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Introduction

After myocardial ischemia and stroke, pulmonary embolism 
(PE) is the third most common cause of cardiovascular death. 
Untreated chronic PE leads to an increase in morbidity and 
mortality (1). Currently, multislice computed tomography (CT) 
angiography is the first-line imaging modality for the diagnosis 
of patients with suspected PE, as it is safe, highly accurate 
and cost-effective (2-5). Previous studies have shown that CT 
pulmonary angiography (CTPA) has significantly increased 

the diagnostic accuracy in the detection of sub-segmental PE 
in clinical practice due to the improved spatial and temporal 
resolution that is available with multislice CT scanners (6-9).

The expanding use of multislice CT has also resulted in 
an increase in the frequency of procedures and radiation 
exposure to the patient compared to single-slice CT (10). 
This is due to the increased availability and shorter scan 
time as well as the fact that it can also be used to evaluate 
the mediastinal and parenchymal structures. High radiation 
dose associated with CTPA has raised serious concerns 
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in the literature, and this is especially important in young 
female patients, who represent approximately 20% of the 
patients examined and may receive a substantial amount 
of radiation to their breast tissues (11,12). Thus, there is a 
need to reduce the radiation dose in patients, especially in 
those with low clinical probability of PE.

Low kilovoltage (kV) scanning has been widely applied 
in CT angiography as it better matches the effective energy 
of the X-ray beam to the maximum absorption that is close 
to the k-edge of iodine. Therefore, the low kV technique 
improves vascular enhancement by substantially increasing 
the relative vascular attenuation (in CT numbers) of 
contrast material and at the same time reduces radiation 
dose (13-15). The chest is an anatomic region that is well 
suited for the use of low kV techniques because of less-
attenuating tissue in the lungs (11).

A low kV (80 or 100 kV) has been confirmed to be 
an effective technique for reduction of radiation dose in 
cardiac CT angiography and CTPA compared with the 
standard 120 kV protocol (16-18). Unlike previous studies 
which used relatively fixed mAs when applying the low kV 
protocol, we determined the effective mAs for the low kV 
protocol when compared to the standard protocol during 
CTPA examinations. The purpose of this study was to 
prospectively compare CTPA at a low kV (100 kV) with 
the standard 120 kV protocol on a 16-slice CT scanner, 
in terms of image quality assessment and radiation dose 

comparison. Despite the use of 16-slice CT scanner in 
this study, results were considered to have clinical value in 
minimizing radiation dose during CTPA examinations, in 
particular for some clinical centres in developing countries 
where 16-slice CT is still commonly used.

Materials and methods

Patient population

This study was approved by the local ethical research 
committee, and written informed consent was obtained 
from all patients before undergoing the procedure. Sixty-
six patients (age range, 19-87 years, mean age 52.8 years) 
weighing ≤70 kg with clinical suspicion of PE was 
consecutively recruited for CTPA. Patients were excluded if 
they were under 18 years old, unable to hold their breath for 
at least 20 s, pregnant women and those with nephropathy 
and hypersensitivity to contrast media.

Group A consisting of 33 patients (age range, 17-86 years, 
mean age 50.8±18.9 years) was examined using 100 kV 
protocol, and group B comprising 33 patients (age range, 
25-86 years, mean age 54.8±17.4 years) was examined using 
the standard 120 kV protocol. Patient demographics and 
comparisons of both groups are demonstrated in Table 1.

CT scanning protocol

All CTPA examinations were performed on a 16-slice CT 
scanner (Siemens Medical Systems, Muenchen, Germany). 
In both groups, 80-100 mL of non-ionic contrast medium 
(Iopamiro 370 Iopromide, Schering, Berlin, Germany) was 
injected onto the ante-cubital vein at 3-4 mL/s, and the scan 
was performed with a bolus tracking technique (Smart Prep) 
with a CT attenuation of 100 Hounsfield unit (HU) as the 
triggering threshold at right ventricle to initiate the scan.

