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Abstract Historically, brain neurochemicals have been broadly classified as energetic or
informational. However, increasing evidence implicates metabolic substrates and byproducts
as signalling agents, which blurs the boundary between energy and information, and suggests the
introduction of a new category for ‘translational’ substances that convey changes in energy state
to information. One intriguing example is hydrogen peroxide (H2O2), which is a small, readily
diffusible molecule. Produced during mitochondrial respiration, this reactive oxygen species, can
mediate dynamic regulation of neuronal activity and transmitter release by activating inhibitory
ATP-sensitive K+ (KATP) channels, as well as a class of excitatory non-selective cation channels,
TRPM2. Studies using ex vivo guinea pig brain slices have revealed that activity-generated H2O2

can act via KATP channels to inhibit dopamine release in dorsal striatum and dopamine neuron
activity in the substantia nigra pars compacta. In sharp contrast, endogenously generated H2O2

enhances the excitability of GABAergic projection neurons in the dorsal striatum and substantia
nigra pars reticulata by activating TRPM2 channels. These studies suggest that the balance of
excitation vs. inhibition produced in a given cell by metabolically generated H2O2 will be dictated
by the relative abundance of H2O2-sensitive ion channel targets that receive this translational
signal.
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Introduction

F. O. Schmitt and Fred Samson introduced the notion
of ‘informational’ substances to describe a neurochemical
class that is distinct from ‘energetic’ substances (Schmitt,
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1984, 1985). In this classification scheme, informational
substances include neurotransmitters, exemplified by
glutamate and GABA, whereas energetic substances
include metabolic substrates, like glucose and oxygen.
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Increasingly, however, the line between these broad
categories has blurred. Glutamate is not only the primary
excitatory transmitter in the CNS, but also an important
metabolic substrate (e.g. Dienel, 2013), and glucose
not only provides energy for cells, but also conveys
information that modulates the activity of specific
glucose-sensing neurons (Routh, 2010; Thorens, 2012).
Adding further complexity to the delineation between
information and energy is that oxygen consumption
during mitochondrial respiration, an energetic process,
generates reactive oxygen species (ROS), including super-
oxide (•O2

−) and hydrogen peroxide (H2O2) (Boveris &
Chance, 1973; Dugan et al. 1995; Liu et al. 2002; Bao et al.
2009; Rigoulet et al. 2011; Mailloux et al. 2013) that can act
as signalling molecules (Sundaresan et al. 1995; Kamsler &
Segal, 2004; Rhee, 2006; Stone & Yang, 2006; Avshalumov
et al. 2007; Kishida & Klann, 2007; Miller et al. 2007b;
Gerich & Funke, 2009; Groeger et al. 2009; Rigoulet et al.
2011; Rice, 2011; Jeong et al. 2012; Sies, 2014).

Molecules like ROS are at the interface between energy
and information, and merit a class of their own. Indeed,
they could be viewed as ‘translational’ substances that
provide an interpretation of cellular activity within a
cell or to neighbouring cells. In the case of ROS in the
CNS, increased neuronal activity drives energy demand,
which drives metabolism, and thereby generates signalling
molecules that can act both within individual neurons (as
intracellular signals) and between neurons (as diffusible
messengers) to give immediate modulatory feedback
about local activity. Other molecules in this class might
include ATP, adenosine and glucose.

A particularly strong candidate as a ‘translational’ sub-
stance is H2O2. During mitochondrial electron transport,
oxygen is first reduced to the free radical •O2

−, up to 5% of
which leaves the respiratory process (Arnaiz et al. 1999),
and can be converted to H2O2 by the enzyme superoxide
dismutase or by spontaneous dismutation (see Peuchen
et al. 1997). Oxygen consumption is proportional to local
activity (Kennedy et al. 1992), with the greatest demand
to support ATP-dependent signalling, e.g. informational
processes (Engl & Attwell, 2015). The H2O2 produced
in this process is well positioned to serve as a dynamic
reporter of neuronal activity. Other slower metabolic
processes also generate H2O2, including NADPH oxidases
(NOXs) that produce •O2

−, and thus H2O2 (Babior, 1984;
Lambeth, 2004; Infanger et al. 2006; Rhee, 2006; Bedard &
Krause, 2007), and monoamine oxidases (MAOs), which
produce one molecule of H2O2 for each biogenic amine
molecule metabolized (Maker et al. 1981; Azzaro et al.
1985; Cohen, 1994). These additional sources allow a range
of timescales for H2O2 signalling that extend from a rapid,
subsecond level for mitochondrial H2O2 generation to
slower regulation by growth factor activation of NOX, for
example, which can proceed over hours, days, or even
longer (Miller et al. 2007b).

Among the best-studied intracellular targets for slow
regulation by H2O2 are redox-sensitive phosphatases that
are inactivated by H2O2 and kinases that are activated
by this ROS (Klann & Thiels, 1999; Rhee et al. 2005;
Woolley et al. 2013). Modulation of phosphatase and
kinase activities regulates signal propagation downstream
of receptors, so that H2O2 helps fine-tune transmission
to further downstream targets, including transcription
factors like p53, NF-κB and AP-1, which are also H2O2

sensitive (Groeger et al. 2009; Woolley et al. 2013).
Through these processes, H2O2 plays key roles in cell
growth and survival. The primary source of H2O2 for
these regulatory processes is NOX, which is activated by
growth factors and other receptor activators (Rhee et al.
2005; Miller et al. 2007b, 2010; Groeger et al. 2009; Woolley
et al. 2013).

