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Abstract
In simple organisms like E.coli, the metabolic response to an external perturbation passes

through a transient phase in which the activation of a number of latent pathways can guar-

antee survival at the expenses of growth. Growth is gradually recovered as the organism

adapts to the new condition. This adaptation can be modeled as a process of repeated met-

abolic adjustments obtained through the resilencings of the non-essential metabolic reac-

tions, using growth rate as selection probability for the phenotypes obtained. The resulting

metabolic adaptation process tends naturally to steer the metabolic fluxes towards high

growth phenotypes. Quite remarkably, when applied to the central carbon metabolism of E.
coli, it follows that nearly all flux distributions converge to the flux vector representing opti-

mal growth, i.e., the solution of the biomass optimization problem turns out to be the domi-

nant attractor of the metabolic adaptation process.

Author Summary

In modeling metabolic networks, concepts like biomass optimization are often used to
determine flux distributions of simple organisms such as E.coli. Although they often give
good results in practice, they normally rely on heuristic considerations like “evolution has
tuned metabolic fluxes to optimize growth, hence optimizing growth gives reasonable
fluxes”. The main result of this paper is to show that metabolic adaptation naturally leads
to optimal growth, in the sense that the flux distribution associated to optimal growth is
the dominant attractor of the fitness landscape of the metabolic adaptation process.

Introduction
Constraint-based computational methods such as Flux Balance Analysis (FBA) are nowadays
widely used when investigating metabolism of bacteria and other simple unicellular organisms
[1, 2]. Within the framework of FBA, a commonly accepted hypothesis is that biomass produc-
tion has a special role: evolution has shaped cellular metabolism of these organisms so as to
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optimize growth, hence if growth is used as objective function of an optimization problem, the
vector of fluxes found in correspondence of the optimum represents a plausible flux distribu-
tion for the organism. Although such a criterion is phenomenological, it is reasonable, and
indeed the fluxes constructed by FBA methods describe well the empirical fluxes observed in
many experimental situations, dealing with wild type organisms [3], knockout mutants [4],
engineered strains, screenings of drugs [5], nutrient shifts [6] or stress responses.

For bacteria like E.coli, the short-term metabolic response to genetic and environmental
perturbations is characterized by a growth arrest and by the activation of a number of latent
pathways, a strategy which can favor the survival of the organism at the expenses of efficient
biomass production [4, 6, 7]. This activation is however only transient, and most latent reac-
tions become resilenced as the microorganism adapts to the new condition [7–9]. Although
experimental data describing this adaptation process at metabolic, genomic, gene expression
and proteomic level are starting to appear [6–12], it is still unclear how this dynamical recovery
is implemented by the organism. From the experimental data one can deduce for instance that
the FBA criterion is inadequate to describe the transient response, but that it can still be used
to characterize the end-point of the metabolic adaptation [4, 6]. The two main criteria pro-
posed in the literature to describe the metabolic response to a perturbation are MOMA (Mini-
mization Of Metabolic Adjustment [13]) and ROOM (Regulatory On/Off Minimization [14]).
Both capture the idea that metabolism tends to minimize the adjustment with respect to the
pre-perturbation fluxes at the expenses of growth, and for both criteria this results in a number
of non-essential reactions being activated, which is coherent with the aforementioned experi-
mental evidence [7, 8]. However, these methods can provide only a static snapshot of the early
adjustments that follow a perturbation. Attempts to model the dynamical changes happening
during adaptation have been made for example using kinetic models [15] or combining pseudo
steady-states of FBA with kinetic models as in dynamical FBA [16], see [17] for an overview.
Other types of proposals include the incorporation of extra time-dependent constraints in the
model, representing for instance molecular crowding [18] or other growth-limiting factors
[19]. An alternative to adding kinetic parameters or constraints is to combine multiple datasets,
such as gene expression [10, 20] and/or proteomic [12], see [21, 22] for reviews. The transcrip-
tional or translational information obtained in this way can be used to tune the constraints of
an FBA model, leading to improved matches with empirically observed fluxes [12, 20]. None of
these methods is however able to provide a systematic interpretation of how and why the
organism accomplishes the adaptation, let alone to propose a mathematical principle combin-
ing adaptation and FBA.

