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Background

Gene expression silencing at mRNA level by microRNAs (miRNA) is a well-established 

form of post-transcriptional regulation1, 2. Such silencing is achieved through miRNA 

binding to miRNA response elements (MRE) residing mainly in the 3’ untranslated regions 

(UTRs) of the target mRNA. Over 1000 human miRNAs have been identified3, and the 

prevalence of miRNA regulation in a broad range of biological processes and disease often 

attributes to the fact that a single miRNA can repress hundreds of different mRNAs4. 

Interestingly, a single target mRNA often possesses MREs of distinct miRNAs in its 

3’UTR5. Questions have been raised regarding the need for this redundancy in regulation 

and these multiple MREs were once thought to serve as regulatory buffers of different 

miRNAs. In a recent seminal work, a novel theory, termed the competing endogenous RNA 

(ceRNA), was proposed to provide a plausible explanation for this interesting phenomenon 

from a new perspective of gene regulation6. According to the ceRNA theory, MREs function 

as “letters” of this new regulatory system, and ceRNAs, or sets of RNAs including mRNA, 

pseudogenes, and long noncoding RNAs, can communicate, or regulate each other, through 

competition for common MREs. As such, ceRNA regulatory networks provide a unifying 

system for regulations among transcriptome-wide RNAs, greatly expanding the functions of 

RNAs6. Alteration of this competition between ceRNAs could modify normal state gene 

expression and in return alter the status of biological pathways to promote an oncogenic 

program for example. To that end, a PTEN ceRNA network was uncovered and shown to 

potentially regulate oncogenesis6.
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The fact that this new level of RNA regulations could be prevalent in cells has prompted 

research to identify ceRNAs of genes related to disease. However, the complexity of ceRNA 

regulations and an incomplete knowledge of miRNA binding have hampered the prediction 

of ceRNAs, which often requires the use of computational tools and databases that are not 

readily available to the users. Thus far, two algorithms for human ceRNA predictions have 

been proposed. MuTaMe, proposed in6, aims to predict ceRNAs of a GOI. It starts by 

selecting a set of, ideally experimentally validated, miRNAs that target the given GOI in its 

3’ UTR region. Predicted ceRNAs by sequence-pairing are the mRNAs that are also targeted 

by these miRNAs and the prediction is made based on scores generated from binding 

affinity statistics. While MuTaMe succeeded in predicting several ceRNAs of PTEN, it is 

not accessible for predicting other GOIs because experimentally validated miRNAs 

targeting a new GOI are mostly unavailable and binding affinity statistics used in MuTaMe 

are insufficient for accurate predictions. Furthermore, MuTaMe has not been implemented 

as a software tool yet and cannot be accessed by the general public. The second algorithm, 

Hermes, proposed in7, infers ceRNAs from expression profiles of genes and miRNAs by 

using conditional mutual information (CMI). While Hermes combines ceRNA/miRNA/

target triplets via tissue specific gene expression, however, it does not provide an 

implementation that combines sequence-binding statistics with gene expression. There is a 

shortage of user-friendly tools that can be easily used for anyone interested in ceRNA 

research.

To address the need for user-friendly tools, we developed here TraceRNA, a web-based 

application for transcriptome-wide ceRNA discovery. TraceRNA is flexible, powerful, and 

user-friendly. It includes MiRTarBase8, a database of experimentally validated miRNA-

target pairs, and miRNA binding scores and related data (sites position, length, etc.) from 

three prediction algorithms (SVMicrO9, BCMicrO10, and SiteTest) with different emphasis. 

TraceRNA provides the user with the flexibility to perform ceRNA predictions using one of 

three algorithms to meet different study objectives. Currently, TraceRNA maintains a 

database that includes genome-wide targets of >700 human miRNAs predicted by three 

algorithms. The user can compare among the prediction results from these different 

algorithms to either complement or reach a consensual prediction.

Two important observations have been integrated into the TraceRNA for context-specific 

ceRNA discovery. The first is that the miRNA expression is condition-specific. That is, if a 

miRNA is not expressed in a tissue environment or disease state, one can ignore its target-

binding specificity. The second is that, GOI and its ceRNAs’ expressions are positively 

correlated because of the competition for miRNA binding. Therefore, an increased/

decreased GOI expression will attract more/less miRNA binding away its ceRNAs, resulting 

in increased/decreased ceRNA expression level due to the decreased/increased repression 

effect of miRNAs. As another unique feature, TraceRNA can construct ceRNA interaction 

networks to help delineate complex interactions of ceRNAs and gain further insight into this 

novel ceRNA regulation-modulation mechanism. Finally, TraceRNA is developed to be 

user-friendly web application with an accessible interface. It generates predictions including 

statistics such as p-values and false discovery rate (FDR) both online and in spreadsheets 

available for download.
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Methods

The goal of TraceRNA is to predict ceRNAs of a GOI, which are mRNAs that share MREs 

from a set of miRNAs that also target the GOI. In this paper, we named these miRNAs as 

GOI targeting miRNAs, or GTmiRs. ceRNAs’ competition for GTmiRs binding to GOI will 

alter the expression of GOI and its ceRNAs in a coordinated fashion and co-expression can 

be observed, where expressions of GOI and its ceRNAs are expected to be correlated. 