In contrast to slow signalling mediated by NOX-
and MAO-generated H2O2 that can regulate intracellular
signalling cascades, rapid, subsecond signalling by H2O2

originates in mitochondria (Bao et al. 2009) and acts on
cellular ion channels (Seutin et al. 1995; Krippeit-Drews
et al. 1999; Avshalumov et al. 2003, 2003; Avshalumov
& Rice, 2003; Bao et al. 2005; Patel et al. 2011; Lee
et al. 2011, 2013). Early physiological studies showed
that application of exogenous H2O2 can cause membrane
hyperpolarization by activating a K+ conductance in
various cell types, including CA1 hippocampal neurons
(Seutin et al. 1995) and pancreaticβ-cells (Krippeit-Drews
et al. 1999). Our laboratory subsequently identified
ATP-sensitive K+ (KATP) channels as key inhibitory targets
of endogenous, as well as exogenous H2O2 (Avshalumov
et al. 2003, 2005; Avshalumov & Rice, 2003; Patel et al.
2011). More recently, we identified a subclass of transient
receptor potential (TRP) channels in basal ganglia neurons
that are dynamically regulated by H2O2 (Bao et al. 2005;
Lee et al. 2011, 2013). Work in our laboratory has focused
on rapid signalling by H2O2 in regions of the basal ganglia,
particularly the striatum and the substantia nigra pars
compacta (SNc) and pars reticulata (SNr). Our cellular
focus has been on dopaminergic (DAergic) neurons of
the SNc that project to the dorsal striatum, forming the
nigrostriatal pathway that plays critical roles in movement
and motor learning (Carlsson, 2002; Redgrave et al. 2011),
and on GABAergic neurons of the SNr, which are basal
ganglia output neurons (Zhou & Lee, 2011).

This review describes how H2O2 rapidly translates
a dynamic change in cellular metabolism, specifically
mitochondrial oxygen consumption, to a salient signal.
The targets of this signal are H2O2-sensitive ion channels
that can influence the excitability of the neuron in
which H2O2 is generated, as well as neighbouring cellular
elements. Most data presented were obtained using ex
vivo brain slices prepared from adult male guinea pigs
or mice after inducing deep anaesthesia (50 mg kg−1

sodium pentobarbital, I.P.). Methods include fast-scan
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cyclic voltammetry (FCV) to detect DA release, whole-cell
recording to monitor neuronal activity, and fluorescence
imaging to indicate H2O2 generation (e.g. Avshalumov
et al. 2003, 2005, 2008; Bao et al. 2009; Lee et al. 2011,
2013; Patel & Rice, 2013).

Cellular regulation of H2O2

The previous section discussed sources of H2O2, but
it is important to recognize that sinks, including
metabolism and diffusion, are critical in shaping patterns
of H2O2 signalling, as well. Thus, cellular H2O2 regulation
must not only prevent oxidative damage from H2O2

elevation, but also allow intracellular and extracellular
concentrations sufficient for a signalling effect to be
achieved (Avshalumov et al. 2004; Murphy et al. 2011;
Rice, 2011). Absolute basal and dynamic intracellular
concentrations of H2O2 remain a matter of debate;
the technical and conceptual issues involved have been
reviewed elsewhere (Adimora et al. 2010; Murphy et al.
2011; Rice, 2011).

Peroxidase enzymes that metabolize H2O2 include
glutathione (GSH) peroxidase, which is found in the cyto-
sol and in mitochondria (Stults et al. 1977), and catalase,
which is localized to intracellular peroxisomes (Cohen,
1994; Peuchen et al. 1997; Dringen et al. 2005). Dynamic
H2O2 regulation is also provided by peroxiredoxins and
thioredoxins, which act in a complicated dance that not
only buffers H2O2 levels to prevent potentially toxic
consequences of oxidative stress, but also facilitates the
elevation of intracellular H2O2 to levels sufficient for
signalling (Rhee et al. 2005; Adimora et al. 2010; Rhee
& Woo, 2011; Jeong et al. 2012).

Complementing H2O2 regulation by cellular peroxidase
enzymes are roles played by the low molecular weight
antioxidants GSH and ascorbate. These antioxidants
protect against possible pathological consequences of
H2O2 elevation through their actions as scavengers of
the aggressive hydroxyl radical (•OH) produced from
the interaction of H2O2 or •O2

− with trace metal ions
(Cohen, 1994). Additionally, GSH is an essential cofactor
for GSH peroxidase activity, and with other cellular
thiols provides critical regulation of peroxiredoxins
and thioredoxins through reduction of disulfide bonds
involved in activation and inactivation (Stults et al. 1977;
Rhee & Woo, 2011; Mailloux et al. 2013). Ascorbate, by
contrast, has a higher redox potential than GSH and so
cannot reduce oxidized thiols or break disulfide bonds,
and does not interact with H2O2 directly (Rice, 2000;
Avshalumov et al. 2004; Rhee & Woo, 2011). Notably,
ascorbate is the primary low molecular weight anti-
oxidant in neurons (with an intracellular concentration
of 10 mM) (Rice & Russo-Menna, 1998), so that it is in
a prime position to permit neuronal H2O2 signalling, yet

prevent pathological consequences that could occur from
unregulated H2O2 generation and •OH production (Rice,
2012).

One final point about H2O2 regulation is the extent
to which H2O2 can diffuse from a site of generation
to act at targets in the same or neighbouring cells. In
contrast to other ROS, H2O2 is not a free radical and not
an ion. These properties not only limit H2O2 reactivity
and extend its lifetime (Cohen, 1994), but also increase
its membrane permeability (Ramasarma, 1982; Bienert
et al. 2007; Adimora et al. 2010). However, increasing
evidence indicates that net cellular H2O2 efflux and entry is
governed by cell-specific membrane permeability factors
coupled with competing effects of the antioxidant network
(Makino et al. 2004; Bienert et al. 2007; Adimora et al.
2010; Miller et al. 2010; Mishina et al. 2011; Bienert &
Chaumont, 2014). In particular, the cellular expression of
specific aquaporin isoforms, including aquaporins 3 and 8
(Miller et al. 2010; Bienert & Chaumont, 2014), has been
shown to facilitate the passive diffusion of H2O2 across
membranes, and thereby influence its efficacy as an intra-
cellular signalling agent, as well as a diffusible messenger.