A possible way to obtain a dynamical description of metabolic adaptation is proposed in
[23]. Starting from a non-adapted progenitor metabolism, a population of phenotypes is
obtained through the resilencing of a single reaction (i.e., letting the corresponding flux become
negligible). If the growth rate of the different phenotypes is taken as measure of fitness, then a
selection biased towards the fittest phenotypes favors the recovery of growth, see Fig 1. If the
procedure is iterated, then a Markov chain is obtained. Since at each step of the chain the
metabolism of the selected phenotype differs from its predecessor only for a single silenced
reaction, it can be seen as a short-term adjustment and computed through a MOMA. For the
central carbon metabolism, the resulting process of iterated metabolic adjustments leads rap-
idly to metabolic adaptation of the microorganism. It is shown in [24] that this model can be
used to describe a series of experimental results dealing with adaptation to single carbon
sources of various E.coli knockout strains [6]. In particular, it allows to achieve a good agree-
ment with both the experimental growth rates and measured flux data reported in [6, 8].

The aim of this paper is to take the approach one step further, by showing that for the core
metabolism of E.coli, the Markov chains of recursive resilencings constructed in this way
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exhibit a single dominant end-point flux vector, and that this vector corresponds to one of the
FBA optima, namely the parsimonious enzyme usage FBA optimum (pFBA, minimizing the
number of fluxes [12]).

To do so, we compute a large number of trajectories for our Markov chains from random
initial conditions, and show that they tend to become absorbed into the pFBA flux distribution
or at least to become highly correlated with it. More specifically, the chain of pseudo steady-
state fluxes computed through the adjustments that follow the resilencings steers the vast
majority of all admissible flux vectors towards alignment with the pFBA vector, regardless of
the norm (and growth rate) achieved by the flux vectors at the end-point of the process.

In dynamical systems terms, we can say that the pFBA flux vector constitutes the dominant
attractor of the fitness landscape associated to the process of metabolic adaptation. The fact
that the single dominant peak of this landscape corresponds to the pFBA flux distribution
sheds a novel perspective on FBA optimization, and may contribute to turning this phenome-
nological argument into a rigorous mathematical model.

Methods

FBA and pFBA
In FBA [2], the polytope of admissible steady state metabolic fluxes is represented by

G ¼ fv : Sv ¼ 0; l⩽v⩽ug;

Fig 1. Metabolic adaptation: sketch of the process of resilencing and adjustment on the vector of fluxes. A: At step k, two possible resilencings are
the reactions vi and vj. Each choice gives a different reduction of the polytope Γk (resp. green and red) and a different MOMA projection of the current vector
of fluxes vk−1 to the new polytope. B: Consequently also the growth rate of the two phenotypes is different and this difference is amplified in the time interval
Δt. Putting together all possible choices at step k, one gets the fitness landscape induced by the resilecings. At the end of the time interval Δt, the fitness
landscape gives rise to selection probabilities which have the form of a Boltzmann distribution.

doi:10.1371/journal.pcbi.1004434.g001
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where v is the vector of fluxes, of lower and upper bounds l = [ℓ1 . . . ℓn] and u = [u1 . . . un],
and S is the stoichiometric matrix. The FBA optimal flux vector is given by

vFBA ¼ arg max
v2G

xTv; ð1Þ

where g = ξT v is the growth rate, i.e., the linear combination of fluxes that constitutes the bio-
mass reaction. When the optimum is degenerate, a secondary optimization criterion can be
used to discriminate among equivalent optimal solutions. For example, overall enzyme invest-
ment is minimized by the pFBA solution vpFBA, which corresponds to minimization of the sum
of the (absolute values of the) fluxes [12].