The scanning protocol for 16-slice CTPA was as 
follows: beam collimation 16 mm × 0.75 mm, gantry 
rotation of 0.42 s, table feed of 18 mm (pitch 1.5), slice 
thickness of 5.0 mm, reconstruction interval of 2.0 mm, with 
tube voltage of 120 kV and effective mAs (mAs/pitch) of 
90. For the low dose 100 kV protocol, the value of effective 
mAs was determined by a phantom study (CATPHAN@ 
500, Phantom Laboratory, Salem, NY, USA) (19). Using 
the 120 kV and 90 mAs as the standard reference, the 100 
kV protocol was tested with a wide range of mAs, ranging 
from 70 to 135 mAs (Table 2). It was shown that 115 mAs was 
the most suitable one for the low dose CTPA as the image 

Table 1 Patient demographics and comparative statistics in 
study groups A (100 kV) and B (120 kV)

Parameter
Patient  

group A

Patient  

group B
P value

Age (years) 50.8±18.9 54.8±17.4 0.372

Male-to-female ratio 13:20 12:21 0.250

Body weight (kg) 58.2±7.1 60.4±5.6 0.167

Perpendicular distance 

from skin to anterior 

ribs (cm)

3.0±1.3 3.1±1.2 0.569

AP chest (cm) 19.5±2.2 20.5±2.9 0.106

Transverse chest 

dimension (cm)
29.1±3.4 31.1±3.8 0.022

BSA (m2) 448.4±86.2 507.6±117.0 0.005

No. of patients with PE 8 3 0.072

Scan time (s) 7.2±3.0 6.3±2.7 0.213

kV, kilovoltage; AP, anteroposterior; BSA, body surface area; 

PE, pulmonary embolism.
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quality in terms of spatial and contrast resolution obtained 
based on this protocol is similar to that from the standard 
120 kV protocol (Figure 1).

Quantitative measurement of image quality

To evaluate attenuation in the central pulmonary arteries, 
signal intensity (SI) (CT number in HU) was measured 
in the main pulmonary artery (MPA) by using a region of 
interest of at least 1.0 cm2 (±0.5 cm2). The maximum SI of 
peripheral pulmonary arteries was also evaluated close to 
the beginning and the end of each scan in a segmental or 
sub-segmental artery at an apical and a basal section. The 
maximum CT number was used as a proxy for vascular 
attenuation because the caliber of the peripheral vessels was 
too small to reliably set an intraluminal region of interest to 
determine the mean CT number.

Figure 1 Phantom images demonstrating image quality in the standard protocol (120 kV/90 mAs) (A) and the low dose protocol 
(100 kV/115 mAs) (B). This is no significant difference in the spatial (i) and contrast resolution (ii) between these two protocols. kV, 
kilovoltage.

Table 2 Phantom experiments for identifying the ideal mAs for 
low dose protocol

Kilovoltage 

(kV)

Effective 

mAs (mA)

CTDIvol 

(mGy)

Effective 

dose (mSv)
Noise

Dose 

reduction 

(%)

120 90 (135.0) 7.01 4.42 7.5 0.0

100 135 (202.5) 6.75 4.28 7.4 3.1

100 130 (195.0) 6.50 4.12 7.5 6.7

100 125 (187.5) 6.24 3.96 7.5 10.3

100 120 (180.0) 5.99 3.80 7.9 13.9

100 115 (172.5) 5.74 3.64 8.0 17.5

100 100 (150.0) 5.00 3.17 8.5 28.2

100 90 (135.0) 4.49 2.85 9.3 35.3

100 80 (120.0) 3.99 2.54 9.8 42.5

100 70 (105.0) 3.50 2.22 10.7 49.7

CTDIvol, volume CT dose index.

A

B

(i)

(i)

(ii)

(ii)

10 cm

10 cm
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Objective quantification of the image noise was 
measured in terms of the standard deviation (SD) in three 
homogeneous regions of interest measuring about 1.0 cm2 
(±0.5 cm2) in the MPA that was free of motion or contrast 
material—induced artifacts.

The signal-to-noise ratio (SNR) was determined by 
dividing mean SImain pulmonary vessel with SD, while contrast-
to-noise ratio (CNR) was calculated by dividing contrast 
enhancement (CT attenuation at the MPA minus CT 
attenuation at the paraspinal muscles) with image noise, 
that is, CNR = SImean pulmonary vessel−SImuscle/background noise. 
Background noise refers to the SD measured at the MPA.

Qualitative analysis of image quality

Two senior radiologists with more than 10 years of 
experience performed consensus interpretation of the CT 
images. Images were presented in random order to the 
observers who were blinded to the scanning protocols 
and patient details. After reviewing several previous 
studies, the reviewers predetermined the pulmonary artery 
settings based on consensus and used a window width 
(WW) between 1,200 and 1,400 and window level (WL) 
between 400 and 700 in order to compensate for increased 
attenuation within the pulmonary arteries at low kV setting. 
The mediastinum, liver and lungs were assessed in the 
mediastinal (WW 450, WL 100) and lung (WW 1,500;  
WL −500) window settings.