Predictions of ceRNAs can be done by examining miRNA:mRNA sequence pairing and/or 

GOI-ceRNAs co-expression. TraceRNA includes three main processing sections in its 

pipeline (Fig. 1): 1) sequence-based prediction of ceRNAs, 2) co-expression analysis of GOI 

and ceRNAs’ expression levels, and 3) generation of ceRNA regulatory network. 

Additionally, miRNA expression data is also included in TraceRNA for the user to select 

context-specific GTmiRs (Supplemental Fig. S1).

Sequence-based prediction of ceRNAs

Selection of GOI targeting miRNAs (GTmiRs)—Given a GOI provided by the user, 

the first step in TraceRNA is to identify GTmiRs, or miRNAs that target GOI. TraceRNA 

provides two alternatives for GTmiRs identification (Fig. 1). First, TraceRNA maintains a 

local copy of experimentally validated miRNAs: targets pairs curated by miRTarBase 

Release 2.5 (downloaded on July 2012). Second, genome-wide SVMicrO9 predictions for 

>700 miRNAs were pre-calculated.. SVMicrO9 was developed previously to predict miRNA 

targets. It uses a support vector machine with sequence-based features including binding 

secondary structure, energy, binding conservation, number of predicted sites, and site 

densities. SVMicrO was tested to achieve improved performance compared to several 

popular algorithms including TargetScan, miRanda, Pictar, etc. The predicted miRNAs are 

displayed to the user in descending order of p-values (See Section 1.3). The user may select 

a subset or all of the miRNAs from these two sources as GTmiRs.

Prediction of ceRNAs—Once GTmiRs are selected, TraceRNA predicts ceRNAs as the 

mRNAs that are also targeted by these GTmiRs, by using one of three miRNA target 

prediction algorithms: 1) SVMicrO9, 2) BCMicrO10, or 3) SiteTest, depending on the user’s 

selection. SVMicrO9 and BCMicrO10 are two in-house developed algorithms which were 

published previously. As discussed above, SVMicrO makes predictions by utilizing a large 

number of miRNA binding features. BCMicrO uses a Bayesian approach that integrates 

prediction scores from 6 popular algorithms: TargetScan11, miRanda12, PicTar13, 

mirTarget214, PITA15, and DIANA micro-T16. Both algorithms provide more accurate 

predictions than existing algorithms. The prediction scores of SVMicrO and BCMicrO were 

pre-calculated and stored in a MySQL database. In addition, a new algorithm, SiteTest, 

inspired by MuTaMe6, was also developed and its pseudo code is included in Supplemental 

Materials.

In order to show the scores calculation, let Si be the score of GTmiR i targeting an mRNA 

by either algorithms and K be the total number of GTmiRs. Then, the score, S, for the 

mRNA to be a ceRNA predicted by sequence-pairing is calculated as
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(1)

We discuss next the calculation of the predictions significance.

Statistical Significance of Predicted ceRNAs—We first discuss the calculation of 

statistical significance for the SVMicrO scores. According to (1), S is calculated as the 

average of the sequence-pairing scores of each GTmiR and the mRNA. To calculate the p-

value for S, the distribution of S under the null hypothesis, i.e., the mRNA is not predicted 

by sequence-pairing as a ceRNA, needs to be obtained. Because S is the average Si, then the 

distribution of Si under the null hypothesis needs to be evaluated first. Adopting the method 

developed in BCMicrO, the empirical distribution Si under the null hypothesis was observed 

as a mixture of two distributions, one clustered around smaller scores and the other around 

larger scores (Fig. 2). Given that most genes are not miRNA targets and they should have 

smaller SVMicrO scores, we hypothesized that the distribution around smaller scores 

characterizes the scores derived from genes not targeted by any miRNA, which was further 

assumed to follow the i.i.d. Gamma distribution, or Si~ Gamma(α,β) whose parameters α 

and β were obtained from fitting the empirical scores Si (Supplemental Figure S1). 

Subsequently, due to (1), S is also Gamma-distributed under the null hypothesis as:

(2)

Therefore, the probability (p-value) of a sequence-pairing prediction score S can be 

evaluated analytically by (2). The same method was applied to BCMicrO and SiteTest by 

fitting the Gamma distributions directly to their scores. Once p-values of all predicted 

ceRNAs by sequence-pairing are calculated, the corresponding False Discovery Rates 

(FDRs) are computed using the Benjamini-Hochberg method17.

