representation for noise reduction 
and image reconstruction of OCT. To be more detailed, 
sparse representation tries to approximate an image by a 
weighted average of a limited number of basic elements 
(atoms) from a learned dictionary of basis functions. 
Representing an image patch X of size n×m as a vector x of 
size q=n×m, the dictionary q kD R ×∈  containing k atoms is 
used to approximate the patch as x Dα≈ , while 

2
x Dα ε− ≤ , 

ε being the error tolerance and p
⋅  representing the p-norm. 

Choosing the proper dictionary results in having a sparse 
coefficient vector α which means that 0

qα < . The process 
of dictionary learning is a generalization from methods 
mentioned previously in which the set of atoms (wavelet, 

curvelet, contourlet, ripplet atoms) could be represented 
mathematically. Here, the procedure involves using a set of 
example patches and minimizing the following problem:

{ } 1

2

0, 1 2

min subject toZi
i

Z
i i

D i
x D T

α
α α

= =

− ≤∑ [7]

with Z being the number of patches and T being the 
sparsity level. The sparse representation-based method 
proposed in (36) starts with registering and averaging slices 
(considering one of them as target) of the same cross-
section in the retina to create the desired high-SNR-high-
resolution (HH) image and down-sampling the target 
slice to create the low-SNR-low-resolution (LL) image, 
SNR being Signal-to-Noise Ratio. Then for each one, the 
corresponding dictionary DH,H and DL,L is learned utilizing 
Coupled Orthogonal Matching Pursuit (COMP) method, 
a variation of Orthogonal Matching Pursuit (OMP) (37), 
a method widely used in the field of sparse representation. 
This is followed by finding the mapping between the 
coefficient vectors of the dictionaries by solving a ridge 
regression problem. In the image reconstruction phase, DL,L 
is used for extracting the coefficient vectors of the observed 
LL patches. The HH patch is reconstructed using DH,H 
and the mapping found in the previous step. To make the 
dictionary learning process more efficient, training patches 
from both LL and HH are clustered into several structural 
clusters, and for each a compact dictionary and mapping 
function is learned and then used. For 3D reconstruction, 
after registering the slices together to compensate for the 
effect of eye movements and assuming that similar patches 
from nearby slices can be represented by the same atoms 
from dictionaries, Simultaneous Orthogonal Matching 
Pursuit (SOMP) algorithm (38) is used for approximating 
the coefficient vectors for LL. The corresponding HH 
dictionary and the mapping function are then used for 
approximating the HH patches. These patches are then 
used for reconstruction of the final images.

Image segmentation

Image segmentation is a very active area in the field of 
medical image analysis. The most difficult step in any 
medical image analysis system is the automated localization 
and extraction of the structures of interest (39). The signal 
strength in OCT images rises from the intrinsic differences 
in optical properties of tissues. In the retina, multiple layers 
of different types of cells can be seen in OCT images. 
During the last two decades many methods have been 

Figure 4 Fourier-domain optical coherence tomography  
(FD-OCT) image of optical nerve head, before (A) and after (B) 
curvelet coefficients shrinkage-based speckle noise reduction 
[(Reprinted with permission) (30)].
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proposed for segmentation of OCT images. For a more 
complete review on the methods the reader is referred to 
(39-41). There are four major hurdles that are encountered 
in the segmentation of OCT images:

(I) The presence of speckle noise complicates the 
process of the precise identification of the retinal 
layers, therefore most of the segmentation methods 
require pre-processing steps to reduce the noise;

(II) Intensity of homogeneous areas decreases with 
increased depth of imaging. This is due to the fact 
that the intensity pattern in OCT images is the 
result of the absorption and scattering of light in 
the tissue;

(III) Optical shadows imposed by blood vessels can also 
affect the performance of segmentation methods;

(IV) Quality of OCT images degrades as a result of 
motion artifacts or sub-optimal imaging conditions.

Methods of retinal segmentation can be categorized into 
five classes: (I) methods applicable to A-scans; (II) intensity-
based B-scans analysis; (III) active contour approaches; (IV) 
analysis methods using artificial intelligence and pattern 
recognition techniques; and (V) segmentation methods 
using 2D/3D graphs constructed from the 2D/3D OCT 
images (41,42).