Adaptation as a Markov chain of repeated resilencing
Following [23], we assume that the adaptation dynamics form a stochastic process of recursive
resilencings described by the Markov chain Sk = {vk, Γk}k = 0,1,2,. . ., where v0 is a randomly cho-
sen initial condition in Γ0 = Γ. The stochastic process can be summarized as follows. At step k,
assume the population of bacteria has an homogeneous metabolism, i.e., all cells have the same
nk active reactions with the same fluxes vk−1 (this corresponds to a specific sampling of our
Markov chains). From vk−1, it is possible to obtain nk + 1 different phenotypes, corresponding
to the resilencing of one of the enzymes (nk possibilities) or to the current phenotype remaining
unchanged for another step. The nk possible silencings of a reaction yield the nk reduced poly-
topes Γk,i = Γk−1 \ {ℓi = ui = 0}, i = 1, . . ., nk. The corresponding fluxes vk,i are computed via a
MOMA projection on these reduced polytopes:

vk;i ¼ arg min
v2Gk;i

kv� vk�1k; i ¼ 1; . . . ; nk; k ¼ 1; 2; . . .

where k � k is the Euclidean norm, see Fig 1 for a sketch.
Each choice of vk,i leads to a possible growth rate: gk,i = ξT vk,i, i = 1, . . ., nk. Viable pheno-

types have gk,i > 0 while non-viable phenotypes (e.g. when an essential reaction is suppressed)
have gk,i = 0. In what follows these growth rates will be placed on the diagonal of a fitness
matrix

Gk ¼

gk;0

gk;1

. .
.

gk;nk

2
6666664

3
7777775

where gk,0 represents the current growth rate.

Selection probabilities as solutions of a replicator equation
To the nk + 1 possible choices gk,i, it is possible to associate selection probabilities through a
basic replicator equation which uses the gk,i as fitness function. Denote pk,i, i = 0, 1, . . ., nk, the
probabilities (or frequencies) associated to the gk,i. If Δt is the time duration of each step, then
the replicator equation is

_pk ¼ Gkpk � �ðpkÞpk t 2 ½0; Dt�; ð2Þ

Metabolic Adaptation Processes That Converge to Optimal Biomass

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004434 September 4, 2015 4 / 13



where

pk ¼

pk;0

pk;1

..

.

pk;nk

2
6666664

3
7777775

and �ðpkÞ ¼
Pnk

i¼0 gk;ipk;i is the average fitness. The explicit solution of Eq (2) can be expressed

as a Boltzmann distribution, see S1 Text for the details. In synthesis, in the two cases we can
distinguish (sketched in Fig. B of S1 Text) one gets for the selection probabilities:

1. uniform priors: at the begin of the time interval the selection probability is pk(0) = 1/(nk
+ 1), where 1 ¼ 1 . . . 1½ �T , i.e., all choices are equiprobable. In this case the Boltzmann dis-
tribution for the selection probabilities at the end of the time interval is

pkðDtÞ ¼
1

ZkðDtÞ
eGkDt1

where ZkðDtÞ¼
Pnk

i¼0
egk;iDt is a partition function.

2. non-uniform priors: at the begin of the time interval the selection frequencies are not uni-
form but are themselves expressible as a Boltzmann distribution

pkð0Þ ¼
1

ZkðbkÞ
eGkbk1

where βk has the interpretation of an inverse temperature. In this case, at the end of the time
interval we obtain

pkðDtÞ ¼
1

Zkðbk þ DtÞ e
GkðbkþDtÞ1:

A through derivation of these selection probabilities is available in the S1 Text.