Co-expression based prediction of ceRNAs

Test for co-expression between GOI and predicted ceRNAs by sequence-
pairing—TraceRNA can also integrate a tissue or disease specific expression dataset to 

predict tissue or disease specific ceRNAs of the GOI and potentially further improve the 

prediction specificity (Fig. 1). Currently, expression datasets of glioblastoma multiforme 

(GBM)18 and Breast Cancer19 from TCGA (http://cancergenome.nih.gov/) are included. The 

users may contact the web-master to upload their own expression datasets if needed. 

Because higher GOI expression competitively attracts more miRNA binding and thus 

reduces the possibility of the same miRNA binding to ceRNAs, leading to higher ceRNA 

expression, the co-expression analysis first computes the Pearson correlation coefficients 

between GOI expression levels and predicted ceRNAs by sequence-pairing and then 

removes the mRNAs with negative correlation coefficients. The p-values were calculated by 

Fisher transformation20 and the resultant predictions have two scores: those by sequence-

pairing and those by co-expression test. We discuss their consolidation in the next section.

Score consolidation—To fuse these two scores, we utilized the Borda counting 

method21, which essentially sums ranks of scores. The resultant ceRNAs list can be 
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downloaded from the website as a common delimited text file that contains the gene 

symbols ordered based on the Borda scores from highest to lowest, their sequence-pairing 

scores, co-expression scores, and their rankings.

Generation of regulatory network based on a GOI—TraceRNA also aims to provide 

a tool that allows biologists to discover new regulatory networks that are potentially 

modulated by a set of GTmiRs and gain insight into this novel gene regulation-modulation 

mechanism. To generate a GOI-ceRNA regulatory network, the user can select top predicted 

ceRNAs by co-expression test for a given GOI and then treat each predicted ceRNA as a 

new GOI (or cGOI). TraceRNA performs new rounds of predictions for each cGOI 

iteratively using the same number of predicted miRNAs that target each cGOI as described 

before. The resulting list (containing GOI, ceRNAs, and scores for all cGOIs) is used to 

generate a regulation network using Cytoscape plug-in22 and it is saved as a file that can be 

downloaded for further analysis.

Biological Functional Enrichment—To examine the functional association of ceRNAs 

for a given GOI, we used DAVID23 (http://david.abcc.ncifcrf.gov/), which uses a modified 

Fisher’s exact test to evaluate the functional enrichment of 40 annotation categories, 

including GO terms, protein-protein interactions, disease associations, pathways, 

homologies and other gene sets in a given gene list. In this paper, the enrichment results for 

p-value < 0.01 are reported.

Final remarks on methods—Discussion of TraceRNA implementation can be found in 

Supplemental Material. Table 1 summarizes the algorithms and databases used in 

TraceRNA. MiRTarBase, SVMicrO, and BCMicrO were implemented as databases queried 

by SQL commands. SiteTest accesses SVMicrO database and calculates binding scores for 

each ceRNA. All the computations including statistical significance and Borda fusion were 

implemented by R (http://www.r-project.org/).

Results and Case Studies

TraceRNA integrates databases, sql queries, real-time predictions, and generation of ceRNA 

interaction network under a unified web interface, enabling ceRNA predictions and 

discovery of novel biological regulation. We illustrate its features and capabilities next.

TraceRNA web interface

The TraceRNA web interface (Fig. S1), starts with a query GOI by the user. Currently, 

TraceRNA only supports official gene symbols from the UCSC annotation. Given a GOI, a 

set of validated miRNAs that target the GOI derived from miRTarBase will be displayed 

under the checker box "Select validated miRNAs." Other miRNAs predicted by SVMicrO 

are listed under "Select Predicted miRNAs" in an increasing order of binding p-values of 

targeting GOI. The user can select from these two sources a set of miRNAs to form 

GTmiRs. A rule of thumb: one can require binding p-value<0.01, which is expected to 

produce less than 43 miRNAs for 50% of genes (Fig. S2), or miRNAs log2 expression level 

in GBM > 6 (Fig. S3).
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After selection, the user can choose from SVMicrO, BCMicrO, or SiteTest and further 

integrate gene expression data. To evaluate ceRNA-mediated gene-gene interactions, the 

user can perform ceRNA prediction iteratively by treating top K (20 by default) ceRNAs as 

GOI, (cGOI). The resulting interactions will be displayed within the web-interface and can 

be also saved in a file to be imported into Cytoscape.

