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Abstract

Brain structural alterations and neuropsychiatric symptoms have been described repeatedly
in Fabry disease, yet cognitive deficits have been shown to be only mild. Here, we aimed to
investigate neuropsychiatric symptoms and brain structure longitudinally. We expected no
clinically relevant increase of neuropsychiatric symptoms in parallel to increased brain
structural alterations. We assessed 14 Fabry patients (46.1 £ 10.8 years) who had patrtici-
pated in our investigation eight years ago. Patients engaged in neuropsychiatric testing, as
well as structural magnetic resonance imaging and angiography to determine white matter
lesions, hippocampal volume, and the diameter of the larger intracranial arteries. While
Fabry patients did not differ on cognitive performance, they showed progressive and signifi-
cant hippocampal volume loss over the 8-year observation period. White matter lesions
were associated with older age and higher white matter lesion load at baseline, but did not
reach statistical significance when comparing baseline to follow-up. Likewise, intracranial
artery diameters did not increase significantly. None of the imaging parameters were asso-
ciated with the neuropsychiatric parameters. Depression frequency reduced from 50% at
baseline to 21% at follow-up, but it did not reach significance. This investigation demon-
strates clinical stability in cognitive function, while pronounced hippocampal atrophy is
apparent throughout the 8 years. Our middle-aged Fabry patients appeared to compensate
successfully for progressive hippocampal volume loss. The hippocampal volume decline
indicates brain regional neuronal involvement in Fabry disease.

Background

Fabry disease (FD) is a rare hereditary x-linked lysosomal storage disorder that results from a
deficient activity of the enzyme o-galactosidase A. Consequent lipid accumulation results in
multiorgan pathology that predominantly affects tissues of cardiac or renal systems, and the

PLOS ONE | DOI:10.1371/journal.pone.0137603 September 4, 2015

1/11


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0137603&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Neuropsychiatric and Brain Structural Changes in Fabry Disease

Competing Interests: The authors of this manuscript
have the following competing interests: Michael Beck
and Julia Hennermann received unrestricted grants,
honoraria and travel support from Shire, Genzyme
and Actelion. Andreas Fellgiebel received
unrestricted grants, honoraria, and travel support
from Shire and Genzyme. This does not alter the
authors' adherence to PLOS ONE policies on sharing
data and materials.

central nervous system (CNS) [1]. CNS involvement precipitates cerebral micro- and macro
angiopathy leading to stroke at an early age in FD with an estimated prevalence of 6.9% in men
and 4.3% in female FD patients [1, 2]. CNS alterations reported include increased occurrence
of white matter lesions (WML), dilation and tortuosity of the larger intracranial arteries i.e. [3,
4], signal enhancement of the lateral pulvinar on T1-weighted images, and hippocampal
atrophy [5]. In non-Fabry cohorts WMLs have frequently been related to processing speed,
memory, and executive functioning deficits [6]. Additionally, hippocampal volume (HV)
decline can cause severe memory deficits and is a well-known predictor for Alzheimer’s disease,
a disease known for its pronounced cognitive decline [7]. In FD cognitive deficits have been
described primarily in attention, executive functions, and psychomotor performance [8, 9].
However, studies are inconclusive on the degree of these deficits and whether its development
is a result of depressive symptoms or of neurological alterations. In non-FD subjects depression
might be associated with increased WML load in older subjects [10], but Schermuly and col-
leagues (2011) could not find this relationship in FD patients [9]. In the same investigation
they found that 60% of the 25 FD patients enrolled showed clinical depression compared to
healthy controls. In fact, depression is by far the most frequently reported psychiatric compli-
cation of FD ranging from a 15% to 62.5% prevalence and can significantly affect disease bur-
den. Nonetheless, it is unclear whether depression is a symptom occurring from FD specific
CNS manifestations, or a syndrome arising due to an incurable painful disease.

Existing studies have only focused on neuropsychiatric and neurological FD symptoms
cross-sectionally. However, longitudinal designs are necessary to determine the relationship
between neuropsychiatric and neurological symptoms in FD. In line with our baseline investi-
gation where FD patients and healthy controls only differed slightly in their cognitive perfor-
mance [9], we intend to demonstrate that clinically relevant cognitive performance decline is
also not indicated after eight years. Furthermore, we expect marked increases of WML-load
and significant hippocampal atrophy longitudinally. In an exploratory analysis we investigate
depressive symptom development, as well as changes in diameter of the larger intracranial
arteries over time.

