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Abstract

Angiogenesis, the formation of new blood vessels from preexisting vessels, is a highly complex 

process. It is regulated in a finely-tuned manner by numerous molecules including not only soluble 

growth factors such as vascular endothelial growth factor and several other growth factors, but 

also a diverse set of insoluble molecules, particularly collagenous and non-collagenous matrix 

constituents. In this review we have focused on the role and potential mechanisms of a 

multifunctional small leucine-rich proteoglycan decorin in angiogenesis. Depending on the 

cellular and molecular microenvironment where angiogenesis occurs, decorin can exhibit either a 

proangiogenic or an antiangiogenic activity. Nevertheless, in tumorigenesis-associated 

angiogenesis and in various inflammatory processes, particularly foreign body reactions and 

scarring, decorin exhibits an antiangiogenic activity, thus providing a potential basis for the 

development of decorin-based therapies in these pathological situations.
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Introduction

Angiogenesis, the formation of new blood vessels from preexisting vessels through 

sprouting or intussusception, is a fundamental process in mammalian reproduction, 

development, and wound repair [1–3]. Angiogenesis also plays a critical role in a variety of 
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pathological situations including malignant, inflammatory, and ischemic disorders [4]. 

Furthermore, there is an association between angiogenesis, scarring, and fibrosis [5].

For some time, we have understood that in addition to soluble molecules, particularly 

growth factors such as vascular endothelial growth factor (VEGF), transforming growth 

factor-β (TGF-β), and several other growth factors, insoluble extracellular matrix (ECM) 

macromolecules are of great importance in the angiogenic process [6–8]. Indeed, today we 

know that the structure of the ECM in itself has a great impact on angiogenesis via directly 

or indirectly regulating endothelial cell (EC) behavior [8–11]. Angiogenesis requires the 

generation of “activated migratory” ECs (tip cells) which guide the developing vascular 

sprout [12–15]. Remodeling of the ECM by ECs as angiogenesis proceeds enables initiation, 

formation, and finally, the stabilization of new blood vessels.

ECM and Angiogenesis

A number of individual ECM macromolecules participate in angiogenesis, either promoting 

or restricting events involved in this process [6,8,9]. Different collagens such as types I, III, 

IV, and VI collagen [16–19], a variety of glycoproteins, particularly fibronectin [20,21], 

vitronectin [22], laminins [23] and matricellular proteins such as thrombospondin [24] and 

SPARC (Secreted Protein Acidic and Rich in Cysteine) [25] have been shown to contribute 

to angiogenesis. Furthermore, specific proteoglycans (PGs) and glycosaminoglycans 

(GAGs) including the heparan sulfate PGs perlecan [26] and syndecans [27,28], the 

dermatan sulfate PGs decorin [29,30] and biglycan [14,31], the chondroitin sulfate PG 

versican [14,32,33], the keratan sulfate PGs fibromodulin [34] and lumican [35], and, 

finally, hyaluronan (HA) [7,36,37] are involved in angiogenesis as well. In addition, several 

proteolytically cleaved fragments of the matrix macromolecules, called matrikines and 

matricryptins, are active in modulating angiogenesis [8,14,33,38–41]. One of the most well-

known examples of these cleavage products is the carboxyl terminal fragment of type XVIII 

collagen, called endostatin, which is a potent angiogenesis inhibitor [42]. Other similar 

cleavage products with antiangiogenic activity are canstatin and tumstatin, both derived 

from type IV collagen [43,44], endorepellin, the C-terminus of the heparan sulfate PG 

perlecan [45], and hyaluronan fragments [7,46]. Matrix macromolecules and/or their 

cleavage products can participate in angiogenesis at all different stages beginning with 

vascular sprouting and eventually ending in vessel stabilization [47].

Almost 30 years ago, we made the observation that ECs in confluent monolayer culture 

synthesized primarily biglycan, but not the highly homologous SLRP (small leucine-rich 

proteoglycan) family member decorin [48,49]. However, ECs switched to synthesis of 

decorin when they were stimulated to sprout and form tubes in vitro [29]. Subsequently, it 

was demonstrated that when ECs were co-cultured with fibroblasts in a collagen gel, they 

formed cord-like structures which was accompanied by a 100-fold increase in the synthesis 

of decorin [30].