A-scan based methods consider the difference in the 
intensity levels to extract the edge information. Due to 
the effects of speckle noise, these methods are usually used 
for determining the most significant edges on the retina. 
Examples of such methods are presented in (2,43-46). 
A-scan based methods lack the contribution from 2D/3D 
data while the computational time is high and the accuracy 
is low. Taking advantage of better de-noising methods, 
intensity-based B-scan analysis approaches are based on 
the intensity variations and gradients which are still too 
sensitive and make these methods case-dependent (47-49).

Active contour methods also provide promising results 
for segmentation of retinal layers in OCT images. Methods 
presented in (50), (51) and (52) are three well-known 
examples. General active contour method proposed by (53) 
consists of an energy minimizing spline v(s) for s∈[0,1] for 
the energy functional:

( )( ) ( )( ) ( )( )( )
1

22 2

0s

E v s v s I v s dsα β λ
=

′ ′′= + − ∇∫ [8]

with α, β and λ being the weight constants and ( )I div d I I
t
∂  = ∇ ⋅∇ ∂

I being 

the gradient of the image. Here ( )( ) ( )( )2 2
"v s v sα β+′  

represents the internal energy which imposes the piecewise 

smoothness constraint of the spline while ( )( ) 2
 I v sλ ∇ ,  

representing the external energy, and acts as a guidance for 
pushing the active contour (snake) toward salient image 
features like edges or lines etc.

In (52), the objective is segmenting the image domain 
(retinal B-scan) into  disjoint sub-regions, representing 
retinal layers using a level-set framework as a set of R−1 
signed distance functions (SDFs) named ϕ which determine 
the distance from any point in the image domain to the 
object boundary. The energy functional in its general form 
can be defined as:

( ) ( ) ( ) ( )I I S S RE E E Eφ λ φ λ φ φ= + +
 

[9]

EI being the image region-based information ensuring to 
have approximately constant intensity in each region, ES 
being the prior shape knowledge of retinal layer and ER 
being the regularization term for keeping the boundaries 
smooth.

Use of pattern recognition based methods is a new 
direction that attracted researchers for more explorations.  
In (54) a support vector machine (SVM) is used to perform 
the semi-automatic segmentation of retinal layers. For SVM, 
the radial basis kernel is used. As for the vector space for 
classification, a combination of the voxel’s intensity value, 
spatial location of the voxel, mean and variance of a small 
region surrounding the voxel in question and the gradient 
based on a local difference operator is considered. To make 
the algorithm more robust to different distributions of data 
intensities, a multi-resolution hierarchical representation of 
the OCT data is used and the final input vector is computed 
as a weighted average of the feature vectors at each level 
of the hierarchy. The next steps are providing the training 
data by the user for training the SVM classifier followed by 
segmentation of the retinal layers. In (55) fuzzy C-means 
clustering method is used for layer segmentation. The use 
of random forest classifier for segmentation is also reported 
in (56). In this study at first the intensities are normalized 
and then using an A-scan based technique, inner limiting 
membrane (ILM) and Bruch’s membrane (BrM) layers are 
extracted to be used for flattening the images with respect 
to the BrM layer. The next step is computing a set of  
27 features to be fed into the Random Forest (RF) classifier 
which has been already trained using the labeled ground 
truth data provided by the user. The output of the classifier 
will be the boundary probabilities at every pixel. Finally, the 
segmentation results will be generated from the boundary 
probabilities and some boundary refinement algorithm.
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Tow/three dimensional (2D/3D) graph-based methods 
are probably the best among all of the segmentation 
methods since they are relatively fast, more accurate and 
unlike the classification based techniques, don’t need 
training datasets for segmentation of new datasets. During 
the past few years several variations of this class were 
introduced in the literature. Examples of such methods 
can be found in (42,57-60). The method in (42) is based 
on diffusion maps (61) and takes advantage of regional 
image texture rather than edge information. Therefore 
it is more robust in low contrast and poor layer-to-layer 
image gradients. Diffusion maps can be considered as a 
method for dimentionality reduction and manifold learning 
which tries to extract the underlying manifold in the 
dataset to be used in reducing the dimentionality. In (42) 
two cascaded diffusion maps are used for segmentation of 
retinal layers. Starting from a square grid on the image data 
and considering the location of the centroid of each block 
and the mean value of the pixels contained in it as features, 
the graph is built and diffusion coordinates are extracted. 
Applying the K-means clustering on the results of the 
previous step will provide us with the approximate locations 
of 1st and 7th boundaries. After moving these points to their 
correct locations using a gradient-based technique and 
smoothing, 8th-11th boundaries are located by searching for 
locations with highest/lowest gradient values below the 7th 
boundary. After alignment with respect to the 10th boundary 
and limiting the search region to the region between 1st and 
7th boundaries, thin non-overlapping rectangular blocks are 
chosen to be used for the next diffusion map and diffusion 
coordinate extraction which results in detecting 2nd-6th 