Metabolic adaptation as a completely reducible Markov chain
In both cases described above pk(Δt) has the meaning of transition probability between the cur-
rent state Sk−1 = {vk−1, Γk−1} and the possible states achievable at the k-th step Sk,i = {vk,i, Γk,i},
i.e., Pk;i ¼ PðXk ¼ Sk;ijXk�1 ¼ Sk�1Þ, i = 0, 1, . . ., nk. Since the fluxes vk,i can take any value

between lower and upper bound, the corresponding transition matrix is infinite dimensional.
However, in order to understand the properties of the stochastic process we are considering, it
is useful to look at its projection over the subspace of active reactions (i.e., over the binary
equivalent of the polytope Γk). In terms of this projection, the possible states of the Markov
chain are the 2r possible combinations of the r reactions of the network, see Fig 2 for a toy
example with r = 4. Denote Z1, . . ., Z2r these discrete states and Pij = P(Xk = Zi j Xk−1 = Zj) the
corresponding transition probabilities. As in our model the resilencings are irreversible, P is tri-
angular, i.e., it is completely reducible, see Fig 2D. Since in reality P is the result of a projection,
it is P = P(v), i.e., the exact transition probabilities pk depend on the values of the fluxes and
hence on v0. However, even in the complete model the fully reducible structure is preserved. In
particular it follows that a certain number of states Zimust correspond to ergodic classes, i.e.,
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“absorbing” states in which the Markov chain stabilizes. Full reducibility implies that each
ergodic class is composed of a single state. Periodic chains of states are impossible.

Results
The metabolic adaptation process described in Methods and in Fig 1 is applied to the network
that describes the central carbon metabolism of E.coli [25]. In order to do this, a large number
of realizations of the Markov chain is produced. Even in a network of modest dimensions like
that of E.coli central metabolism (r = 95 reactions, see S1 Text for details), the number of possi-
ble discrete states Z of the Markov chain is enormous (295 * 1028), hence numerical computa-
tions are necessarily limited to a fraction of all possible trajectories. For this study, some 105

trajectories have been generated, starting from randomly chosen initial conditions in the poly-
tope of admissible fluxes Γ and using various forms for the priors.

Given the irreversibility of the resilencing, the number of steps required to reach an end-
point state can be computed from the trajectories. A trajectory is considered absorbed into an

Fig 2. Sketch of a resilencing Markov chain for a toy metabolic network of r = 4 reactions. For the metabolic network in A, the 24 states of the projected
Markov chain (i.e., the 16 possible on/off combinations of the 4 reactions) are shown in B. C: The fitness landscape in terms of growth rate (which depends
also on the flux vector v) and two trajectories represented through their state transitions. D: The transition matrix of the projected Markov chain with its
triangular structure and the ergodic classes, corresponding to the rows having a 1 on the diagonal and 0 elsewhere. The 0-growth ergodic classes have
probability* 0 of absorbing trajectories.

doi:10.1371/journal.pcbi.1004434.g002

Metabolic Adaptation Processes That Converge to Optimal Biomass

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004434 September 4, 2015 6 / 13



end-point state (i.e., it has reached a local maximum of the fitness landscape) when no further
silencing happens for 5 consecutive steps. With this stopping condition, the expected time
until absorption of our trajectories is 24.6 ± 4.1 steps. Except for pathological initial conditions
(those missing some essential reactions), all trajectories stabilize to flux vectors of positive
growth. Nearly 20% of all trajectories reach the maximal growth computed by the FBA crite-
rion, gFBA, and for nearly 50% of all trajectories the growth at the end-point is� 0.85 gFBA, see
Fig 3. The remaining 50% of trajectories are more or less uniformly distributed in the interval
0.2< g/gFBA < 0.85. Much more remarkable is the correlation between the end-point flux dis-
tribution v and the flux distribution given by the pFBA criterion vpFBA: the mean of the correla-
tion is 0.96 and the median is 0.98, with 88% of all trajectories achieving a correlation of at least
0.9, see Fig 3. The meaning of this result is that nearly all initial conditions in Γ tend to become
aligned with the flux distribution vpFBA, regardless of the biomass they can produce, see Fig. A
of S1 Text for a sketch.

The time evolution of the 3D histogram of Fig 3 during adaptation is shown in Fig. C of S1
Text. It can be seen that while randomly chosen initial conditions in Γ usually give a zero-
growth, already with the first silencings growth starts to recover, and gradually improves in the
first 10 steps of the Markov chain. During the transient, no significant intermediate peak is visi-
ble, meaning that many different routes are explored by the trajectories. After* 10 steps, the
high correlation / high growth peak starts to appear, and rapidly becomes dominant.