In this review, we have focused on highlighting the multifunctionality of decorin in 

angiogenesis, as has become apparent over the last several years. We describe its role in 

regulating ECM stiffness and rigidity, in modulating angiogenic growth factor activation/
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deactivation, in binding to several cell surface receptors involved in angiogenesis and 

exciting new studies that highlight its role in autophagy as possible mechanism(s) by which 

this PG contributes to angiogenesis.

Decorin

Decorin, in earlier literature also called PG-II, PG-40 and PG-S2 [50–52], is the prototype 

molecule of the SLRP gene family that encompasses 18 members [53,54]. The name decorin 

originates from its ability to decorate collagen type I fibrils. Decorin has been shown to bind 

to the d and e bands of type I collagen via its core protein, “decoron,” thereby controlling 

fibril formation [55–57] and regulating mechanical properties of these fibrils [58]. The 

effects of decorin on fibrillogenesis are also true in vivo [59]. In addition, decorin has been 

suggested to play a regulatory role in several other biological and physiological processes 

such as myogenesis [60] and fetal membrane development [61] as well as tissue repair [62]. 

Notably, the importance of decorin in various pathological conditions e.g. cancer, is also 

established [63,64]. Decorin is mainly expressed by various mesenchymal cells, such as 

fibroblasts, chondrocytes, and smooth muscle cells [49,65], but in specific situations also by 

ECs as will be described below.

Decorin is usually composed of a core glycoprotein with the relative molecular weight of 

about 40 kDa and one either chondroitin or dermatan sulfate GAG side chain which is 

attached to the serine residue 4 [66,67] (Fig. 1). In the core protein of decorin, four distinct 

domains can be identified [68]. The first domain consists of a 14-amino acid signal peptide 

and a 16-amino acid propeptide, both of which are cleaved before decorin is secreted. The 

second domain that is rich in cysteine is the GAG side chain-carrying domain. The third 

domain is the leucine-rich repeat region consisting of 10 repeats of 24 amino acids rich in 

leucine. This domain results in the three-dimensional structure of decorin resembling an arch 

[69], a typical architecture of all proteins with leucine-rich repeat motifs [70]. The fourth 

domain of the decorin core protein is the carboxyl terminal domain which contains two 

cysteine residues and a conserved disulfide loop. These structural features of decorin enable 

it to bind and interact with numerous other ECM macromolecules as well as with different 

growth factors and cytokines [63,68]. Furthermore, when in a soluble form, decorin can 

interact with certain cell surface receptors and thereby it can have a direct influence on 

intracellular signaling [54,71]. Both the core protein and the GAG chain are variously 

responsible for the different effects of decorin on cellular functions [72–74]. For example, 

the core protein of decorin can act as an inhibitor of tumor growth in different xenograft 

models such as breast and prostate cancers via downregulating the members of the ErbB 

receptor tyrosine kinase family [75,76]. The GAG chain, on the other hand, is able to 

influence migration of cells such as smooth muscle cells and melanoma cells via 

mechanisms including intracellular acidification [77,78]. In addition, the length of the 

decorin GAG chain affects matrix assembly by determining the distance between separate 

collagen fibrils [79], affecting angiogenesis [80]. Thus, as with most PGs, the bioactivity of 

decorin as a molecule must be considered as a sum of its parts [74].
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Decorin in Angiogenesis

Immunostaining for decorin is present in microvessels in human atherosclerotic plaques 

[81], in ECs in human granulomatous tissue [30], and in newly formed microvessels within 

the thickened intima of human arterial wall in giant cell arteritis [82], whereas decorin 

immunostaining is absent from the endothelium of resting capillaries [83]. Furthermore, 

decorin positive microvessels have been detected at the base of pseudoaneurysms in the 

temporal artery of human patients [84]. Decorin has also been found to be expressed in 

significant amounts around neovessels after varicose vein surgery in patients [85]. 

Alternatively, although decorin null mice do not exhibit any abnormalities in their 

vasculature [59], decorin deficiency causes impaired angiogenesis in the injured cornea of 

these animals [86]. Similarly, reduced decorin expression in oral squamous cell carcinomas 

and in human microvascular ECs leads to decreased angiogenesis [87,88].