Endogenous H2O2 inhibits axonal and
somatodendritic DA release

Regulation of dopamine release from DAergic axons or
cell bodies and dendrites (somatodendritic release) can be
studied readily in ex vivo brain slices using carbon-fibre
microelectrodes with FCV (Rice et al. 2011; Patel & Rice,
2013). For such studies, local electrical stimulation is used
to elicit an increase in extracellular DA concentration
([DA]o), which reflects the net influence of DA release
and uptake. The use of pulse-train stimulation allows the
influence of concurrently released transmitters and local
activity changes on [DA]o as the train progresses. For the
studies summarized here, stimulation parameters were
commonly 30 pulses at 10 Hz, although trains of as few as
7 pulses at 10 Hz are sufficient to reveal modulation by end-
ogenously generated H2O2 in guinea pig dorsal striatum
(K. A. Moran & M. E. Rice, unpublished observations).

Using these methods, we found that exogenous H2O2

causes a reversible, 30% suppression of evoked [DA]o

in dorsal striatum that is not accompanied by a change
in tissue DA content or signs of oxidative damage
(Chen et al. 2001). We then examined a role for end-
ogenous H2O2 in DA release regulation by inhibiting
GSH peroxidase to amplify levels of dynamically generated
H2O2 levels using mercaptosuccinate (MCS). Exposure
to MCS causes similar reversible decreases in evoked
[DA]o in dorsal and ventral striatum to those seen with
exogenous H2O2, again with no change in tissue DA
content (Chen et al. 2002; Avshalumov et al. 2008).
Significantly, DA release suppression in the dorsal striatum

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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can be reversed by the H2O2 metabolizing enzyme catalase
in the continued presence of MCS, confirming H2O2

involvement (Avshalumov et al. 2003). Suppression of
evoked [DA]o also persists when DA uptake is inhibited,
indicating an effect on DA release, not uptake (Avshalumov
et al. 2003).

Although exogenous H2O2 causes suppression of
somatodendritic DA release in the SNc and in the adjacent
ventral tegmental area (VTA), GSH peroxidase inhibition
decreases evoked [DA]o in SNc, but not VTA (Chen
et al. 2002). This difference between SNc and VTA is
potentially important, because DAergic neurons of the
SNc degenerate in Parkinson’s disease and in animal
models of Parkinson’s, whereas those in the VTA are
relatively spared (Yamada et al. 1990; Fearnley & Lees,
1991; Betarbet et al. 2000).

Endogenous H2O2 in dorsal striatum is generated
downstream of glutamatergic AMPA receptor
activation

Local electrical stimulation evokes release of glutamate,
GABA and other transmitters, as well as DA. In striatum,
GSH peroxidase inhibition by MCS has no effect on
[DA]o evoked by a single stimulus pulse (Avshalumov
et al. 2003), indicating that modulatory H2O2 must
be generated dynamically during initial and subsequent
pulses of a stimulus train to inhibit on-going DA release.
The generation of this modulatory H2O2 proved to require
activation of AMPA receptors (AMPARs), as AMPAR
blockade causes a marked increase in pulse-train-evoked
[DA]o in guinea pig dorsal striatum (Avshalumov et al.
2003), indicating that physiological glutamate release
inhibits axonal DA release in dorsal striatum via AMPARs.
An essential role for inhibitory H2O2 in mediating this
effect, as well as in mediating the opposing effect on
DA release by GABA acting at GABAA receptors, was

subsequently shown by the loss of regulation in the
presence of exogenous catalase or GSH peroxidase
(Avshalumov et al. 2003).

As reviewed elsewhere, the absence of AMPARs and
GABAARs on DAergic axons in dorsal striatum led us to
postulate that the cellular sources of glutamate-dependent
H2O2 generation were not DAergic axons, but rather
other striatal neurons, including the predominant striatal
neurons, GABAergic medium spiny neurons (MSNs)
(Avshalumov et al. 2007, 2008; Rice et al. 2011; Rice,
2011; Patel & Rice, 2012). We tested this hypothesis
using single-cell fluorescence imaging of H2O2, in which
dihydro-dichlorofluorescein diacetate (H2DCF-diacetate)
is loaded into cells via a patch pipette used for whole-cell
recording (Avshalumov et al. 2005, 2008). This dye
is cleaved by intracellular esterases to form H2DCF,
which becomes fluorescent DCF when oxidized. Local
stimulation in guinea pig striatal slices activates a single
action potential with each stimulus pulse in recorded
MSNs (Fig. 1A, lower panel). Concurrent imaging of
DCF fluorescence confirmed a significant increase in
DCF fluorescence intensity (FI) evoked using the same
pulse-train stimulation parameters as in DA release studies
(Fig. 1A, upper panel). Activity-dependent increases in
DCF FI are enhanced when GSH peroxidase is inhibited by
MCS, and abolished by the addition of exogenous catalase,
confirming H2O2 detection (Avshalumov et al. 2008).
Consistent with a requirement for glutamate-dependent
AMPAR activation in the generation of modulatory H2O2

in dorsal striatum, antagonism of AMPARs prevents
stimulus-induced action potentials and H2O2 generation
in MSNs (Fig. 1B) (Avshalumov et al. 2008). These and
other data support a role for dynamically generated H2O2

as a diffusible messenger that is generated in striatal MSNs
(and possibly other local neurons), and diffuses to adjacent
DAergic axons to inhibit DA release (Avshalumov et al.
2008; Rice, 2011).

Figure 1. Modulatory H2O2 generation in guinea pig striatal medium spiny neurons (MSNs) requires
AMPAR activation
A, local electrical stimulation (30 pulses at 10 Hz; 100 μs, 0.5 mA) causes tetrodotoxin-sensitive action potentials
and increased DCF fluorescence intensity (FI) in MSNs in ex vivo slices of guinea pig dorsal striatum. B, AMPAR
blockade with GYKI-52466 (50 μM) prevents stimulus-induced spikes and H2O2 generation (modified from
Avshalumov et al. 2008).