Examples of the resulting trajectories are shown in Figs. D-F of S1 Text. For instance, the
first row of Fig. D of S1 Text shows a set of trajectories originating from the same random ini-
tial condition, all converging towards vpFBA, although through slightly different paths. None of
the trajectories of the second row of Fig. D of S1 Text instead achieves a growth rate higher
than 0.75gFBA. However, all of the end-points flux vectors become aligned with vpFBA (correla-
tion higher than 0.97). In this case the two values of g reached by the trajectories correspond to
two different ergodic states, as can be seen by the grouping of the number of active reactions
eventually reached. It should be observed how for this phenotype of non-optimal growth the
number of reactions is much less than for vpFBA. This is indeed a constant pattern in our meta-
bolic adaptation strategy. As can be seen in Fig. G of S1 Text, at the end-point the number R of
active reactions of v and g are positively correlated: for strains that have sub-optimal growth
more resilencings are possible i.e., more directions with slow but positive Δg exist and are
explored. In fact, Fig. G of S1 Text shows that indeed the length L of a trajectory is inversely
correlated with the growth g of v.

Other than the peak at high correlation / high growth, Fig 3 does not show any other suffi-
ciently significant peak (and nor does Fig. C of S1 Text). It is however worthwhile observing
that a small fraction of trajectories is steered towards flux distributions of maximal growth dif-
ferent from vpFBA, i.e., to alternative FBA optima. An example of such trajectory is shown in
Fig. E of S1 Text (bottom row): while most of the trajectories converge to vpFBA, a few do not
(one is shown in green), and stabilize in an alternative FBA flux vector of correlation 0.75 with
vpFBA. Cases like this lead to a correlation corr(vpFBA, vk) which decreases when vk falls into the
basin of attraction of a local maximum other than vpFBA. In the ensemble of the trajectories,
however, these situations are unfrequent: if we look at the average of all trajectories, corr(vpFBA,
vk) is always monotonically increasing, regardless of the final g achieved, see Fig 3 and Fig. H of
S1 Text. Similarly, also g is monotonically growing on the vast majority of the trajectories
(Fig. I of S1 Text).

Interestingly, if we start relaxing the assumption of irreversibility that characterizes a large
fraction of the metabolic reactions (49 of the 95 reaction are irreversible in our network), then
the convergence rate to vpFBA quickly decreases, in favor of other vFBA, see Figs. J-L of S1 Text.
In particular, when all reactions are considered as reversible, then the correlation between
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vpFBA and v at absorption is completely lost, although optimal biomass is still achieved by most
trajectories, see Fig. L of S1 Text.

It follows directly from the linearity of the expression for the biomass that when a trajectory
v becomes aligned with vpFBA, the growth rate it can produce depends on the norm of v. In fact,
Fig 4 shows that there is a sharp direct proportionality between kvk at ergodicity and g: when

Fig 3. Metabolic adaptation: growth rate and correlation. A: Mean ± std of the growth rate during adaptation computed over 105 sample trajectories (solid
lines, the dash line represents the median). The end-point of the trajectories is shown in the vertical histogram. The mean value at absorption is hgi

gFBA ¼ 0:76,
and the median 0.83. The histogram is significantly skewed (z-test, p-value 0.05): around 47% of the trajectories reach a growth rate of 0.85gpFBA. B:
Mean ± std of the correlation between vk and vpFBA during adaptation (solid lines). At absorption, the mean of the correlation is 0.96. As can be seen in the
histogram of the end-points, the distribution is highly skewed towards maximal correlation, with 68% of end-points above the mean. In fact the median is 0.98
(dashed line). C: The 3D histogram shows the correlation between vpFBA and the end-point of the trajectories v versus the growth rate g reached by v. Of the
trajectories reaching g/gFBA > 0.85, 99% have correlation� 0.85.

doi:10.1371/journal.pcbi.1004434.g003
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the recursive process of silencings and adjustments leads to a v which is smaller in norm than
vpFBA, also the corresponding g will be smaller than gFBA.