While the studies described above suggest that decorin has a stimulatory role in the 

angiogenic response, there are several studies supporting the opposite view. Decorin inhibits 

endothelial tube formation in vitro, which is potentiated with the addition of 

thrombospondin [89]. Decorin suppresses angiogenesis in tumors [90] and is differentially 

expressed in human benign versus malignant vascular tumors [91]. Specifically, in Kaposi’s 

sarcoma and angiosarcoma, both of which represent malignant vascular neoplasms, decorin 

expression is completely lacking, whereas in benign vascular tumors, namely in 

hemangiomas, where capillary growth has ceased, decorin is expressed in readily detectable 

amounts. In addition, there is an increase in vascular invasion in polyvinyl alcohol sponges 

implanted in decorin-deficient mice compared to vascular invasion in sponges implanted in 

wild-type control mice [92]. Studies have also demonstrated that even fragments of decorin 

can exhibit antiangiogenic activity, partially through the ability of these fragments to depress 

VEGF-induced focal adhesion kinase phosphorylation and assembly of focal adhesions [93]. 

In addition, overexpression of decorin retards corneal neovascularization via downregulation 

of proangiogenic molecules including VEGF [94]. Thus, growing evidence since the 1990’s 

indicates a critical role for decorin in the angiogenic response, particularly angiogenesis 

associated with inflammatory processes and tumor growth. However, whether decorin’s 

activity will be pro- or antiangiogenic appears to depend on the physiological or 

pathological condition of the tissue.

Potential Mechanism(s) for Decorin in Angiogenesis

There are a number of ways by which decorin can influence angiogenesis in either positive 

or negative ways. It may interact with various ECM macromolecules promoting assembly of 

a complex ECM and preventing turnover, enabling the formation of an ECM conducive for 

angiogenesis [59,95–99]. For example, decorin is known to control collagen fibril formation 

of, e.g., type I collagen [57] and type I collagen fibrils, in turn, provide a template for 

vascular tube formation when in contact with the apical side of the endothelium, thus 

promoting angiogenesis. The interaction of decorin with collagen fibrils also makes decorin 

resistant to proteolytic attack, resulting in a more stabilized fibrillar network [100]. Binding 

of decorin to the matrix proteins not only leads to the stabilization of the fibrillar network, 

but concomitantly causes alterations in the biomechanical properties of the ECM, 
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particularly in the tensile strength and rigidity of the matrix [58,97,101]. Stiffness and 

rigidity are two central properties of the ECM that are known to influence angiogenesis 

[12,102].

While decorin can promote the formation and maintenance of the highly-ordered structures 

of fibrillar proteins, it may also have a role in either preserving or destroying these fiber 

systems. Indeed, the core protein of decorin is capable of stimulating the expression of 

matrix metalloproteinase-1 (MMP-1) [103,104], a collagenase that is highly active during 

angiogenesis. This protease promotes the expression of vascular endothelial growth factor 

receptor-2 (VEGFR2) through stimulation of protease activated receptor-1 (PAR-1) and 

activation of nuclear factor-κB (NF-κB) [105]. Decorin also stimulates the synthesis of 

another collagenase, namely MMP-2 [106], that degrades type IV collagen, the major 

structural component of basement membranes. Similarly to MMP-1, MMP-2 has been 

reported to enhance vascular proliferation. On the other hand, decorin is able to stimulate 

synthesis of tissue inhibitors of matrix metalloproteinases (TIMPs), particularly TIMP-2 

[106] and TIMP-3 [107], which both decrease angiogenesis [108–110].

Decorin can also influence cell-ECM interactions by affecting the integrin adhesion 

receptors. For example, decorin modulates the activity of α2β1 integrin [99]. More 

specifically, decorin can allosterically modulate α2β1 integrin’s collagen binding activity by 

interacting with the α2 subunit of this integrin via its GAG moiety and/or core protein [111]. 