Material and Methods
Patients

This longitudinal cohort study was approved by the local ethics committee of the Landesarzte-
kammer Rheinland-Pfalz in Mainz and all patients gave their written informed consent. Partic-
ipants were enrolled at the Children’s Hospital, University Medical Center of Mainz. Baseline
assessment was performed from 2003-2005 and follow-up assessment took place 8 years after
baseline assessment from 2011-2012 (Fig 1). At baseline, 25 clinically affected classical FD
patients (10M, age 37.9 years * 10.8) were included in the study [5]. Patients had on average
moderate disease severity [11], and standard recommended methods were used for enzymatic
and molecular diagnosis of FD [12]. At follow-up, 14 patients (4M, age 46.1 + 10.8 years) par-
ticipated from the initial study group (Table 1). All patients at follow-up were classical FD
patients with classic mutations; R301x, Q157x, A288D [13], R227x, W340x [14], c.945del21,
A350P, Q321x [15], IVS2+1G>A [16], R220x [17], and W236¢ [18]. At follow-up patients
had, on average, moderate disease severity. 3 cerebrovascular events had occurred (stroke/
transient ischemic attack), 8 patients had renal dysfunction (amount of patients with renal
insufficiency, proteinuria and/or dysfunctional creatinine clearance as defined by the glomeru-
lar filtration rate according to Cockroft-Gault), and 8 patients had cardiac dysfunction (cardio-
myopathy/arrhythmias). Cerebrovascular events and cardiac dysfunction did not increase
from baseline to follow-up and renal dysfunction as determined by the globular filtration rate
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Baseline (2003 - 2005)

Neuropsychiatric FD
testing, clinical testing, =75
MRI (MP-RAGE, PD/T2, -
FLAIR, ToF) [
8 years - Mortality (n =2)
(44% dropouts) - Other (n = 9): 1x Pregnant/ 2x

no contact information/ 6x loss
of interest

Follow-up (2011 - 2012)

Neuropsychiatric FD Dropouts
testing, clinical testing,

MRI (MP-RAGE, PD/T2, n=14 n=11
FLAIR, ToF)

Fig 1. Study design of the longitudinal assessment. FD = Fabry disease; MRI = Magnetic resonance
imaging.

doi:10.1371/journal.pone.0137603.g001

according to Cockroft-Gault improved from 71% to 57% of the patients [19], which can be
explained by the enzyme replacement therapy (ERT) that most of the patients received from
baseline to follow-up. Of 14 patients included in the follow-up assessment, 10 received ERT as
a treatment for the symptoms of FD throughout the whole assessment, 2 patients received anti-
depressants at baseline, and an additional 2 patients received antidepressants at follow-up.

Table 1. Group comparisons for the neuropsychiatric parameters between baseline and follow-up.

Baseline Follow-up
N . 14 (4M)
Age at baseline (years) 39 (19-55) 47 (27-64)
Education (years) 12.5(8-20) .
Dementia screening 30 (27-30) 29.5 (24-30)
Depression (#) 7 (50%) 3 (21.4%)
Mild 6 2
Moderate 1 1
Depression severity 7.5 (0-27) 3 (0-21)
Memory
Learning 62 (29-67) 58 (33-73)
Long term memory
- Free recall 13.5 (3—-15) 13.5 (6-15)
- Recognition 15 (12-15) 15 (13-15)
Visual memory
Visual learning 37 (33-41) 36 (18—41)
Long term visual memory 35 (36-41) 31.5 (16-40)
Psychomotor performance & attention 19.7 (13.6-54) 22.5 (12-37)
Executive functions 46.4 (34-89) 56 (34-99)

Values are medians and ranges; group comparisons are controlled for gender; Dementia screening = Mini
mental state examination; Depression = Hamilton depression rating scale-17; Memory = Auditory verbal
learning test (Learning = immediate recall; Long term memory = delayed recall and recognition memory);
Visual memory = Wechsler memory scale- Revised (Visual learning = immediate recall; Long term visual
memory = delayed recall); Psychomotor performance & attention = Trail making test-A; Executive
functions = Trail making test—B.