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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H2O2 acts via KATP channels in DAergic axons

The targets at which H2O2 acts to regulate nigrostriatal
DA release are KATP channels (Avshalumov et al. 2003;
Avshalumov & Rice, 2003). Blocking KATP channels with
a sulfonylurea receptor antagonist not only enhances

pulse-train-evoked [DA]o in striatum, but also prevents
the usual H2O2-dependent inhibition of DA release by
MCS, as well as the patterns of DA release regulation by
AMPAR and GABAAR activation (Avshalumov et al. 2003;
Avshalumov & Rice, 2003; Rice, 2011). These data show
that KATP channels are required for DA release modulation

Figure 2. Role of mitochondrial H2O2 in
dynamic modulation of striatal DA
release
A, superfusion of succinate (5 mM) causes
an increase in fluorescence intensity (FI) of
the reversible H2O2-sensitive dye RF1 in a
medium spiny neuron (MSN) in a guinea pig
striatal slice; Alexa Red was included in the
pipette solution to allow morphological
identification of the imaged MSN (scale
bar = 20 μm). B, time course of the increase
in RF1 FI in the MSN in A during succinate
exposure; the increase in FI was reversed by
rotenone, at a concentration (50 nM) that
leads to partial inhibition of mitochondrial
complex I, in the continued presence of
succinate (n = 7). C, representative
pulse-train-evoked [DA]o (30 pulses, 10 Hz)
in artificial cerebrospinal fluid (aCSF) alone
(Control) or in the presence of
rotenone + succinate (Rot + Succ), before
and after the addition of an AMPAR
antagonist, GYKI-52466 (GYKI, 50 μM). Bar
graphs show average evoked [DA]o
normalized to the starting condition for
each experiment; GYKI caused a significant
increase in evoked [DA]o (∗∗∗P < 0.001 vs.
same-site control; n = 5), which was
prevented by the rotenone–succinate
cocktail (P > 0.05 vs. same-site Rot-Succ;
n = 6). D, representative pulse-train-evoked
[DA]o in aCSF alone or in the presence of
Rot-Succ before and after the addition of a
GSH peroxidase inhibitor, MCS (1 mM). Bar
graphs show average evoked [DA]o
normalized to the starting condition for
each experiment; MCS caused a significant
decrease in evoked [DA]o (∗∗P < 0.01 vs.
same-site control; n = 5), which was
prevented by the rotenone-succinate
cocktail (P > 0.05 vs. same-site Rot-Suc;
n = 5).
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by H2O2, glutamate and GABA (Avshalumov et al. 2003;
Avshalumov & Rice, 2003). Consequently, striatal DA
release is decreased by KATP channel openers, whether
evoked with single-pulse or pulse-train stimulation
(Avshalumov & Rice, 2003; Patel et al. 2011). Although
release suppression is seen with an opener selective for
either SUR1- or SUR2-subunit-containing KATP channels,
only a SUR1-selective opener occludes the effects of MCS,
as well as the effects of AMPAR and GABAAR antagonism,
on evoked [DA]o showing that DA release regulation by
glutamate-dependent H2O2 requires SUR1-based KATP

channels (Avshalumov & Rice, 2003).
A key aspect of our hypothesis that H2O2 is a diffusible

messenger in the striatum is that KATP channels are
located directly on DAergic axons. Our observation that
single-pulse-evoked [DA]o is suppressed by KATP channel
openers supports direct localization, which was confirmed
using immunohistochemical methods showing striatal
colocalization of a KATP channel subunit with tyrosine
hydroxylase, an enzyme required for DA synthesis (Patel
et al. 2011; Patel & Rice, 2012). Together with our pre-
vious work, these data indicate that H2O2 is a diffusible
messenger, which is generated in striatal MSNs, but acts
at KATP channels on DA axons.

It should be emphasized at this point that
H2O2-dependent signalling via ion channel activation
is fast and transient, with a subsecond to second time
scale (Patel et al. 2011; Patel & Rice, 2012). This
was assessed using paired-pulse stimulation to evoke
[DA]o with pharmacological blockade of KATP channels
or amplification of H2O2 levels using GSH peroxidase
inhibition. Maximal H2O2-/KATP channel-dependent
suppression of DA release is seen 500 ms after an initiating
stimulus, with a significant influence persisting until
�1000 ms (Patel et al. 2011).

Mitochondria are the subcellular source of H2O2 for
dynamic striatal signalling

Studies in isolated mitochondria indicate that succinate,
a substrate of mitochondrial complex II, drives H2O2

production by back-flow of electrons to complex I,
which is prevented by partial complex I inhibition by

rotenone (Votyakova & Reynolds, 2001; Liu et al. 2002;
Gyulkhandanyan & Pennefather, 2004). We demonstrated
that this regulation also occurs in whole cells in brain slices
using a reversible H2O2-sensitive dye Redoxfluor-1 (RF1)
(Miller et al. 2007a). Succinate caused a rapid increase
in RF1 FI in striatal MSNs (Fig. 2A and B), which was
reversed by co-application of rotenone at a concentration
that leads to partial complex I inhibition (50 nM) in
the continued presence of succinate (Fig. 2B) (Bao et al.
2009). We then examined pulse-train-evoked DA release
in this rotenone + succinate cocktail to assess whether the
subcellular source of modulatory H2O2 was mitochondrial
respiration. Consistent with the expected effect of
enhanced H2O2 generation, succinate alone suppressed
evoked [DA]o; suppression of DA release was prevented
by catalase, confirming H2O2 involvement, and was
reversed by rotenone (Bao et al. 2009). Most importantly,
rotenone + succinate prevents the usual increase in evoked
[DA]o with AMPAR blockade (Fig. 2C) and the decrease
that usually accompanies GSH peroxidase inhibition by
MCS (Fig. 2D). By contrast, inhibition of either NADPH
oxidase or MAO had no effect on pulse-train-evoked
[DA]o or on the usual suppression of DA release seen
when GSH peroxidase is inhibited by MCS (Bao et al.
2005). These data show that mitochondrial respiration is
the source of H2O2 that can then translate the significance
of a glutamate-activated increase in cellular activity and
mitochondrial metabolism in MSNs to a signal at DAergic
axons to dynamically regulate DAergic transmission.