Furthermore, decorin can influence the expression of integrins. DCN−/− fibroblasts treated 

with decorin have reduced expression of α2β1 integrin [112]. In addition, in human airway 

smooth muscle cells, decorin increases the synthesis of integrin αv subunit [113] that 

together with β3 subunit is abundantly expressed on angiogenic ECs, but not on normal, 

quiescent ECs [114]. However, although αvβ3 integrin has been suggested to play a key role 

in angiogenesis [115], there is currently no published data to demonstrate that decorin 

influences the expression or function of this integrin in ECs. Nevertheless, study of 

decorin’s role in the regulation of integrin activity and function provides an intriguing field 

of angiogenic research.

Decorin may also impact angiogenesis by binding directly to other cell surface receptors or 

signaling molecules involved in angiogenesis. Currently decorin is known to be a ligand for 

several tyrosine kinases including the epidermal growth factor receptor (EGFR) [116,117], 

Met, which is the receptor for the hepatocyte growth factor (HGF) [118], insulin-like growth 

factor receptor-I (IGF-IR) [119–121] and VEGFR2 [122]. Furthermore, decorin has been 

suggested to bind to platelet derived growth factor receptor (PDGFR), but further studies are 

still required to confirm this [123]. Engagement of decorin with cell surface receptors can 

either activate or inhibit the function of the receptor [99,120], depending on the 

physiological state of the tissue. In disease, decorin is more likely to have an antagonizing 

effect on the aforementioned receptors [107,121,124].

Decorin also influences the expression and bioavailability of several angiogenic growth 

factors and cytokines. For example, decorin binds to VEGF and may impact the availability 

and activity of this angiogenic factor. Evidence is available that decorin-expressing sarcoma 

cells produce reduced amounts of VEGF, leading to suppressed tumor-cell mediated 
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angiogenesis [90]. Similarly, virus-mediated decorin gene delivery decreases angiogenesis 

in the cornea of rabbits via downregulating VEGF expression, in addition to downregulating 

the expression of two other proangiogenic molecules, namely monocyte chemoattractant 

protein-1 (MCP-1) and angiopoietin [94]. However, others have found decorin to have the 

opposite effect on VEGF expression. In dysplastic and malignant oral epithelial cells 

aberrantly expressing nuclear localized decorin, knockdown of decorin expression attenuates 

angiogenesis via simultaneously silencing angiogenic mediators including VEGF [125]. 

Consistent with this finding, in fetal growth restriction, where decorin expression is 

decreased, VEGF-A expression as well as angiogenesis are decreased [88]. Additionally, 

mouse cerebral ECs treated with decorin stimulate VEGF expression via activation of 

specific transcription factors resulting in increased angiogenesis [126]. It still remains to be 

verified whether these observed effects of decorin on angiogenesis are truly VEGF-

dependent. Thus, more in depth studies are needed to decipher the molecular mechanism(s) 

involved in decorin’s role in either stimulating or inhibiting angiogenesis through VEGF 

pathways.

Another growth factor vital not only in fibrosis [127] but also in angiogenesis is TGF-β 

[128–133]. Decorin can bind TGF-β and neutralize its activity [134–137]. Hence, the 

bioavailability of TGF-β is markedly under the control of decorin. Indeed, degradation of 

decorin by different proteases (e.g., MMP-2, -3 and -7 and granzyme B) releases sequestered 

TGF-β and restores its bioavailability [138,139]. Furthermore, overexpression of decorin 

inhibits TGF-β expression [140,141]. However, it still has to be clarified whether there is a 

causal relationship between decorin and TGF-β in the regulation of angiogenesis.

In addition to VEGF and TGF-β, decorin interacts with several other angiogenic growth 

factors, including platelet-derived growth factor (PDGF) [123,142,143], fibroblast growth 

factor (FGF) [93,144], insulin-like growth factor (IGF) [120,121,145], connective tissue 

growth factor (CTGF) [146–148], and HGF [118,149]. Furthermore, decorin influences the 

availability of the proangiogenic factor angiopoietin, as well [94]. A summary of studies 

addressing the involvement of decorin in regulating the activity and availability of 

angiogenic growth factors is presented as Table I and diagrammatically as Fig. 2.