doi:10.1371/journal.pone.0137603.t001
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Reasons for patient dropout included: pregnancy, mortality, lack of contact information,
and loss of interest (Fig 1). Both deceased patients had moderate disease severity and were not
significantly more affected than other study patients [9]. Both deceased patients were middle-
aged men who were on ERT. They had moderate disease severity and were not significantly
more affected by cardiac dysfunction or cerebrovascular events than other study patients [9].
They were, however more affected by renal insufficiency than other dropouts or patients
included at follow-up. Overall, non-deceased dropouts were not more severely affected than
mean disease severity of patients included at follow-up. Non-deceased dropouts did not suffer
more frequently from cerebrovascular, renal, or cardiovascular dysfunction, and also did not
suffer more often from depression (after controlling for gender).

Neuropsychological and psychiatric assessment

To assess learning and long term (free recall and recognition) memory we used the German
version of the Rey Auditory Verbal Learning Task (AVLT [20]) in form of number of items
remembered or recognized correctly. The German version of the Wechsler Memory Scale
Revised (WMS-R) subtest visual reproduction was used to assess visual memory as raw scores
of items correctly remembered immediately after presentation of the items (visual learning)
and after a delay (long term visual memory [21]). The reaction times on the Trail Making Test
A and B (TMT-A and-B) were used as measures for attention, psychomotor performance, and
executive functions [22]. The mini mental state examination (MMSE) is a dementia screening
tool and was used to gauge cognitive function [23]. To assess depression severity the Hamilton
rating scale for depression was used (HAMD-17 [24]). Cut-offs for depression severity were
defined as generally recommended [25]. Normal ranges for neuropsychiatric testing differ
between age groups, gender, and/or education. Therefore normal ranges for AVLT, WMS-R
visual reproduction, and TMT as well as cut-off scores for MMSE and HAMD-17 are provided
in S1 Table.

MRI data acquisition

Baseline, as well as follow-up data was obtained from a 1.5 T Magnetom Sonata system (Sie-
mens, Erlangen, Germany). Standard 3D T1 Magnetization Prepared Rapid Gradient Echo
(MP-RAGE)-weighted sequence (TR/TE 1900ms/16ms, matrix 512 x 512) was used for hippo-
campal volume (HV) analysis, FLAIR-weighted (TR/TE 9000ms/108ms, slice thickness 6 mm,
matrix 512 x 448) sequence was performed for determination of white matter lesions (WMLs),
magnetic resonance angiography (MRA) time-of-flight (ToF)-sequence (TR/TE: 40ms/4.97ms,
slice thickness 0.8 mm, matrix 512 x 384) was assessed for means of measuring arterial diame-
ters, and PD/T2 sequence (TR/TE 1/TE 2: 4500ms/15ms/100ms, matrix 256 x 256) to exclude
further brain abnormalities.

Hippocampus volumetry

For hippocampus measurement Analyze™ Software (Version 8.1; Biomedical Imaging Soft-
ware System, Mayo Foundation for medical education and research, Rochester) was used.
Hippocampi were manually traced slice-by-slice on the default coronal view of MP-RAGE
sequences for each hemisphere according to the Pruessner standardized protocol [26]. An
experienced rater (I.L.) traced HV's for both baseline and follow-up. The rater was blinded to
the time of measurement by randomly assigning numbers to the baseline and follow-up scans,
which were analyzed consecutively (as in subsequently described WML- and artery determina-
tion). HV and WMLs (described below) were adjusted to total brain size by use of the well-
established automated Brain Extraction Tool (BET) on T2 sequences [27] implemented in FSL
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(FMRIB Software Library v5.0 [28]). HV and WMLs are presented as the relative ratio of man-
ually traced HVs, or WMLs divided by the brain volume in cm” as obtained from BET.

White matter lesions

WDMLs were determined on the transversal FLATR-sequences using the Analyze™ 8.1 Software.
WML boundaries were manually traced slice-by-slice by an experienced rater (A.B.) and were
defined as bright lesions (>2mm) of the white matter or basal ganglia. Slice volumes were
summed (ml) for every participant, and the relative ratio with BET was calculated (as previ-
ously described).