H2O2 regulates SNc DA neuron activity via KATP

channels

DCF imaging in SNc DAergic neurons in guinea pig
midbrain slices revealed tonic and activity-dependent
H2O2 generation in these spontaneously active cells
(Avshalumov et al. 2005). Notably, tonically generated
H2O2 has a significant effect on DA cell excitability:
depletion of intracellular H2O2 by including catalase
in the pipette solution or blockade of KATP channels
causes a significant increase in spontaneous firing rate
in all DAergic neurons tested. Moreover, catalase in the
pipette has no effect when KATP channels are blocked,

Figure 3. SUR1-containing KATP channels convey
enhanced sensitivity to H2O2 elevation in guinea pig
SNc DAergic neurons
A, exogenous H2O2 (1.5 mM) (or MCS, 1 mM) causes
hyperpolarization in ‘responders’; this is mimicked by
SUR1-selective KATP-channel opener, diazoxide (60 μM),
whereas a SUR2-selective opener, cromakalim (60 μM), has no
effect (n = 6). B, a second population of SNc DAergic
neurons does not respond to H2O2, MCS, or diazoxide, but
hyperpolarizes with cromakalim (n = 6) (modified from
Avshalumov et al. 2005).

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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demonstrating that tonically generated H2O2 regulates
DAergic cell activity via KATP channels (Avshalumov et al.
2005). Notably, the pipette backfill solution typically
contains 3 mM ATP, which should close KATP channels
(Häusser et al. 1991), suggesting that H2O2 may act by
decreasing channel sensitivity to ATP; the mechanism
of regulation has yet to be elucidated, however (for
discussion, see Patel & Rice 2012).

Conversely, elevation of H2O2 by exogenous
application or GSH peroxidase inhibition causes neuronal
hyperpolarization in �50% of SNc DAergic neurons
examined in guinea pig midbrain. Neurons in this
sensitive population, which we call ‘responders’, are
also hyperpolarized by an SUR1-subunit-selective KATP

channel opener whereas those that are insensitive to
H2O2 (‘non-responders’) are hyperpolarized by an
SUR2-subunit-selective opener (Fig. 3) (Avshalumov et al.
2005). These data indicate that SUR1 expression in SNc
DA neurons conveys sensitivity to elevated H2O2, as seen
for striatal DA axons (Avshalumov & Rice, 2003; Patel
et al. 2011). Overall, these data show that H2O2 plays an
auto-regulatory role in SNc DA neurons via the activation
of inhibitory KATP channels.

Activation of TRPM2 channels by H2O2 in GABAergic
neurons in the basal ganglia

Increasing evidence points to an additional ion channel
target for H2O2, which is a subclass of TRP channels
that provides regulation complementary to that provided

by KATP channels. Although a variety of TRP channels
are expressed in the brain, one subclass, TRPM2 (TRP
melastatin 2), is uniquely sensitive to activation by H2O2

(Fleig & Penner, 2004). Activation of these channels by
H2O2 leads to an increase in neuronal excitability (Bao
et al. 2005; Lee et al. 2011, 2013), rather than the decrease
that accompanies activation of KATP channels. How H2O2

activates TRPM2 channels is somewhat better understood
than its mechanism at KATP channels, but not without
debate. Although there is evidence for direct activation
of TRPM2 channels by H2O2 (Wehage et al. 2002), other
data argue against this (Tóth & Csanády, 2010). Instead,
activation may be mediated by H2O2-dependent elevation
of ADP ribose or a synergistic action of H2O2 and ADP
ribose (Perraud et al. 2005; Lange et al. 2008).

The first evidence for H2O2-dependent regulation of
neuronal excitability by TRP channels emerged in the
course of studies to investigate the role of mitochondria as
a source of modulatory H2O2 (Bao et al. 2005, 2009).
In these studies we found that partial mitochondrial
complex I inhibition by nanomolar concentrations of
rotenone leads to unregulated generation of H2O2,
indicated by single-cell DCF imaging in MSNs in guinea
pig dorsal striatum (Fig. 4A) (Bao et al. 2005; Avshalumov
et al. 2007). Unsurprisingly, this increase in H2O2 leads
to suppression of evoked DA release, which is pre-
vented by catalase or by KATP channel blockade (Fig. 4B),
demonstrating H2O2 and KATP channel involvement.
What was more surprising at the time, however, was
that simultaneous current-clamp recording in MSNs
showed a depolarization and an increase in excitability

Figure 4. Unregulated H2O2 generation during partial
mitochondrial complex I inhibition by rotenone inhibits
striatal DA release via KATP and excites MSNs via TRP
channels
A, DCF fluorescence intensity (FI) in a MSN in a guinea pig
striatal slice under control conditions (t = 0) and during
exposure to rotenone (50 nM); scale bar is 20 μm. B, average
DA release records after single-pulse stimulation elicited at
5 min intervals under control conditions and after 30 min
exposure to rotenone (50 nM; n = 7) compared with release
in the presence of glibenclamide (Glib; 3 μM) and
glibenclamide plus rotenone (n = 5). Data are normalized,
with maximum [DA]o under control conditions for each slice
taken as 100%. C, average time course of H2O2 generation
(DCF FI) recorded in single MSNs during rotenone exposure
(n = 13; ∗∗∗P < 0.001 rotenone vs. basal FI; ANOVA)
compared to the time course of rotenone-induced changes in
membrane potential (Memb pot’l) in these same MSNs
(n = 10; ∗P < 0.05; ∗∗P < 0.01 rotenone vs. control; ANOVA)
(modified from Bao et al. 2005).
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of those neurons, with a time course that paralleled
the increase in DCF FI (Fig. 4C) (Bao et al. 2005).
Changes in MSN membrane properties were prevented
by catalase, confirming H2O2 dependence. Moreover, the
increase in excitability was also prevented by flufenamic
acid (FFA), a non-selective TRP channel antagonist,
implicating H2O2-dependent TRP channel activation in
these GABAergic projection neurons (Bao et al. 2005).
Although FFA can inhibit several TRP subtypes, as well as
other ion channels (Guinamard et al. 2013), recognized
targets include H2O2-sensitive TRPM2 channels (Hill
et al. 2004). As discussed further below, TRPM2 channels
have been identified as the target for H2O2-dependent

modulation of SNr GABAergic projection neurons (Lee
et al. 2013). Given that TRPM2 channels are expressed
in striatal MSNs, it is likely that they also contribute to
H2O2 modulation of MSNs (Hill et al. 2006). Blocking
KATP channels led to enhanced MSN depolarization during
rotenone exposure, indicating that concurrently activated
KATP channels in these cells serves to counterbalance the
predominant TRP-dependent effects of H2O2 elevation.