Apart from different angiogenic growth factors, decorin has also been shown to markedly 

contribute to the regulation of angiogenic cytokine expression [150]. Cytokines form a 

group of small proteins (5–20 kDa) including chemokines, interferons, and interleukins that 

are vitally important for the immune system and the inflammatory process, and as such, they 

also play a crucial role in a variety of pathologies and associated phenomena, such as 

angiogenesis [151,152]. The finding that decorin is capable of downregulating the 

expression of chemokines, particularly MCP-1 [94], suggests that decorin potentially 

attenuates inflammation-associated angiogenesis [153]. In line with this, decorin could also 

decrease inflammation-associated angiogenesis by potentiating the activity of interferons, 

particularly interferon-γ, a well-known antiangiogenic molecule [154,155]. However, being 

an endogenous ligand of toll-like receptors 2 and 4 in macrophages, decorin stimulates the 

expression of proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and 

interleukin-1β (IL-1β), and simultaneously reduces the expression of anti-inflammatory 
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interleukin-10 (IL-10) [150]. This suggests that decorin plays a dual role in inflammation 

and consequently also a double role in inflammation-associated angiogenesis [82,92].

A completely new mechanism whereby decorin may be linked with the regulation of 

angiogenesis is its role in autophagy [156]. Autophagy is the major intracellular catabolic 

mechanism whereby unnecessary or dysfunctional cytosolic components, proteins, and 

organelles are degraded by lysosomes leading to cellular renovation and homeostasis [157]. 

Interestingly, angiogenesis inhibitors are known to activate autophagy in ECs [158]. 

Regarding decorin, its soluble form has been shown to cause autophagy in both 

microvascular and macrovascular ECs leading to decreased angiogenesis [159]. 

Mechanistically, this effect of decorin on EC autophagy has been shown to be mediated via 

direct interaction with VEGFR2 which causes activation of adenosine monophosphate 

(AMP) kinase signaling and inactivation of mTOR (mammalian target of rapamycin) 

[156,160]. AMP kinase phosphorylation leads to modulation of paternally-expressed gene 3 

(Peg3), a key player in autophagy that then goes on to control the expression of beclin 1 and 

microtubule-associated protein 1A/1B-light chain 3 (LC3) [159–161].

Decorin may also modulate angiogenesis via influencing apoptosis of ECs. Originally, 

decorin has been suggested to have an antiapoptotic effect on ECs during angiogenesis [30]. 

However, it was later shown that the peptides derived from the decorin leucine-rich repeat 

cause induction of EC apoptosis concomitantly with the inhibition of EC tube formation 

[93]. The apoptosis-promoting activity of decorin has also been described for other cells, 

particularly for malignant cells such as breast cancer, cholangiocarcinoma, and 

hepatocellular carcinoma cells [162–164]. Thus, the action of decorin on EC apoptosis may 

be context-dependent [165].

Therapeutic Potential of Decorin as an Angiogenic Modulator

As we have discussed above, decorin can impact angiogenesis in multiple ways. Although 

decorin has variously been shown to either promote or inhibit angiogenesis, its effect on 

tumorigenesis-associated angiogenesis has been shown to be an inhibitory one [90,91,166]. 

Because tumor growth and metastasis are crucially dependent on angiogenesis [167], the 

development of new decorin-based adjuvant therapies in malignancies is rational despite the 

fact that antiangiogenic drugs and therapies have not yet produced widespread or enduring 

clinical benefits [168]. In addition to inhibiting angiogenesis in tumors, decorin has been 

shown to inhibit angiogenesis associated with foreign body reactions [92]. This provides a 

mechanistic basis for why decorin would be a very promising biological agent to prevent 

scarring [5,169]. The multifunctional nature of decorin also enables it to be a potential 

therapeutic agent for a variety of other pathologies, even for those which are not 

angiogenesis-dependent. These pathologies include glomerulonephritis [140] and peritoneal 

fibrosis [170], both of which are highly dependent on TGF-β. On the other hand, therapeutic 

use of decorin as an angiogenesis-promoting molecule has also been indicated. For example, 

after partial hepatectomy in fibrotic mice, decorin has been found to accelerate liver 

generation [171].
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Conclusion