Artery diameter assessment

Diameters of the larger cerebral arteries were measured manually by an experienced rater (I.L)
on the sagittal ToF sequence using the Sectra Workstation IDS7 (Version 16.1.2.1103; Linké-
ping, Sweden). Diameters were measured perpendicular to the vessel [29]. The following arter-
ies were defined: For the basilar artery, the average of caudal (just above confluence of the
vertebrate arteries), medial (middle of basilar artery), and rostral (just before bifurcation)
diameter was calculated; the left and right posterior cerebral artery diameters were determined
in the middle of P2 segment; the left and right internal carotid artery diameters were measured
in C7 segment, 5 mm before bifurcation into middle and anterior cerebral artery; the left and
right middle cerebral artery diameters were measured in the middle of M1 segment; and finally,
the left and right anterior cerebral artery diameters in the middle of A1 segment. In some cases
arteries were not assessable as defined in Table 2.

Statistics
For statistical analysis we used IBM SPSS statistics 22.0 software (Ehningen, Germany). All sta-

tistical analyses were performed with gender as a covariate, except otherwise specified, as it has

Table 2. Descriptive data and group comparisons of the MR-imaging parameters between baseline
and follow-up.

Baseline Follow-up

Hippocampal volume R 1363 (1272-1785) 1264 (1108-1456)**

L 1376 (1255—-1731) 1252 (1086—1440)**
White matter lesions 125 (0-1636) 1026 (0—2781)
Cerebral arteries:
Basilar 3.1 (1.6-4.4) 3.1 (2.2-4.5)
Posterior R 2 (1.2-3.2)2 2(0.8-2.8)

L 2 (0.8-2.6)* 2.2 (0.8-2.6)
Carotid R 2.6 (1.6-3.6) 2.7 (2-3.6)

L 2.6 (1.8-3.4)2 2.9 (1.2-3.4)
Middle R 2.4 (1.2-2.8)* 2.4 (2.2.-2.8)

L 2.2 (1.6-2.8)* 2.2 (2-2.6)
Anterior R 1.8 (0.6-2.4)% 1.8 (1.2-2.6)%

L 1.8 (1-2.6)2 1.8 (1.2-2.4)

Values represent medians and ranges in mm?® (hippocampal volume and white matter lesions) and mm
diameter (arteries); group comparisons are controlled for gender; R = Right; L = Left.

**significant at a <.01 level.

an=12.

doi:10.1371/journal.pone.0137603.t002
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been found to have significant influence on FD development [3]. Analyses were done with the
14 participants that have both baseline and follow-up assessment. We performed repeated
measures analysis of covariance, Spearman’s rank correlation coefficient, and partial correla-
tion coefficients [3]. In an exploratory analysis we computed non-parametric Mann-Whitney-
U tests and robust regression analyses to control for outliers.

Results
Neuropsychiatric symptoms

Descriptive data and group comparisons of the neuropsychiatric parameters for baseline and
follow-up are described in Table 1. We did not find significant differences between baseline
and follow-up performance for any cognitive task, and we did not find differences between
baseline and follow-up on the depression scale (HAMD-17), after controlling for gender.
Although we did not find statistically significant differences between baseline and follow-up on
depression severity or frequency, clinically 50% of the 14 FD patients enrolled at both assess-
ments showed clinically relevant depressive symptoms at baseline (defined as HAMD-17 > 7);
only 21.4% of the FD patients still showed depressive symptoms at follow-up (Table 1). Of the
7 patients having depression at baseline 3 received antidepressants and had no symptoms of
depression at follow-up. Patients with or without depression, or with changes in depression
severity over time, did not differ in age. Depression neither correlated with neuropsychological
measures at baseline, nor at follow-up except with long term memory at follow-up, after con-
trolling for gender (r = .62, p = .024). Robust regression analyses with depression (at follow-up)
and gender as predictors and long term memory (at follow-up) as an outcome variable were
not significant.

Brain structural alterations

The following results have been controlled for gender, unless stated otherwise. Table 2 shows
descriptive data of the imaging parameters. There is a significant decline in HV from baseline
to follow up in both right and left HV (f(1,12) = 13, p = .004 and {(1,12) = 14.1, p = .003,
respectively; Fig 2A). Baseline and follow-up WMLs were significantly associated with older
age (baseline: r = .57, p =.043; follow-up: r = .612, p = .026). Also, baseline WMLs were highly
significantly correlated with follow-up WMLs (r = .82, p = .001). However, even though
WDMLs showed a significant difference between baseline and follow-up before controlling for
gender (t(13) = -2.8, p = .014, Fig 2B), it failed to reach significance after controlling for gender
(f(1,12) =3.1, p =.106). Right and left HV at baseline and follow-up were not associated with
age. Robust regression analysis with the larger intracranial arteries (difference between baseline
and follow-up) and gender as predictors and WML as outcome variables showed no signifi-
cance, except between left anterior cerebral artery and WMLs (t(9) = 3.1, p = .013). Robust
regression analyses with HV as outcome variables showed no significance. There was no signif-
icant interaction effect or correlation between increased WML load and HV atrophy from
baseline to follow-up. None of the cerebral artery diameters measured changed significantly
from baseline to follow-up. Controlling for cerebrovascular events did not change the results.