GTmiR determination

Determination of GTmiRs that target the GOI is an important step that can significantly 

affect the final prediction. GTmiRs are ideally determined by experiments, but the complete 

set of experimentally validated GTmiRs are rarely available. ceRNA predictions based on a 

subset of validated GTmiRs will have low specificity and predicted GTmiRs are needed to 

increase the specificity. However, high false positives associated with current miRNA target 

prediction algorithms could introduce false positives in ceRNA predictions, thus potentially 

harming rather than improving the ceRNA predictions specificity. Furthermore, a different 

number of candidate GTmiRs can also affect the prediction performance, where a lower 

number will likely produce lower prediction specificity, whereas a number too high can, on 

the contrary, harm the prediction sensitivity. This observation was captured in Supplemental 

Fig. S4, in which we varied the number of miRNAs from 2 to 70. It clearly demonstrated the 

low specificity with a small number of miRNAs and a loss of sensitivity when too many 

miRNAs were selected. Therefore, care needs to be taken in choosing GTmiRs. To this end, 

TraceRNA provides flexibility to choose between validated and predicted GTmiRs or a 

combination of both.

As an example, Table 2 includes the top 20 experimentally validated (from miRTarBase) 

and predicted GTmiRs for PTEN, ESR1, and BRCA1, respectively. In all three cases, the 

numbers of experimentally validated GTmiRs are less than 20, and there are only 4 for 

BRCA1. Apparently, using the validated GTmiRs alone will result in low specificity in 

ceRNA predictions.

Significance of ceRNA Prediction Score

Fig. 2-(a) depicts the empirical distribution of the genome-wide SVMicrO scores for 772 

human miRNAs and a mixture of two distributions can be clearly observed, one clustered 

around smaller scores with a much larger mass and the other around larger scores. As 

discussed in the Methods section, the peak around smaller scores was considered to 

represent the null distribution and was fitted with a Gamma distribution, whose parameters 

are α=0.7234 and β=0.3594 with 95% confidence interval (0.7229, 0.7239) and (0.3591, 

0.3598) for α and β, respectively. Fig. 2-(b) shows the histogram and the fitted Gamma 

distribution (with a constant shift). Table S1 lists the fitted parameters of the Gamma 

distributions for SVMicrO, BCMicrO and SiteTest.

Case Study 1

We applied TraceRNA to predict the ceRNAs of PTEN. PTEN is a gene related to the 

development of many cancers, where it often functions as a key tumor suppressor, whose 

abundance determines the critical outcomes in tumorigenesis6. PTEN is also known to 

Flores et al. Page 6

Circ Cardiovasc Genet. Author manuscript; available in PMC 2015 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulate cell cycle, particularly in preventing cells from growing and dividing too rapidly. 

PTEN ceRNAs have also been predicted and reported6, 7.

To predict ceRNAs of PTEN with TraceRNA, we selected only the predicted miRNAs as 

GTmiRs (Table 2) and further chose SVMicrO to predict the ceRNAs by sequence-pairing. 

TraceRNA returned a total of 761 predicted ceRNAs by sequence-pairing for p-value < 0.05, 

and the 20 best predictions (in descending order of prediction score) together with p-values 

are provided in Table 3a. One important feature of TraceRNA is the possibility to increase 

the predictions specificity and predict context-specific ceRNAs by integrating an expression 

dataset of a disease condition. In this case, 400 GBM expression samples from TCGA 

project were included, based on which co-expression correlations against PTEN were 

evaluated and a total of 466 genes were obtained for Pearson correlation greater than zero as 

the GBM-specific ceRNAs of PTEN. Table 3b shows the results for the top 20 predicted 

ceRNAs based on Borda score. To examine their functions, pathway enrichment was 

performed using DAVID23 on these 466 ceRNAs, and the 3 enriched pathways are shown in 

Table 4 (under TraceRNA+GBM). Well known cancer related pathways including MAPK 

signaling and WNT signaling were significantly enriched, indicating an important 

involvement of PTEN ceRNAs in cancer. Another enriched pathway, TGF- signaling, is 

known to utilize intracellular SMADs to mediate growth suppression and PTEN down-

regulation simultaneously to induce growth proliferation. Here, the prediction result 

provided a third possible regulatory mechanism of TGF regulation by PTEN via its ceRNAs.

It would be also interesting to examine if these GBM specific ceRNAs by co-expression test 

also have higher specificity than those by sequence-pairing alone (Table 3a). However, 

direct comparison was infeasible due to a lack of true PTEN ceRNAs. Alternatively, 

pathway enrichment of the predictions result was conducted to make an indirect comparison. 