Angiogenesis is the result of a dynamic interplay between numerous molecules in the ECM 

and cellular milieu. In this review, we have focused on the role and potential mechanisms of 

the multifunctional SLRP decorin in angiogenesis. We have aimed to convince the reader 

that decorin is not only associated with angiogenesis, but more importantly, it plays a causal 

role in this process. Furthermore, depending on the molecular microenvironment where 

angiogenesis is induced, decorin can either promote or inhibit angiogenesis. This regulation 

occurs via mechanisms involving decorin’s ability to interact with and modulate the actions 

of other ECM macromolecules, a variety of growth factors and cytokines as well as certain 

cell surface receptors. Thus, it is clear that decorin impacts the life and death of endothelial 

cells and may have therapeutic potential to regulate the angiogenic response.
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Abbreviations used

VEGF vascular endothelial growth factor

TGF-β transforming growth factor-β

ECM extracellular matrix

EC endothelial cell

SPARC secreted protein acidic and rich in cysteine

PG proteoglycan

GAG glycosaminoglycan

SLRP small leucine-rich proteoglycan

MMP-1 matrix metalloproteinase-1

VEGFR2 vascular endothelial growth factor receptor-2

PAR-1 protease activated receptor-1

NF-κB nuclear factor-κB

TIMPs tissue inhibitors of matrix metalloproteinases

EGFR epidermal growth factor receptor

HGF hepatocyte growth factor

IGF-IR insulin-like growth factor receptor-I

PDGFR platelet derived growth factor receptor

MCP-1 monocyte chemoattractant protein-1
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PDGF platelet-derived growth factor

FGF fibroblast growth factor

IGF insulin-like growth factor

CTGF connective tissue growth factor

TNF-α tumor necrosis factor-α

IL interleukin

AMP adenosine monophosphate

mTOR mammalian target of rapamycin

Peg3 paternally-expressed gene 3

LC3 light chain 3
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Highlights

• Different ECM macromolecules contribute to the process of angiogenesis

• Decorin is a multifunctional small leucine-rich proteoglycan

• Decorin can exhibit either a proangiogenic or an antiangiogenic activity

• In pathological conditions, decorin’s role in angiogenesis is mainly inhibitory

• Decorin-based therapies show great potential in the future
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Fig. 1. 
Schematic drawing of the molecular structure of decorin. All four domains I–IV of decorin 

core protein are indicated (for details see the text). The GAG side chain attached to serine 

residue 4 of the second domain is also shown.
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Fig. 2. 
Interaction of decorin with various ECM macromolecules and growth factors in the 

modulation of angiogenesis. (1.) Decorin is able to bind to other ECM macromolecules, 

especially types I and VI collagen, and fibronectin, and to modulate rigidity and stiffness of 

the ECM. (2.) By sequestering growth factors to the ECM, decorin can inhibit their 

angiogenic activity. (3.) Decorin can regulate the expression of specific MMPs and TIMPSs 

thereby influencing the structure and mechanochemical properties of the ECM. MMPs 

degrade the ECM structure and provide room for vascular sprouting while TIMPs inhibit the 

activity of MMPs. (4.) MMPs can free decorin-bound growth factors thus restoring their 

angiogenic activity. (5.) Decorin is also able to bind to growth factor receptors thus blocking 

their interaction with their natural ligands and their subsequent activation.
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Table I

Angiogenic growth factors regulated by decorin.

Molecule Abbreviation Relationship with decorin Reference

Angiopoietin ANG Inhibition by decorin [90]

Connective tissue growth factor CTGF Induces decorin synthesis/decorin regulates CTGF activity in fibrotic 
conditions [142–144]

Fibroblast growth factor FGF Decorin promotes activity after injury/inhibition by decorin [140/89]

Hepatocyte growth factor HGF Inhibition by decorin [114,145]

Insulin-like growth factor IGF-I In normal cells, DCN activates IGF-I/in transformed cells, decorin 
inhibits IGF-I activation [116,117,141]

Platelet derived growth factor PDGF Inhibition by decorin [119,138,139]

Transforming growth factor beta TGF-β Inhibition by decorin [131,133,136]

Vascular endothelial growth factor VEGF Inhibition by decorin [86,89,90]
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