In order to understand when an initial condition can lead to an end-point v of norm compa-
rable to vpFBA, one can look at how many of the bounds that delimit the polytope of admissible
fluxes at step k, Γk, become active during the adaptation (i.e., a flux for a reaction becomes
equal to one of its lower or upper bounds). Fig. N of S1 Text shows that in the early part of the
adaptation, trajectories that do not achieve high growth (which, from Fig 4, correspond to tra-
jectories having kvk< kvpFBAk) tend to saturate less than those achieving higher growth.
Hence fluxes that tend to stay in the interior of the polytope rarely will reach a high kvk. From
Fig. O of S1 Text it can be observed that the difference in active bounds concerns mostly certain
specific pathways: in strains achieving high growth, uptake bounds on many exchange reac-
tions tend to become saturated in the early transient, and so do upper bounds of pyruvate
metabolism, signs of a more efficient use of the available resources. Coherently, Fig. P of S1 text
says that high growth is achieved when TCA cycle and pentose phosphate pathway remain
fully functional during adaptation. Notice that uptake bounds of gluconeogenic carbon sources
such as acetate are almost never saturated in the high growth trajectories.

Discussion
Mathematically, the dynamical model used in this paper to describe metabolic adaptation has
many aspects in common with standard evolutionary models based on natural selection [26].

Fig 4. Norm of v vs. growth rate. The histogram shows that the growth rate achieved by the adaptation process is proportional to the ratio jjvjj
jjvpFBA jj at the time

of absorption. “Short” v cannot give maximal growth.

doi:10.1371/journal.pcbi.1004434.g004
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The only extra assumption we require is that the “selection” that leads to adaptation occurs
only through the silencing of non-essential reactions. That a multitude of latent pathways
becomes active after an environmental perturbation is a known fact experimentally [7, 8]. That
during adaptation these low-yield pathways tend to become resilenced is also a commonly
accepted hypothesis [8, 27], supported for example by gene expression data. It has in fact been
observed that e.g. after a change of carbon source a major rearrangement occurs at gene expres-
sion level, with more than 103 genes differentially expressed [8]. A similar pattern is observed
also in response to a wide variety of stress factors [7]. After a strain has adapted to the new con-
dition, however, most differentially expressed genes have returned to their baseline level, and
so is probably the concentration of the corresponding enzymes.

As shown in [7], different stress responses elicit early metabolic responses that are less ste-
reotypical than those observed at gene expression level. When growth is recovered, however,
the metabolic profiles in the various cases show a high similarity. This picture is coherent with
the presence of an attractor in flux space, which can compensate for possibly widely different
flux distributions right after a perturbation. For metabolic responses such as the stress
responses of [7], it is unclear how to include the direct effect of the perturbation on the meta-
bolic fluxes of an FBA model. To cope with this fact, in our Markov chains the initial condition
for the flux vector, v0, is chosen randomly in the polytope Γ, which implies that at the begin of
the Markov chain most reactions are already active.

When instead the effect of a specific perturbation can be explicitly included in the FBA
model, then the Markov chains can be used to investigate also the early stages of the transient,
with the activation of the latent pathways. This is the point of view taken in [24], where the
experimental setting of [8] is considered. It is shown in [24] that the shift from rich medium to
single carbon sources for various E.colimutants can be reproduced closely by the metabolic
adaptation process described in the Methods section. Proceeding in this way corresponds to
fixing specific initial conditions on the Markov chains, and following the specific family of tra-
jectories that results from them (activatory phase included). It becomes then interesting to see
what happens when these “nominal” trajectories are compared to more general trajectories in
which the initial fluxes v0 are randomly chosen in Γ. For glucose as single carbon source, the
two types of trajectories are compared in Fig. M of S1 Text. As can be seen, for all 4 mutant
strains there is a high correlation between the end-points achieved by the flux vectors, meaning
that the specific pattern of transient activations of the latent pathways is not crucial to the
achievement of the adapted flux distribution, as both types of trajectories converge towards
vpFBA. Notice how the pgimutant has a secondary peak at low correlation: this corresponds to
a less frequent second phenotype of lower growth, described in [8]. Such a phenotype is some-
times achieved by both the nominal trajectories of [24] and the randomly initialized trajectories
computed in this paper.