Intuitively, true ceRNAs should be functionally more significant than false positive 

predictions, and therefore, the predictions with higher specificity should be accompanied by 

a larger number of more enriched pathways. Pathway enrichment of sequence-based 

predictions is shown in Table 4 (under TraceRNA) and it is apparent that the GBM-specific 

ceRNAs by co-expression test are of higher functional enrichment (9 enriched functions vs 4 

weakly enriched functions in sequence-pairing predictions alone), thus a higher predictions 

specificity. Expression (GBM data) scatter-plots of PTEN vs. three predicted ceRNAs (QKI, 

NOVA1, and BCL11A) by sequence predictions (Table 3a) are shown in Fig. 3(a)–(c). The 

correlations are clearly very low, suggesting that they are not GBM-specific ceRNAs. As 

expected, they were not among the predicted GBM-specific ceRNAs (Table 3b). Expression 

scatter-plots of PTEN vs. the 3 predicted GBM-specific ceRNAs (GSPT1, PPP6C, and 

USP15; Table 3b) are shown in Fig. 3(d)–(f). Their correlations are much higher. Notice that 

USP15 was also ranked No. 6 in sequence-based predictions. As expected, its ranking 

improved after integrating gene expression data.

As a comparison, ceRNAs predicted by Competitive Endogenous mRNA DataBase 

(ceRDB)24 were also retrieved and top 20 are listed in Table 3c. We observed only 1 

overlaps between ceRDB and TraceRNA predictions in the top 20 predictions. To examine 

the functional significance of the ceRDB predictions, pathway enrichment was conducted 

(Table 4, column ceRDB). 9 pathways in TraceRNA+GBM are enriched compared to 5 
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pathways in ceRDB. For example, enrichment p-values of “Long-term Potentiation” that 

includes genes such as MAPK1, NRAS, RPS6KA3, KRAS, and CREBBP, are 8.8×10−8, 

0.00002 and 0.0084 for TraceRNA+GBM, TraceRNA sequence-pairing alone, and ceRDB, 

respectively.

Case Study 2

Breast cancer (BC) is a common disease in women and its incidence is still increasing25 

despite great improvement in therapies and earlier screening26. Hormone receptor (such as 

estrogen receptor, ER) ERpositive breast cancer and ERBB2-positive breast cancer (about 

50% co-expressed with ER+ tumors) currently account for about 75% and 15% of all breast 

cancer cases, respectively. The remaining 10% are so-called triple-negative breast cancers 

(TNBC), as defined by absent expression of ER, progesterone receptor (PR) and ERBB2 

proteins27, 28. In this study, our objective is to identify genes mediated by the estrogen 

receptor alpha, ESR1, through ceRNA regulatory network in breast cancer. To this end, we 

selected ESR1 as the GOI, and then predicted miRNAs as GTmiRs (Table 2, column 2). A 

total of 730 predicted ceRNAs by sequence-pairing were obtained by SVMicrO at p-

value<0.05. Top 20 predictions were provided in Table 5a. Predicted BC-specific ESR1 

ceRNAs by co-expression test were subsequently obtained by including TCGA gene 

expression of 590 breast cancer tumor samples (described in Materials and Methods). A 

total of 378 BC-specific ceRNAs were obtained and top 20 are shown in Table 5b.

To substantiate our finding, we examined the gene regulation networks modulated by ESR1 

ceRNAs in different breast cancer subtypes. As classified by earlier studies19, 4 major 

subtypes, determined by molecular signatures, are luminal A (ER+, PR+, Her2−), luminal B 

(ER+, PR+, Her2+), basal-like (mostly TNBC), and Her2 (amplified or over-expressed 

ERBB2). To construct subtype-specific ESR1 mediated ceRNA networks, we prepared 4 

TCGA expression datasets for the corresponding 4 subtypes, which included 93, 56, 228, 

and 123 samples for Basal-like, HER2, Luminal A and Luminal B, respectively. 

Considering that genes may express constantly within each subtype, we added all normal 

reference samples to each subtype to increase the dynamic range for correlation analysis. 

For each subtype, co-expression analysis was performed and integrated with sequence-

paring predictions (Table 5a). To generate the interaction network, the process was repeated 

on top 10 predicted ceRNAs. Figs. 4A–4D illustrate the resulting subtype-specific ceRNA 

networks. Among these networks, only 2 first layer ceRNAs (NOVA1 and CPEB3) are 

shared. NOVA1, neuro-oncological ventral antigen 1, has been implicated in breast cancer29 

and shown correlated in gene expression with ESR130, and CPEB3, a regulator of EGFR31, 

has been shown to be important in breast cancer32. While these two genes’ expression levels 

are mediated by ESR1 via GTmiRs in all four subtypes, other unique ceRNAs are also very 

important to each subtype. For example, ceRNA MAX in Basal-like regulation (Fig. 4C) is 

an important partner of proto-oncogene Myc in driving cell proliferation in variety of 

tumors. In the case of Her2 (Fig. 4D), ESR1 interacts with ANK2 and then PAX2, another 

gene that plays critical role in breast cancer33.
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Discussion

Here we presented TraceRNA, an easy to use web application for predictions of ceRNAs of 

a GOI and their interaction network. This web application is motivated by lack of ready-to-

use tools for ceRNA predictions and, to the best of our knowledge, TraceRNA is the only 

web application other than ceRDB that is specialized for ceRNA predictions. Compared 

with ceRDB, TraceRNA has richer functionality designed to meet different research needs. 