Images were subjectively assessed using a five-point scale 
ranging from 1 to 5: 

A score of 1: very poor image quality with no diagnostic 
information; 

A score of 2: low image qual i ty  that  reduces  the 
confidence in making diagnosis;

A score of 3: moderate image quality sufficient to make 
diagnosis;

A score of 4: good image quality clearly demonstrating 
anatomical structures;

A score of 5: excellent image quality enabling excellent 
differentiation of even small anatomical 
structures.

The degree and effect of image noise and motion 
artefacts (MA) were similarly graded using a five-point scale 
with score 1 indicating massive artefacts, not possible to 
make diagnosis; score 2 marked artefacts, still not possible 
to make diagnosis; score 3 moderate artefacts, able to 
make diagnosis; score 4 mild artefacts, sufficient to make 
diagnosis; and score 5 no artefacts. Different anatomical 

areas were combined to rate the image noise and presence 
of MA only once per examination.

The degree of contrast enhancement of pulmonary 
arteries was also graded by using a five-point scale, and 
the subjective contrast enhancement score was determined 
by evaluating the main pulmonary arteries. A score of 1 
indicating no enhancement, 2 slight enhancement, 3 good 
enhancement, 4 sufficient and 5 excellent enhancement.

Radiation dose measurements

Volume CT dose index (CTDIvol) and dose length product 
(DLP) was provided by the scanner console. Effective radiation 
dose was calculated by multiplying the DLP of the chest scan 
by a conversion coefficient (k =0.017 mSv/mGy/cm).

Statistical analysis

Continuous variables were presented as mean ± SD. Data 
analysis was performed by using SPSS version 17.0 (SPSS 
V17.0, Chicago, ILL). A Chi-square test was used to 
compare the sex distribution in both groups. The student 
t-test and one-way analysis of variance were used to analyse 
the multi-factor interactions. A P value of less than 0.05 was 
considered statistical significance.

Results

CTPA examinations in both groups were successfully 
performed in this study without any complications. A total 
of 792 segmental arteries (396 each in group A and group 
B) were analyzed. The percentage of segmental arteries that 
were considered to have sufficient quality for assessment 
of PE did not significantly differ between group A (mean, 
91%±15%) and group B (mean, 91%±7%) (P=0.85).

Both central pulmonary arteries (measured in the 
MPA) and peripheral arteries showed significantly higher 
enhancement with the 100 kV protocol than with the 
standard 120 kV protocol as shown in Figure 2. The mean 
CT attenuation in the MPA was 486±112.9 HU in group 
A, which is significantly higher than the 347.3±93.1 HU in 
group B (P<0.001), as shown in Figure 3.

In the peripheral pulmonary arteries at the level of the 
aortic arch and lung base, the maximum CT attenuation 
was 503.4±147.0 HU and 481.6±98.9 HU for group A, 
399.5±82.2 HU and 377.6±79.8 HU for group B, with 
significant difference reached between these two groups 
(P<0.001) (Table 3).
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Table 3 Objective image quality measurement: vascular enhancement and image noise

Parameter Group A Group B P value

SI at main pulmonary artery (HU) 486.4±112.9 347.3±93.1 <0.001

SI at apical pulmonary artery (HU) 503.4±147.0 399.5±82.2 <0.001

SI at basal pulmonary artery (HU) 481.6±98.9 377.6±79.8 <0.001

Paraspinal muscle SI (HU) 49.6±12.0 35.7±6.1 <0.001

Background noise (HU) 27.0±9.8 24.2±10.2 0.28

SD at main pulmonary artery 25.7±6.3 14.2±3.0 <0.001

SNR 18.6±8.3 16.5±7.1 0.26

CNR 440.5±110.6 350.2±101.5 <0.001

SI, signal intensity; HU, Hounsfield unit; SD, standard deviation; SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio. 

A B

Figure 2 CTPA in mediastinal window setting (WW 400; WL 100) compares vascular enhancement at the level of main pulmonary artery (A) 
showing enhancement of 310.8 HU which is close to the average in 120 kV group and (B) showing a much higher enhancement of 513.5 HU 
that was noted in the 100 kV protocol. Circles indicate the region of interest of 1.0 cm2 (±0.5) that was used to measure the average CT 
number at the main pulmonary artery. CTPA, computed tomography pulmonary angiography; WW, window width; WL, window level; 
HU, Hounsfield unit; kV, kilovoltage.