Association between brain structural, neuropsychiatric, and descriptive
parameters
Spearman correlations showed significant associations between HV (left and right) difference

(baseline minus follow-up) and difference of recognition, as measured with the memory
test AVLT (right: r = .595, p = .025; left: r = .683, p = .007). Furthermore, WML difference
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Fig 2. Hippocampal volume and white matter lesions at baseline and follow-up. 2a) Hippocampal
volume 95% confidence intervals (Cl): Baseline (right): 1349—1512 mm?, follow-up (right): 1227-1331 mm?,;
baseline (left): 1358—1514 mm?3, follow-up (left): 1223-1335 mm?; 2b) White matter lesions 95% Cl: Baseline
79-566 mm?, follow-up 322—1396 mm?.

doi:10.1371/journal.pone.0137603.g002

correlates with difference in performance on TMT-B (r = .534, p = .049). Partial correlations
after controlling for gender showed no significant correlations, but showed tendencies (r >. 4)
towards the previously-described associations before controlling for gender. Brain structural
parameters showed no association with depression severity or frequency, with occurrence of
pain as measured with the brief pain inventory, with renal involvement (creatinine clearance),
with cerebrovascular events or cardiovascular disease (cardiomyopathy and/or arrhythmias)
[30].

Discussion

Our analyses revealed no differences in cognitive performance between baseline and follow-up.
In a previous publication, there were no clinically relevant cognitive deficits apparent at base-
line, compared to controls [9]. Slight impairment in attention and executive functions were evi-
dent, but after correction for depression severity only mild attentional deficits were significant.
Furthermore Bolsover and colleagues (2014) concluded in a recent review that in FD, only
mild cognitive deficits were notable [8]. Therefore, cognitive decline could be surprisingly lim-
ited in middle aged FD patients. Interestingly, despite the limited cognitive decline, we found
highly significant hippocampal atrophy of 11% over the 8 years of our longitudinal assessment;
this is consistent with our previous findings [5] and with post-mortem case-studies in FD, (i.e.
[31, 32]. In healthy adults HV development has been described as an inverted-U-relationship,
first increasing in young adulthood, plateauing in middle age, and with accelerated HV atrophy
from 60 years onwards with an atrophy rate of around 1% per year [7, 33]. Consequently hip-
pocampal atrophy as seen in our investigation (11%) typically would not be expected in middle
aged adults between 27 to 64 years of age (median 47 years) at follow-up. Remarkably, 11%
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atrophy even exceeds normal atrophy rates of older individuals of 60 years and older. Autopsy
studies in FD patients have repeatedly shown severe globotriosylceramide (Gb3) accumulation
in the neurons and ganglion cells of the hippocampus, which could ultimately lead to func-
tional deterioration of the cells, i.e.[31, 34], and might even lead to compromised energy
metabolism, oxidative stress and cellular death. Gb3 deposition in FD is the result of the inher-
ited reduction of a-Galactosidase and causes clinical manifestation in early childhood, with a
slight delay in girls [2]. Early accumulation of Gb3 in the lysosomes of cells and subsequent cel-
lular death could thus be responsible for such early hippocampal atrophy as observed in our
study. Neuropathic pain and major depression have also been shown to be strongly related to
reduced HV in otherwise healthy subjects [35]. Given that pain and depression are frequent
symptoms in FD, the impact of both on HV decline seems expected. However, neither pain,
nor depression was associated with hippocampal decline in our cohort. Hippocampal atrophy
in Alzheimer’s disease, a disease well-known for its pronounced HV decline, is associated with
marked cognitive decline, especially in episodic memory. Even in healthy aging, normal
degrees of cognitive decline in episodic memory, attention, executive functions, and psychomo-
tor performance, as well as the involvement of differential brain areas is expected [36]. How-
ever, HV decline in our investigation was not associated with any neuropsychiatric parameters.
Other FD relevant factors that have previously been shown to be associated with hippocampal
atrophy such as cardiovascular disease or the occurrence of cerebrovascular events were also
not associated with HV decline [37]. Therefore, we conclude that HV decline in FD might not
be age-related and might be functionally compensated in our FD cohort. HV decline in middle
aged FD patients might predict consecutive cognitive decline. Literature further postulates