We then turned our attention to spontaneously active
GABAergic projection neurons in the SNr (Lee et al.
2011, 2013). Consistent with opposing regulation of
cellular activity by H2O2 acting at TRP vs. KATP channels,
exogenous catalase causes a decrease in firing rate of
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Figure 5. TRPM2 channel blockade reverses H2O2-dependent increases in firing rate in guinea pig SNr
GABAergic neurons
A, spontaneous activity of a SNr GABAergic neuron under control conditions. B, amplification of endogenous H2O2

levels by GSH peroxidase inhibition with MCS increases spontaneous firing rate. C, in the presence of a non-specific
TRP channel blocker, flufenamic acid (FFA), H2O2 causes a decrease, rather than increase in SNr GABAergic neuron
firing rate. D, the effect of elevated H2O2 is also converted to a suppression of spontaneous activity when TRPM2
channels are blocked by including an antibody to the C-terminus of TRMP2 channels (α-TRPM2-C) in the pipette
solution. E, summary of the influence of elevated H2O2 on spontaneous SNr neuron firing rate. Increases in firing
rate by H2O2 are reversed and suppressed below control levels by FFA or by α-TRPM2-C (∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001) (modified from Lee et al. 2011, 2013). F, immunohistochemical labelling of guinea pig SNr neurons
with parvalbumin (PV), a marker for GABAergic neurons, and an antibody to the N- or C-terminus of TRPM2,
confirming TRPM2 expression in these cells. Staining is eliminated following pre-adsorption of the primary antibody
with its immunogenic peptide (top row, third panel from left); scale bar, 10 μm. (modified from Lee et al. 2013).
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SNr GABAergic neurons in guinea pig midbrain slices,
indicating maintenance of excitability by basal levels
of H2O2 (Lee et al. 2011). In sharp contrast to the
inhibitory effect of H2O2 elevation on SNc DAergic
neurons (Fig. 3) (Avshalumov et al. 2005), elevation of
H2O2 levels causes an increase in the firing rate of SNr
GABAergic neurons, whether through amplification of
endogenous levels by GSH peroxidase inhibition (Fig. 5A,
B and E) or exposure to exogenous H2O2 (Lee et al.
2011). Implicating H2O2-sensitive TRPM2 channels in
this process, these increases in SNr neuron firing rates
are blocked by FFA (Fig. 5C and E), as well as when
an antibody to the C-terminus of TRPM2 channels is
included in the pipette solution (Fig. 5D and F). In
addition to these studies of functional TRPM2 expression,
immunohistochemistry (Fig. 5F) and in situ hybridization
studies provide anatomical confirmation of TRPM2
channels in guinea pig SNr GABAergic neurons (Lee
et al. 2013). Companion immunohistochemical studies
of guinea pig midbrain also demonstrated expression
of TRPM2 channels in SNc DAergic neurons (Fig. 6)
(Lee et al. 2013), consistent with other studies showing
a functional role for these ion channels in SNc DAergic
neurons in rats (Chung et al. 2011), as well as evidence
for the presence of TRPM2 in DAergic neurons in mice
(Mrejeru et al. 2011).

In addition to regulating the spontaneous firing
rate of SN neurons, TRPM2 channels are required
for NMDA-induced burst firing in SNr GABAergic
neurons (Lee et al. 2013). Notably, we found that H2O2

modulates NMDA-induced burst firing in these cells,
leading to an increase in burst duration and a decrease
in burst frequency (Fig. 7). These findings reveal another
modulatory role for H2O2 that could be especially relevant
in Parkinson’s disease, in which increased burst firing in

SNr neurons and increases in ROS both occur (see Lee
et al. 2013).

Species similarities and differences

Most studies of H2O2 as a dynamic neuromodulator have
been conducted using ex vivo brain slices from guinea
pigs. Initial experiments suggested species independence
of the basic inhibitory effect of H2O2 elevation on
pulse-train-evoked DA release in dorsal striatum, with a
similar reversible suppression of pulse-train-evoked [DA]o

in ex vivo striatal slices from rat, guinea pig and marmoset
when GSH peroxidase was inhibited by MCS (Rice et al.
2002; Avshalumov et al. 2003). The Sombers group has
further demonstrated H2O2-dependent suppression of DA
release in rat striatum in vivo (Spanos et al. 2013). Recent
studies have confirmed DA release suppression when end-
ogenous H2O2 is elevated in mouse striatal slices, as well
(B. O’Neill, R. Asri, J. C. Patel & M. E. Rice, unpublished
observations). However, additional evidence suggests that
dynamic regulation of DA release by glutamate, GABA
and H2O2 may differ in mouse dorsal striatum with
possible H2O2-independent regulation of DA release by
these transmitters.