A number of possible optimality criteria alternative to biomass optimization have been
investigated in the literature [2, 28–30]. Common choices are for example maximization of
yield (instead of biomass), maximization of ATP, minimization of overall intracellular flux
(i.e., minimum enzyme investment), minimization of redox potential, etc. In [29] a thorough
analysis of their coexistence/complementarity is carried out. By using reaction resilencing to
progressively adjust the metabolism to the new environment, two of the most accepted among
these criteria, biomass optimization and minimization of overall fluxes, are naturally
combined.

It is shown in [31] that in FBA irreversibility of a large fraction of metabolic reactions is a
key factor in achieving optimal flux distributions that are sparse, as our pFBA is. Indeed also
for our metabolic adaptation process irreversibility is key to convergence to vpFBA, as Figs. J-L
of S1 Text clearly show. It is worth observing that when we start relaxing the assumption of
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irreversibility, what is lost is not the achievement of optimal growth, but only convergence to
the sparsest degenerate solution of Eq (1) (i.e. vpFBA). On the contrary, in the case of all revers-
ible reactions the ratio g/gFBA achieved by the trajectories is even better than in Fig 3, with a
mean value for g of 0.91gFBA and a median value of 0.997gFBA, see Fig. L of S1 Text. Given that
the irreversibility of the constraints follows from thermodynamic considerations [32] which
are usually considered sufficiently reliable, our results provide novel evidence in favor of sparse
optimal biomass solutions such as pFBA, and a novel point of view on the coexistence of opti-
mality criteria such as biomass production and enzyme parsimony of the solution. They also
confirm that the repeated resilencing process described in this paper is indeed an effective strat-
egy for describing the recovery of growth that occurs in metabolic adaptation.

It is worth remarking that the method used in this paper is fundamentally different from a
dynamical FBA [16]. In the latter, in fact, growth is used as the objective function of an optimi-
zation problem, and the adjustments of the metabolic fluxes follow the gradient direction indi-
cated by the solution of such a problem. In our case, instead, the growth rate is only used to
shape the fitness landscape of a population of possible phenotypes (corresponding to the possi-
ble silencings that can occur), but the metabolic adjustments are always computed through
MOMA projections. In general, there is no a priori guarantee that a greedy fitness landscape
constructed in this way i) may be regular; ii) may achieve maximal growth, and iii) may lead to
flux distributions that resemble those of the pFBA. In our trajectories, in fact, what we observe
is that the fitness landscape is rugged, but the plethora of local maxima have all a very small
basin of attraction, as opposed to the global maximum which attracts around 50% of all trajec-
tories when we count based on growth. If instead we look at normalized flux distributions then

the basin of attraction of vpFBA

jjvpFBA jj grows to 90% of all v
jjvjj. This tells us that for what concerns cen-

tral metabolism, a procedure like the one described in this paper is substantially a monotonic
process of alignement of vk on vpFBA. The robustness of the convergence is also reflected in the
low sensitivity to the randomness of the Markov chains, see S1 Text and Fig. T of S1 Text for
more details.

In conclusion, one can say that simple flux reorganization rules based on local fitness are
sufficient to drive the cell toward a more efficient use of the metabolic resources. It is quite
remarkable that most of the trajectories end up in the pFBA optimum, without knowing it, and
without ever using growth rate to update metabolic fluxes (growth rate is used only for the
selection probabilities in the resilencings; metabolic fluxes are always updated via MOMA).
Clearly this fact provides a further evidence in favor of the FBA criterion, and one could even
speculate that it provides a more fundamental principle, from which FBA follows as a
corollary.

Supporting Information
S1 text. Methods. Details of the population dynamics model and of the selection probabilities.
Further considerations of the method and on its applicability.
(PDF)
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