that hippocampal atrophy might be a result of increased WML load in FD [38]. However, we
did not find associations of HV and WML-load in our study. We demonstrated that WML
increases were associated with older age and higher WML-load at baseline, but this did not
reach statistical significance when baseline was compared to follow-up. An increase of WML in
older age has been hypothesized to be involved in developing late-life depression, but a recent
review and meta-analysis found that the effect is most likely small [10]. Depression in our mid-
dle aged FD cohort was not associated with cognitive performance, or with any brain structural
parameters measured. Of note, even though not statistically significant: 50% of the FD patients
showed clinically relevant depressive symptoms at baseline, but only 21% had depression at fol-
low-up. This finding can be explained by the fact that depressive patients received symptomatic
antidepressive treatment after enrollment. Depressive symptoms naturally fluctuate over the
course of time, which might have caused the non-significant difference between baseline and
follow-up. Nonetheless, future studies should address depression in Fabry disease, as it can be a
major burden on patients and their families, as well as the patient’s suffering due to a painful
disease, which ultimately can significantly affect quality of life [39]. Placebo controlled studies
are needed to address antidepressant treatment options in patients with Fabry disease.

Recent literature has shown that dolichoectasia of the larger intracranial arteries, especially
the basilar artery, can be the earliest marker of cerebrovascular involvement and might there-
fore be a potential screening tool in FD [3, 4]. However, in a secondary analysis we found that
although baseline arteries were dilated in our FD patient cohort compared to controls [3], lon-
gitudinal results show no statistically significant increase in arterial diameters over 8 years.
Still, our results show that greater diameters of the anterior cerebral artery significantly predicts
WML load. Existing literature is still unclear about whether cerebrovascular disease predicts
white matter disease, or if both conditions are a comorbid presentation in non-Fabry cohorts
[40]. Furthermore, in Fabry-studies results have shown no or incomplete associations between
WML and cerebral artery diameters [4]. Therefore, further investigations addressing the rela-
tionship of WML and cerebral arteries in FD are needed.
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A limitation to our findings is the significant dropout rate of 44%, which decreased our FD
cohort to 14 participants. The majority of the dropouts can be explained by the emergence of
new FD centers in several locations throughout Germany during our follow-up interval of 8
years. Because we assessed patients from all over Germany at baseline, motivation for travelling
to a more distant Fabry center at follow-up was most likely low. Mortality of the 25 patients
included at baseline only accounted for 4% of the dropouts and these patients were not more
severely affected than the mean severity at baseline, which suggests no FD severity bias in our
results. Considering that our sample was rather small (n = 14), results might be susceptible to
type II errors. Although we analyzed the relationship between hippocampal atrophy and sev-
eral factors known to possibly alter HV (i.e. pain, depression, cardiovascular disease, cerebro-
vascular events, WML, artery diameter), we cannot rule out that other factors such as diabetes,
obesity, obstructive sleep apnea, vitamin b12 deficiency etc. might have influenced the results
[30]. However, as these factors are not related to FD, discussing all of them would be beyond
the scope of this text.

This investigation demonstrates clinical stability in cognitive function, while pronounced
hippocampal atrophy is apparent throughout the 8 years. Our middle-aged FD patients seem
to compensate successfully for progressive HV loss. However, since hippocampal atrophy was
11% over eight years, we expect FD patients to show further hippocampal atrophy, eventually
passing a threshold of cognitive decline much earlier than the healthy population. Notably,
marked hippocampal atrophy clearly exceeding age-associated volume decline provided fur-
ther evidence of regional neuronal involvement in FD. The heterogeneous WML increases
were associated with older age and higher WML-load at baseline, but not with HV, suggesting
that WML involvement and HV decline are independent processes occurring in FD.

Supporting Information

S$1 Table. Normal ranges of neuropsychiatric testing.
(DOCX)
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