Because of the high false positive rate and low sensitivity of existing miRNA target 

prediction algorithms, TraceRNA provides the users with 3 different algorithms so that they 

can compare and/or complement results as a remedy to the potentially poor predictions from 

a single algorithm. TraceRNA also includes the validated targets from mirTarBase, which 

can be selected to potentially improve the specificity of ceRNA predictions. TraceRNA also 

enables predictions of context-specific ceRNAs by integrating co-expression with sequence-

level predictions. In the current version, two expression datasets from TCGA have been 

preloaded into the web database. All prediction results include p-values and FDR as 

statistical significance. What is also unique about TraceRNA is its ability to construct and 

plot ceRNA interaction networks. This network can reveal important interactions that might 

not be easily perceived with the list of predicted ceRNAs. The generated network plots can 

be downloaded and are ready to be used for scientific publication. In contrast, ceRDB 

includes only one algorithm for miRNA target predictions and is also devoid of the afore-

mentioned functions in TraceRNA.

Two case studies, prediction of PTEN ceRNAs and that of ESR1 ceRNAs, were presented to 

demonstrate the effectiveness of TraceRNA in making biological meaningful predictions. 

Because both genes are important cancer associated genes, their ceRNAs in the context of 

cancer were also predicted. In the case of PTEN, the GBM specific ceRNAs were shown to 

be functionally more enriched than the sequence-level predictions alone and important 

signaling pathways known to be related with PTEN regulation were also predicted among 

the most enriched pathways. When compared with ceRDB, TraceRNA predictions were 

functional much more enriched, indicative of higher predictions specificity. For ESR1, 

unique ceRNA interaction networks for four breast cancer subtypes were constructed. While 

ceRNAs common to four networks were observed, considerable differences exist among 

these four networks in ceRNAs and their interactions. Examples were provided to show 

possible links between the unique ceRNA interactions and the subtypes, which suggests that 

these differences in ceRNA interactions may very well be used to explain the genomics 

mechanisms underlying the subtypes. If proven true, the ceRNA networks could provide an 

alternative to the genomics markers for disease treatment. Taken together, TraceRNA has 

been shown as an effective tool for context-specific ceRNA predictions and discovery of 

ceRNA interactions modulated by GTmiRs.

Context-specific ceRNAs are closely dependent on miRNA expressions. A predicted ceRNA 

by sequence-pairing could not compete with GOI for binding of weakly expressed miRNAs. 

As a result, only highly expressed miRNAs should be considered in ceRNA predictions. 

Current version of TraceRNA does not yet consider miRNA expression for ceRNA 

predictions but displays expression values to help the user to select GTmiRs. On the other 

hand, mRNA expression profiles are still much more accessible than miRNA expression 
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data, ceRNA predictions based on mRNA expression will still be of higher interest in 

practice. However, as miRNA profiles become increasingly available, there will be more 

demand to include miRNA expression in ceRNA predictions to achieve more accurate 

context-specific predictions. Future work should allow us to incorporate this function in 

TraceRNA to enable predictions in a miRNA expression dependent fashion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

TraceRNA is freely accessible at http://compgenomics.utsa.edu/cerna. As a web application, there is no 
requirement for the users to access the application other than internet connection and a browser.

Funding Sources: This work is supported in part by a National Science Foundation grant (CCF-0546345), a Qatar 
National Research Fund grant (09-874-3-235), and National Institute of Health grants (NIH-NCATS 
UL1TR000149 and U54 CA11300126, Integrative Cancer Biology Program)..

References

1. Bartel DP. Micrornas: Genomics, biogenesis, mechanism, and function. Cell. 2004; 116:281–297. 
[PubMed: 14744438] 

2. Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, et al. A synonymous 
variant in irgm alters a binding site for mir-196 and causes deregulation of irgm-dependent 
xenophagy in crohn's disease. Nat Genet. 2011; 43:242–245. [PubMed: 21278745] 

3. Kozomara A, Griffiths-Jones S. Mirbase: Integrating microrna annotation and deep-sequencing data. 
Nucleic Acids Res. 2011; 39:D152–D157. [PubMed: 21037258] 

4. Medina PP, Slack FJ. Micrornas and cancer: An overview. Cell Cycle. 2008; 7:2485–2492. 
[PubMed: 18719380] 

5. Yue D, Meng J, Lu M, Chen P, Guo M, Huang Y. Understanding microrna regulation: A 
computational perspective. IEEE Signal Process Magazine. 2012; 29:77–88.

6. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A cerna hypothesis: The rosetta stone of a 
hidden rna language? Cell. 2011; 146:353–358. [PubMed: 21802130] 

7. Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Califano A, et al. An extensive microrna-
mediated network of rna-rna interactions regulates established oncogenic pathways in glioblastoma. 
Cell. 2011; 147:370–381. [PubMed: 22000015] 

8. Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, et al. Mirtarbase: A database 
curates experimentally validated microrna-target interactions. Nucleic Acids Res. 2011; 39:D163–
D169. [PubMed: 21071411] 

9. Liu H, Yue D, Chen Y, Gao SJ, Huang Y. Improving performance of mammalian microrna target 
prediction. BMC Bioinformatics. 2010; 11:476. [PubMed: 20860840] 

10. Yue D, Guo M, Chen Y, Huang Y. A bayesian decision fusion approach for microrna target 
prediction. BMC Genomics. 2012; 13(Suppl 8):S13. [PubMed: 23282032] 

11. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. Microrna targeting 
specificity in mammals: Determinants beyond seed pairing. Mol Cell. 2007; 27:91–105. [PubMed: 
17612493] 

12. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microrna.Org resource: Targets and 
expression. Nucleic Acids Res. 2008; 36:D149–D153. [PubMed: 18158296] 

13. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microrna target 
predictions. Nat Genet. 2005; 37:495–500. [PubMed: 15806104] 

14. Wang X. Mirdb: A microrna target prediction and functional annotation database with a wiki 
interface. RNA. 2008; 14:1012–1017. [PubMed: 18426918] 

Flores et al. Page 10

Circ Cardiovasc Genet. Author manuscript; available in PMC 2015 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://compgenomics.utsa.edu/cerna


15. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microrna 
target recognition. Nat Genet. 2007; 39:1278–1284. [PubMed: 17893677] 

16. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, et al. Diana-
microt web server: Elucidating microrna functions through target prediction. Nucleic Acids Res. 
2009; 37:W273–W276. [PubMed: 19406924] 

17. Y BYaH. Controlling the false discovery rate: A practical and powerful approach to multiple 
testing. Journal of the Royal Statistical Society. 1995; 57

18. Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human 
glioblastoma genes and core pathways. Nature. 2008; 455:1061–1068. [PubMed: 18772890] 

19. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 
2012; 490:61–70. [PubMed: 23000897] 

20. Hotelling H. New light on the correlation coefficient and its transforms. J Roy Stat Soc B. 1953; 
15:193–232.

21. Montague, JAAaM. Models for metasearch. ACM SIGIR Special Interest Group on Information 
Retrieval 2001 New Orleans, LA, 2001. 2001

22. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software 
environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 
13:2498–2504. [PubMed: 14597658] 

23. Huang da W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The david gene 
functional classification tool: A novel biological module-centric algorithm to functionally analyze 
large gene lists. Genome Biol. 2007; 8:R183. [PubMed: 17784955] 

24. Sarver AL, Subramanian S. Competing endogenous rna database. Bioinformation. 2012; 8:731–
733. [PubMed: 23055620] 

25. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence 
across five continents: Defining priorities to reduce cancer disparities in different geographic 
regions of the world. J Clin Oncol. 2006; 24:2137–2150. [PubMed: 16682732] 

26. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, et al. Cancer I, Surveillance 
Modeling Network C. Effect of screening and adjuvant therapy on mortality from breast cancer. N 
Engl J Med. 2005; 353:1784–1792. [PubMed: 16251534] 

27. O'Brien KM, Cole SR, Tse CK, Perou CM, Carey LA, Foulkes WD, et al. Intrinsic breast tumor 
subtypes, race, and long-term survival in the carolina breast cancer study. Clin Cancer Res. 2010; 
16:6100–6110. [PubMed: 21169259] 

28. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race, breast cancer 
subtypes, and survival in the carolina breast cancer study. JAMA. 2006; 295:2492–2502. 
[PubMed: 16757721] 

29. Buckanovich RJ, Darnell RB. The neuronal rna binding protein nova-1 recognizes specific rna 
targets in vitro and in vivo. Mol Cell Biol. 1997; 17:3194–3201. [PubMed: 9154818] 

30. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, et al. X chromosomal 
abnormalities in basal-like human breast cancer. Cancer Cell. 2006; 9:121–132. [PubMed: 
16473279] 

31. Peng SC, Lai YT, Huang HY, Huang HD, Huang YS. A novel role of cpeb3 in regulating egfr 
gene transcription via association with stat5b in neurons. Nucleic Acids Res. 2010; 38:7446–7457. 
[PubMed: 20639532] 

32. Pitteri SJ, Amon LM, Busald Buson T, Zhang Y, Johnson MM, Chin A, et al. Detection of elevated 
plasma levels of epidermal growth factor receptor before breast cancer diagnosis among hormone 
therapy users. Cancer Res. 2010; 70:8598–8606. [PubMed: 20959476] 

33. Harari D, Yarden Y. Molecular mechanisms underlying erbb2/her2 action in breast cancer. 
Oncogene. 2000; 19:6102–6114. [PubMed: 11156523] 

Flores et al. Page 11

Circ Cardiovasc Genet. Author manuscript; available in PMC 2015 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
TraceRNA Pipeline. The user initiates TraceRNA predictions with a gene of interest (GOI). 