Figure 3 CTPA at the level of the main pulmonary artery in two patients with pulmonary embolism compares image quality at the central 
and peripheral pulmonary arteries in (A) the low dose 100 kV protocol and (B) in the standard dose 120 kV protocol. Note the emboli in the 
segmental arteries of the lower lobes (arrows). CTPA, computed tomography pulmonary angiography; kV, kilovoltage.

A B
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Quantification of image noise and artefacts

Image noise measured at the central pulmonary arteries 
in group A was significantly higher than that in group B, 
as shown in Table 3. There was no significant difference in 
SNR between the group A and group B (P=0.26), however, 

the CNR measured in group A was significantly higher than 
that in group B (P<0.001).

There was no significant difference for the subjective 
grading of image noise (mean score, 4.6 vs. 4.6; P=0.659) 
or of MA (mean score, 4.8 vs. 4.8; P=0.804) for the images 
acquired with 100 and 120 kV protocols, respectively. A 
summary of these findings are demonstrated in Figure 4.

Assessment of image quality

A consensual agreement was made between both of the 
reviewers for evaluation of image quality. Subjective scores 
for image quality were lower for the 100 kV protocol than 
for the 120 kV protocol, while the vascular enhancement 
was higher in the 100 kV protocol but the difference 
between the average scores were not significant.

Differences in subjective scoring did not reach significant 
differences for any of the five anatomic areas (MPA: P=0.43; 
lungs: P=0.02; mediastinum: P=0.13; liver parenchyma: 
P=0.18), except in the pulmonary artery enhancement (PAE), 
which is statistically significant different (P<0.001).

None of the CTPA scans was considered to have such low 
image quality that it would interfere with diagnosis (grades 
1 or 2) for the anatomic regions evaluated. Figures 5 and 6 
demonstrate the comparison of image quality at the central 
and peripheral pulmonary arteries between the two protocols.

Patient radiation exposure

There was a significant difference noted in the DLP and 
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Figure 4 Differences in the subjective assessment of image quality 
are demonstrated by consensus between the two protocols. The 
only significant difference (P value of <0.001) is seen for PAE while 
there is no significant difference of subjective image quality at the 
lung, mediastinum, and liver between the two protocols. MPA, 
main pulmonary artery; PAE, pulmonary artery enhancement; MA, 
motion artefacts.

Figure 5 CTPA in pulmonary artery window (WW 1,600; WL 700) in a 58-year-old male with history of sudden onset shortness of breath 
demonstrates filling defects at the segmental (arrows) pulmonary arteries in the 100 kV protocol in both axial (A) and coronal (B) views. 
CTPA, computed tomography pulmonary angiography; WW, window width; WL, window level; kV, kilovoltage.

A B
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estimated effective dose between group A and group B, 
with corresponding DLP of 186.3±21.8 mGycm and 
247.2±60.5 mGycm, respectively; P<0.001), and estimated 
effective dose of 3.2±0.4 mSv vs. 6.8±1.4 mSv, respectively 
(P<0.001). The low kV protocol leads to an average 
reduction of estimated effective dose of approximately 
53% (Table 4).

Discussion

The most important finding of this study is that a CTPA 
protocol with low tube voltage (100 kV) results in higher 
attenuation of the central and peripheral pulmonary 
arteries than a standard protocol. The low dose protocol 
produces a diagnostic confidence of PE detection that is not 
significantly different from the standard protocol, but using 
53% less radiation dose.

With the rapid developments of CT techniques, CTPA 
was initially used as an adjunct and an alternative to 

other imaging modalities (20), and recently it is widely 
recognized as the method of choice for diagnosis of 
suspected PE due to its superior sensitivity and specificity 
to ventilation-perfusion isotope scanning (21,22). 
However the overall radiation dose has also been increased 
due to the extended scan ranges and to compensate for the 
increasing image noise in thin-section imaging. This has 
become a major concern among radiologists and physicians 
about keeping the radiation dose at minimum levels 
(23,24). Several dose-saving strategies have been proposed 
for reducing the radiation dose of CTPA, such as tube 
current modulation, lower kV, use of high-pitch protocol 
and application of shielding (9,10). The use of low kV 
protocols for CTPA has been increasingly investigated 
in the literature (10-14,16-18). Results of this study 
are in line with previous reports showing that improved 
vascular enhancement was achieved for both central and 
peripheral pulmonary arteries using 100 kV protocols 
(25,26). Although the image noise was higher in the low 
dose protocol due to a reduction in the total energy flux 
than that in the standard protocol, the SNR and CNR were 
slightly higher in the low dose group with improvement in 
image quality for the visualisation of pulmonary vessels, and 
this is also consistent with other studies (11,27).