boundaries.
On the other hand, methods presented in (58-60) use 

the graph-cuts and shortest path method for segmentation 
of retinal layers. Considering image pixels as nodes of a 
graph, the weights between the nodes are assigned based on 
a priori information about the layer boundaries. The weight 
between nodes a and b is defined as:

( )( ) ( ) υω λ ω ω= − + + − + +
min

2
ab a b S a b

g g i i  
[10]

where gi is the normalized vertical gradient of the image 
at node j∈{a,b}, λS is the similarity factor weight, ij is the 
normalized intensity of node j∈{a,b}, ωv is the vertical 
penalty term and finally ωmin is the minimum weight 
added for numerical stability. After denoising the OCT 
volume using 3D block matching filter (BM3D) and the 
sparse representation-based technique introduced in (36), 
SVM classification is used to distinguish between volumes 
containing either 8 or 10 layers of the retina which is 
followed by the routines for segmenting retinal layers, optic 
nerve head and blood vessels’ segmentation. Figure 5 shows 
a few examples of the results of the method in (60).

Despite the plethora of different methods in this area, 
retinal layer segmentation is still an open problem with lots 
of room for improvement, especially in case of pathological 
eyes which introduce more challenges for segmentation.

Image registration

Having two input images, a template image and a reference 
image, image registration tries to find a valid optimal 
spatial transformation to be applied to the template image 

Figure 5 Results of segmentation for three different retinal optical coherence tomography (OCT) images with method proposed in 
[(Reprinted with permission) (60)].
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to make it more similar to the reference image (62,63). 
Therefore, the process of image registration consists of an 
optimization process fulfilling some imposed constraints. 
The applications of medical image registration range from 
mosaicing of retinal images (64) to slice interpolation (65).

There are two different classes of image registration 
techniques: (I) parametric approaches and (II) non-
parametric approaches (66). In general, the process of 
finding the valid optimal spatial transformation can 
be formulated as E[u]=D[R,T∘u]+αS in which R and T 
are reference and template images respectively, u is the 
displacement field, D is the similarity/dissimilarity measure 
[Mutual Information (MI), normalized MI (NMI), Cross-
Correlation (CC), normalized CC, Sum of Squared 
Differences (SSD) and etc.], S is the regularization term 
(which imposes additional constraints on the deformation), 
α  is the coefficient that determines the amount of 
regularization and E is the energy functional which 
depending on the problem should be either minimized or 
maximized (67).

There are several different applications for using image 
registration approaches in OCT image analysis. One of the 
basic applications is in speckle noise reduction. As mentioned 
in Section 3, hardware-based noise reduction techniques take 
the average of several uncorrelated scans in order to reduce 
the noise. The same thing can happen after finishing image 
acquisition too. The main idea is to gather several images of 
the same cross-section of the retina, register them together 
and take the average/median. A slight movement of the eye 
provides us with an uncorrelated pattern of speckle. Having 
N B-scans, the SNR can be improved by a factor of sqrt(N). 
In (68) a dynamic programming-based method is used for 
compensation of the movements between several B-scans 
and reducing the speckle noise. A hierarchical model-based 