Experimentally validated miRNAs and/or predicted miRNAs that target this GOI can be 

selected as GTmiRs. These GTmiRs are then fed to one of the three sequence-level target 

prediction algorithms (SVMicrO, SiteTest or BCmicrO) to generate a list of predicted 

ceRNAs by sequence-pairing together with the p-values and FDRs (Section 1). In addition, 

the user can select one of the provided expression sets (GMB and Breast Cancer datasets) to 

evaluate the expression correlation between the predicted ceRNAs by sequence-pairing and 
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the GOI under the specific tissue/tumor condition and obtain predicted ceRNAs by co-

expression test. Multiple prediction scores are consolidated with Borda method (Section 2). 

To generate a ceRNA network, top 20 ceRNAs will be selected as a set of the new GOIs, or 

cGOIs, each then subject to a round of new predictions to obtain their corresponding 

ceRNAs or cGOI-ceRNAs pairs. All resulting GOI-ceRNAs and cGOI-ceRNAs pairs with 

their scores are used to generate a ceRNA mediated regulatory network (Section 3).
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Figure 2. 
Illustration of p-value calculation for ceRNA prediction scores. (a) Histogram of SVMicrO 

scores for genome-wide targets of 500 miRNAs. (b) Zoom-in view of the histogram in (a) 

and the fitted (shifted) Gamma distribution (solid line). The parameters of the fitted Gamma 

distribution are α=0.7234 and β=0.3594.
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Figure 3. 
Expression scatter plots of PTEN vs. top predicted ceRNAs in GBM. (a)–(c) The three genes 

were top ranked ceRNAs predicted by sequence-pairing listed in Table 3a. However, their 

gene expression correlations to GOI (PTEN) are low and insignificant. Consequently, they 

were not among the top ranked ceRNAs after considering co-expression with PTEN (see 

Table 3b). (d)–(e) Three top ranked GBM-specific ceRNAs predicted by sequence-pairing 

and co-expression test (Table 3b). Clearly, their higher correlation coefficients enhance their 

prediction p-values.
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Figure 4. 
ESR1 ceRNA interactions networks for four breast cancer subtypes. Each network consists 

of three layers. The top layer includes the GOI (the largest node), the second layer includes 

10 ceRNAs (medium size nodes) predicted in the first iteration, and the third layer includes 

predictions (smallest nodes) from the second iterations.
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Table 1

Summary of TraceRNA Algorithms

Algorithm or Database Output Function of Algorithm

miRTarBase Experimentally verified miRNA:target interactions Identify validated miRNAs

SVMicrO Scores of miRNA-gene binding prediction by using a large 
number of binding site and 3’UTR features

Predict miRNAs binding

BCMicrO Scores of miRNAs-genes binding predictions by fusion of 6 
algorithms

SiteTest Scores of miRNAs-genes binding predictions using 3’UTR 
features

ceRNA-SVMicrO
ceRNA-BCMicrO
ceRNA-SiteTest

Scores for predicted ceRNAs by sequence-pairing Predict ceRNAs by sequence-pairing

Expression Correlation Pearson correlation of GOI and predicted ceRNAs by 
sequence-pairing

Calculate correlation between predicted 
ceRNAs by sequence-pairing

SeqExp Fusion (Borda merging 
method)

Scores from fusing sequence-level predictions and 
expression correlation

Fuse sequence-level predictions and co-
expression

ceRNA-Net List of gene pairs (nodes) and scores of their directed 
interactions

Discover regulatory networks
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Table 4

Enriched pathways of the predicted PTENceRNAs

KEGG Pathways TraceRNA TraceRNA
+ GBM

ceRDB

Long-term potentiation 0.00002 8.8×10−8 0.00844

Oocyte meiosis 0.00066 1.9×10−6

MAPK signaling pathway 0.00239 0.00096

Wnt signaling pathway 0.00496 0.00005

Neurotrophin signaling pathway 0.00019

Axon guidance 0.00460 0.00998

Insulin signaling pathway 0.00073

TGF-beta signaling pathway 0.00036 0.00543

ErbB signaling pathway 0.00110

Endocytosis 0.00210

Ubiquitin mediated proteolysis 0.00180

Focal adhesion 0.00074

Melanogenesis 0.00390

The table includes the top enriched (p-values <0.01) pathways for three ceRNA prediction results. Enrichment analysis was performed by DAVID 
with entire human genome as the background gene set.
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