This study was different from previous studies as a 
phantom study was conducted first to compensate for the 
increased noise that would be expected from reducing the 
tube current. The purpose of this preliminary study was to 
ensure that the images obtained with the low dose protocol 
would be of diagnostic quality while achieving reduction 

Table 4 Radiation dose measurements between two protocols 

Parameter Group A Group B P value

CTDIvol (mGy) 5.74 7.01 NA

DLP (mGy × cm) 186.3±21.8 247.2±60.5 <0.001

Estimated effective 

dose (mSv)

3.2±0.3 6.8±1.4 <0.001

CTDIvol, volume CT dose index; NA, not available; DLP, 

dose length product.

Figure 6 CTPA in pulmonary artery window (WW 1,600; WL 700) in a 42-year-old male with history of cough and breathlessness shows 
filling defects at the segmental (arrows) pulmonary arteries in the 120 kV protocol in both axial (A) and coronal (B) views. CTPA, computed 
tomography pulmonary angiography; WW, window width; WL, window level; kV, kilovoltage.

A B
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of radiation exposure. Thus, the radiation dose with the 
low dose protocol in this study is even lower than that 
acquired with a high-pitch 128-slice CT, as reported in a 
recent study (186.3 vs. 289.5 mGycm) (28). However, the 
effective dose of 3.2 mSv in this study is still higher than 
the 1.1 and 2.7 mSv with use of 80 and 100 kV protocols, 
according to a recent study by Viteri-Ramírez et al. based 
on dual-source CT imaging (29). Furthermore, iterative 
reconstruction (IR) is a recently introduced algorithm 
which has been confirmed to be an effective strategy in 
reducing image noise while improving image quality with 
significant reduction of radiation dose in CT scans (30-32). 
A combination of high-pitch protocol with low kVp and IR 
in CTPA examination has been found to reduce radiation 
dose by 52%, with contrast volume of 20 mL used in the 
low-dose protocol (33,34). Thus, there is still room for 
further reduction of radiation dose associated with CTPA.

Body weight and body mass index (BMI) are directly 
proportional to image noise and inversely related to arterial 
enhancement (35,36). Image noise increases with the 
increase of the body weight, whereas arterial enhancement 
decreases accordingly, and this is especially apparent in 
the peripheral vascular imaging. The two groups in this 
study were matched by gender, age, body weight and body 
surface area (BSA), thus precluding possible variations 
between the two groups in the vascular enhancement due to 
a different body habitus. This leaves the contrast medium 
administration (volume, concentration, injection rate) as 
the main factor directly associated with PAE (37). This 
study shows that 80-100 mL of non-ionic contrast medium 
delivered at 3-4 mL/s in 16-slice CT allows diagnostic 
image quality, however, the amount of contrast medium is 
more than the 60 mL of iodinated contrast medium used 
in 64-slice CT systems (29). It has been suggested that a 
combination of low kV with a decreased volume of contrast 
medium leads to increased vascular contrast enhancement 
(27,38), therefore, further studies are needed to focus on 
reduction of contrast medium while recommending a low 
dose protocol.

Some limitations in this study should be addressed. 
First, the study was performed on a 16-slice CT scanner, 
which is slower in terms of gantry rotation time than 
that of the recent models such as dual-source CT or 
320-slice CT systems. Despite this limitation, sufficient 
image quality was acquired with both protocols at central 
and peripheral pulmonary arteries. The global trend 
in multislice CT imaging is that latest models such as 
dual-source CT or 256- or 320-slice CT scanners are 

increasingly installed in many clinical centers, however, 
16-slice CT still plays an important role in daily clinical 
practice, especially in developing countries. Second, the 
number of patients with PE was low. Thus, the effect of 
100 kV in PE detectability cannot be inferred from the 
present data. However, increased attenuation was observed 
at the peripheral pulmonary vessels with use of the low dose 
protocol, and this indicates that the diagnostic accuracy 
won’t be compromised even down to the level of segmental 
pulmonary arteries. Third, this low dose protocol was 
limited to individuals weighing ≤70 kg and may not be 
suitable for larger patients as increased image noise may 
deteriorate the image quality.

In conclusion, this study demonstrates that pulmonary 
CT angiography performed with 100 kV protocol results 
in a significant reduction in the radiation dose with high 
attenuation of the central and peripheral pulmonary 
arteries. Further studies should be conducted to investigate 
the diagnostic value of the low dose protocol in detecting 
segmental and subsegmental pulmonary emboli based on 
more advanced CT scanners.
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