motion estimation scheme based on an affine-motion model 
is used in (69) for registering multiple B-scans to be used 
for speckle reduction. In (70) a rigid registration technique 
is used for alignment of the B-scans and the final denoised 
image is obtained using various Independent Component 
Analysis (ICA) techniques for comparison. Recently, the use 
of low-rank/sparse decomposition based batch alignment has 
been investigated for speckle noise reduction in OCT images 
too. Taking advantage of Robust Principal Component 
Analysis (RPCA) (71) and simultaneous decomposition and 
alignment of a stack of OCT images via linearized convex 
optimization, better performance is achieved in comparison 
to previous registration-based de-noising techniques (72,73). 
Assuming N B-scans from the same location in the retina 
(to some extent), data matrix D is created by stacking the 
vectorized images as columns of the matrix. Having perfectly 
aligned B-scans results in D being decomposable into two 
components: D=L+S, L being low-rank containing the 
desired noise-free image and S being sparse containing only 
speckle noise. But due to eye movements, a set of parametric 
transformations τ are also needed to be considered, which 
makes the optimization problem for simultaneous alignment 
and decomposition as follows:

τ
λ τ

∗
+ = +

1, ,
min ..
L S

L s st D L S
 

[11]

where ∗
⋅  is the nuclear norm (sum of singular values) 

and ⋅
1
 is the l1 norm. Linearizing the constraint with the 

assumption of having minimal changes in τ at each iteration 
and using Augmented Lagrange Multiplier (ALM) (74) are 
next steps for simultaneous alignment and low-rank/sparse 
decomposition of the set of B-scans. Figure 6 shows the 
result of the method using 50 misaligned macular B-scans.

Another application is in the registration of fundus 
images with en face OCT images. This is very helpful to 
better correlate retinal features across different imaging 
modalities. In (75) an algorithm is proposed for registering 
OCT fundus images with color fundus photographs. In 
that study, blood vessel ridges are taken as features for 
registration. A similar approach is taken in (76) too. Using 
the curvelet transform, the blood vessels are extracted for 
the two modalities. The process of blood vessel extraction 
involves curvelet-based contrast enhancement, match 
filtering for intensifying the blood vessels, curvelet-
based vessel segmentation followed by length filtering for 
removing the misclassified pixels. The image registration 
procedure is done in two steps. In the first step, an 
approximate for the central part of both the en face OCT 
and color fundus is estimated. This is followed by defining 

Figure 6 Result of the low-rank/sparse decomposition based 
method proposed in (73).
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a search area in the fundus image and trying to find the best 
match of the two vessel images using the similarity measure 
as follows:

A BSimilarity
A B
∩

=
∪ 

[12]

where A and B are the vessel patterns of the en face OCT 
and fundus images, respectively. The next step is using a 
quadratic transformation model for registering the two 
vessel images since the retina is assumed to be a second-
order surface. Figure 7 shows different stages of the results 
of color fundus and en face OCT image registration of the 
method proposed in (75).

Motion correction of OCT images is another area in 
which image registration techniques are of high interest. 
There are several different involuntary eye movements that 
can happen during the fixation: tremor, drifts and micro-
saccades (77). One way to deal with this issue is a hardware 
solution which involves having eye tracking equipment to 

compensate for eye movements during image acquisition. 
Usually a Scanning Laser Ophthalmoscopy (SLO) device 
is merged with the OCT for tracking these eye movements 
during imaging (78). Taking a software approach can be 
more general and applicable without the need for additional 
imaging equipment. In (79) at first the vessels are detected 
in both SLO and en face OCT, using hysteresis thresholding 
for finding ridges in the normalized divergence of the 
image gradient followed by eliminating regions of less than 
five pixels. For correcting the tremors and drifts an elastic 
image registration with local affine model is considered (80). 
Micro-saccades are corrected in the next step by finding 
the horizontal shift at each pixel in the scan that best 
aligns the result of tremor and drift corrected image with 
the SLO image. In (81) a 3D aligning method for motion 
correction is proposed based on particle filtering. Particle 
filtering is an effective approach for target tracking which is 
based on the idea of considering the target as a state space 

Figure 7 Color fundus reference image superimposed by the corresponding blood vessel ridge image (A), en face OCT image superimposed 
by the corresponding blood vessel ridge image (B), the registration result of blood vessel ridge image (C) and intensity images (D) [(Reprinted 
with permission) (75)].