As noted above, studies in ex vivo slices from young
adult guinea pig brain show greater sensitivity of SUR1-
vs. SUR2-based KATP channels to activation by H2O2 in
striatal DAergic axons (Avshalumov & Rice, 2003; Patel
et al. 2011) as well as SNc DAergic neurons (Avshalumov
et al. 2005). These findings are consistent with the
greater metabolic sensitivity of SUR1- vs. SUR2-expressing
SNc DAergic neurons in slices from neonatal mice (Liss
et al. 1999), although adult mice appear to express
only SUR1-based KATP channels (Liss et al. 2005). Rat
SNc DAergic neurons also show KATP channel-dependent

Figure 6. TRPM2 channel expression in guinea pig SNc DAergic neurons
A, Immunohistochemical labelling of guinea pig SNc shows little somatic staining with an antibody to parvalbumin
(PV), a marker for GABAergic neurons, but B, abundant staining of most SNc neurons with an antibody to
tyrosine hydroxylase (TH), confirming their identity as DAergic neurons. C, TH-immunopositive neurons are also
immunopositive for TRPM2, indicated using an antibody to the C-terminus of TRPM2 (TRPM2-C). D, Merged image
of PV, TH, and TRPM2-C. Arrows point to TRPM2 in DAergic dendrites; scale bar, 20 μm (modified from Lee et al.
2013).
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hyperpolarization with exogenous H2O2 application, with
equal sensitivity of all DAergic cells, at least under the
conditions tested (Geracitano et al. 2005). Interestingly,
in these same studies, hypoxia-induced KATP channel
activation was reversed by H2O2, which served as a source
of molecular oxygen, as shown previously (Walton &
Fulton, 1983).

Another species difference in H2O2-dependent
modulation of neuronal activity is that H2O2 elevation
in mouse midbrain slices leads to inhibition of SNr
GABAergic neurons via predominant KATP channel
activation, as opposed to the TRPM2-dependent
excitation seen with H2O2 elevation in guinea pig SNr
neurons (Lee et al. 2011). Differences in the functional
activation of H2O2-dependent KATP and TRPM2 channels
between guinea pigs and mice suggest divergent roles for
this regulatory process across species. The need for neuro-
nal regulation by a metabolic signal like H2O2 might
depend on unique behavioural demands across species
that require differential patterns of ion channel expression.
Other possible factors include species differences in
H2O2 generation or metabolism. For example, H2O2

metabolism by the glial antioxidant network differs

between species, with stronger control in guinea pig
(or human) vs. mouse (or rat), because of higher
glia-to-neuron ratio of guinea pig brain (Avshalumov
et al. 2004). Regardless of these differences, however,
responsiveness to H2O2 across diverse species supports
the idea that this molecule is an important regulator of
neuronal function.

Opposing effects of H2O2 via KATP and TRPM2
channels in specific neuron populations

A seemingly paradoxical factor in H2O2-mediated
signalling is that many target neurons express both
KATP and TRPM2 channels that have opposing
effects when activated by H2O2. For example, in
addition to TRPM2 channels (Lee et al. 2013),
GABAergic SNr neurons also express KATP channels
(Schwanstecher & Panten, 1993; Stanford & Lacey,
1996; Lutas et al. 2014) that lead to H2O2-activated
hyperpolarization of guinea pig SNr GABAergic neurons
when TRPM2 channels are blocked (Fig. 5C–E; Lee et al.
2011). Conversely, an inward current is observed in SNc

Figure 7. H2O2 modulates NMDA-induced burst firing in SNr GABAergic neurons
A, activity of a SNr GABAergic neuron exhibiting NMDA-induced (30 μM) burst firing before and after addition of
exogenous H2O2 (1.5 mM). B, both exogenous H2O2 and amplified endogenous H2O2 induced by inhibiting GSH
peroxidase with MCS (1 mM) caused an increase in burst duration and a decrease in burst frequency (∗P < 0.05)
(modified from Lee et al. 2013).
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DAergic neurons in response to H2O2 as opposed to the
usual outward current and hyperpolarization when KATP

and other potassium channels are blocked (Avshalumov
et al. 2005; Geracitano et al. 2005; Chung et al. 2011). This
raises the interesting possibility that the effect of H2O2

on target neurons is defined by the abundance and/or
relative activity of these opposing channels and suggests
that ATP and H2O2 are involved in a dynamic interplay
regulating neuronal excitability, as discussed further below
(Fig. 8).

There is a rich literature linking KATP channel activity
to metabolic state in basal ganglia structures, with ATP
identified as the primary signalling molecule. Factors
that influence ATP (and ATP/ADP), such as oxygenation,
influence KATP channel status, with anoxic conditions
leading to KATP channel opening (Amoroso et al. 1990;
Murphy & Greenfield, 1992; Jiang et al. 1994; Guatteo
et al. 1998). Glucose concentration can also influence
KATP channel activity with lower glucose concentrations

favouring KATP channel opening, presumably through
effects on intracellular ATP concentration (Amoroso et al.
1990; During et al. 1995; Marinelli et al. 2000). However,
we have also found a relationship between glucose
concentration and mitochondrial H2O2 production with
lower glucose concentrations promoting mitochondrial
activity and H2O2 production in striatal MSNs (L. Bao, C.
R. Lee & M. E. Rice, unpublished observations), further
linking metabolic activity to signalling by H2O2.

Less is known about the physiological processes that
regulate TRPM2 channels in SNc and SNr neurons.
However, several metabolic and activity-dependent
mechanisms have been implicated, including activity-
dependent increases in intracellular calcium, as well as
conditions that elevate H2O2 and other ROS (Lee & Tepper,
2007; Freestone et al. 2009; Chung et al. 2011; Mrejeru et al.
2011; Lee et al. 2013).