A B

C D
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Figure 8 Optical coherence tomography (OCT) image with blood vessel discontinuity caused by eye movement (A) and corrected image  
(B) [(Reprinted with permission) (82)].

A B

model and converting the tracking to a state estimation 
problem. In this work, two consecutive motion correction 
based on particle filtering are implemented for 3D motion 
correction. In (82), 2 volume scans with orthogonal fast scan 
axes are used for motion correction in 3D on a per A-scan 
basis. The proposed technique is implemented in a multi-
resolution based manner to ensure less computational time. 
In order to account for the variations in illumination and 
also the effect of speckle noise in the process, in (83) a more 
robust similarity measure for optimization is proposed based 
on a modified version of Pseudo-Huber loss function (84)  
which is less sensitive to outliers than squared error loss. 
Figure 8 shows one example of using the algorithm in (82) 
to correct for the motion in OCT images.

Image mosaicing is another example of using image 
registration methods in OCT image processing. OCT 
systems are capable of acquiring a huge amount of data 
in a very short period of time; but still, the field of view is 
very limited. Stitching several volume data from a patient 
can improve the interpretation of data significantly. 
Usually in such methods, a set of overlapping OCT data 
is acquired and then stitched together using global/local 
image registration techniques. In (85) a set of 8 overlapping 
3D OCT volume data is acquired over a wide area of 
retina. Then the OCT en face fundus images are registered 
together using blood vessel ridges as distinctive features 
of interest. As for a pre-processing step, Retinal Pigment 
Epithelium (RPE) layer is segmented as the second peak in 
each A-scan when starting from the top. This will help in 
creating a better en face OCT image with higher contrast for 

distinguishing the blood vessels. Finally the 3D OCT data 
sets are merged together using a combination of resampling, 
interpolation and cross-correlation. A relatively similar 
approach is taken in (86) too for motion correction and 3D 
volume mosaicing of OCT images. The whole procedure 
involves motion detection and image sub-division in a strip-
based manner followed by Gabor filtering, zero-padding 
and initial strip placement. For global registration of the 
strips, a FFT-based correlation maximization algorithm (87) 
is used which is followed by a local B-spline registration 
technique for better alignment of the image features (blood 
vessels). Finally the composite image is created combining 
the results of global and local registrations. Figure 9 shows 
a color encoded depth image of the retina with three main 
vessel layers created using this method. One of the very 
recent works in this area can be found in (88) for bladder 
OCT images which is used with an integrated White Light 
Cystoscopy (WLC) system.

The use of image registration techniques in analysis and 
processing of OCT images has grown significantly in the 
past few years. Here only a few areas were mentioned and 
there are more to explore.

Conclusions

Even though the techniques introduced here do not 
represent a comprehensive list of all of the approaches that 
are used for analysis of OCT images, the variety of the 
techniques gives us some pointers on the possible directions 
for further explorations. With the emergence of parallel 
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computing and GPU programming in the past few years, 
it is possible to have real time pre-processing and analysis 
systems to help with the increasing amount of data produced 
by OCT imaging systems. As for the pre-processing step, 
more robust and real-time techniques for speckle noise 
reduction and artifact (e.g., light strikes and blood vessel 
shadows) removal are needed. For segmentation, pixel/
region classification-based techniques show promising 
results and are less affected by the noise and artifacts. The 
same goes for the introduction of more robust and accurate 
image registration techniques in analysis and interpretation 
of OCT data, for better understanding the process of tissue 
degeneration, inter-modality registration and real-time 
motion correction.

In this article, an overview of three major problems 
in OCT image analysis, namely noise reduction, image 
segmentation and image registration, is provided and several 
different techniques in each category are discussed. Starting 
from noise reduction, both hardware and software techniques 
are discussed to some extent. Moving to image segmentation, 
different segmentation techniques with a focus on retinal 
layer segmentation are introduced. Finally some of the 
image registration methods that are used for noise reduction, 
motion correction and image mosaicing of OCT images are 
reviewed. Overall, the use of image analysis techniques for 
OCT is a rapidly growing field and there remain many areas 
for investigation. The reader is referred to (89-95) for newer 

research that has been done in this area.
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