Overall, H2O2 can have an excitatory or inhibitory
effect on an individual neuron that is apparently based

Figure 8. Net influence of mitochondrially
generated H2O2 on DA release and on the
excitability of guinea pig basal ganglia neurons
mediated by KATP and TRPM2 channels
Axonal DA release in striatum and somatodendritic DA
release in SNc are suppressed by the net inhibitory
effect of elevated H2O2 acting at KATP channels in
DAergic neurons. In striatum, H2O2 generated in MSNs
acts as a diffusible messenger (light blue arrows) to
inhibit DA release by activating KATP channels on
neighbouring DAergic axons. The source of dynamically
generated H2O2 is mitochondrial respiration. The net
effect of H2O2 generated within spontaneously active
SNc DAergic neurons (dark blue arrows) is also
inhibitory via KATP channel activation. Although striatal
MSNs, which are GABAergic projection neurons, and
SNr GABAergic projection neurons express both KATP

and TRPM2 channels, the predominant effect of H2O2

on these cells is excitatory via TRPM2 channels. It
should be noted that glutamatergic drive is required for
action potential-dependent generation of H2O2 in
MSNs, although partial mitochondrial inhibition by
rotenone can lead to unregulated H2O2 generation. By
contrast, sufficient H2O2 is generated tonically in
spontaneously active SNr and SNc neurons to modulate
firing rate independent of synaptic input.
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on the relative activities of KATP and TRPM2 channels in
that cell. This working model is supported by evidence
from our studies of H2O2-dependent modulation of DA
release and basal ganglia neuron excitability in ex vivo
guinea pig brain slices, reviewed here (Fig. 8). Specifically,
the net effect of H2O2 elevation on striatal DA release is
inhibitory via KATP channels (Avshalumov & Rice, 2003;
Bao et al. 2005; Patel et al. 2011). Similarly, the pre-
dominant influence of KATP channels on SNc DAergic
neuron excitability is also reflected in the net hyper-
polarization seen with H2O2 elevation in these midbrain
projection neurons (Avshalumov et al. 2005) (Fig. 8). In
contrast, the net influence of H2O2 is to increase the
excitability of GABAergic striatal MSNs (Bao et al. 2005)
and GABAergic SNr neurons (Lee et al. 2011, 2013), which
would enhance the output of these inhibitory projection
neurons, presumably by the predominant influence of
TRPM2 channels in both neuron populations (Fig. 8). The
source of modulatory H2O2 that can influence transmitter
release and neuronal activity on a subsecond time scale
is presumed to be mitochondrial respiration, as shown
for striatal DA release regulation by H2O2-dependent
activation of KATP channels (Bao et al. 2009; Patel
et al. 2011). Notably, basal H2O2 levels in midbrain
SN DAergic and GABAergic neurons generated during
spontaneous firing activity in these cells is sufficient to
provide a modulatory tone that is mildly inhibitory in
SNc DAergic neurons (Avshalumov et al. 2005) and mildly
excitatory in SNr GABAergic cells (Lee et al. 2011). In the
striatum, however, dynamically generated H2O2 in MSNs
requires activation of AMPARs by glutamatergic input and
consequent action potential generation (Avshalumov et al.
2003, 2008).

Conclusions

The findings summarized here reveal an exquisite inter-
action between mitochondrial respiration and neuronal
excitability, bridged by H2O2, which acts as a ‘trans-
lational’ substance that communicates the increase in
metabolism to neuronal membranes via activation of
KATP and TRPM2 channels. In its translational role,
H2O2 generated within a given neuron can mediate auto-
inhibition and/or autoexcitation, but can act as a diffusible
messenger to influence the activity of neighbouring cells
(Fig. 8). Actions of H2O2 at KATP and TRPM2 channels
indicate that the net effect of H2O2 on a given cell or
transmitter release site will reflect the balance of activity
between H2O2-sensitive target channels expressed and
thereby provide cell-type-specific patterns of modulation.
These patterns of regulation have implications not only
for normal regulation of basal ganglia transmitters and
neuronal activity, but also for pathological conditions like
Parkinson’s disease, in which oxidative stress has been

identified as a potential underlying factor in SNc DAergic
neuron degeneration (e.g. Obeso et al. 2010). It should
be noted that even without DAergic neuron loss, elevated
levels of H2O2 would be expected to cause a net decrease
in DAergic transmission. Increased H2O2 generation (or
impaired metabolism) could lead to suppression of axonal
DA release via KATP channel activation, which would
be compounded by H2O2-dependent inhibition of SNc
DAergic neuron excitability, resulting in functional DA
denervation of target regions, like dorsal striatum (Bao
et al. 2005; Avshalumov et al. 2005) (Fig. 8). At the
same time, the increased excitability of SNr GABAergic
output neurons via H2O2 and TRPM2 channels (as seen in
guinea pig SNr) would further exaggerate motor inhibition
(Fig. 8).

Two final points about H2O2-dependent regulation
of neuronal signalling are that: (1) KATP and TRPM2
channels are expressed by many neurons in addition
to those discussed here, so that modulation by H2O2

is likely to be widespread; and (2) additional targets
for H2O2-dependent regulation are emerging, including
GABA receptors that mediate inhibitory synaptic trans-
mission (Accardi et al. 2014; Penna et al. 2014). In this
light, it is also likely that dynamic cellular modulation
by H2O2 is not limited to the CNS. For example,
there are established functional roles for KATP channels
in pancreatic β-cells, cardiac myocytes and muscle
(McTaggart et al. 2010; Flagg et al. 2010; Coetzee, 2013),
with emerging evidence for TRPM2 channels in β-cell
function, as well (Uchida & Tominaga, 2014). Moreover,
KATP channels in β-cells and cardiac myocytes are sensitive
to exogenous H2O2 (Ichinari et al. 1996; Tokube et al.
1998; Krippeit-Drews et al. 1999), supporting the idea that
metabolically generated H2O2 may be poised to provide
modulatory signals in excitable cells throughout the
body.
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(2002). Activation of the cation channel long transient
receptor potential channel 2 (LTRPC2) by hydrogen
peroxide. A splice variant reveals a mode of activation
independent of ADP-ribose. J Biol Chem 277, 23150–23156.

Woolley JF, Corcoran A, Groeger G, Landry WD & Cotter TG
(2013). Redox-regulated growth factor survival signaling.
Antioxid Redox Signal 19, 1815–1827.

Yamada T, McGeer PL, Baimbridge KG & McGeer EG (1990).
Relative sparing in Parkinson’s disease of substantia nigra
dopamine neurons containing calbindin-D28K. Brain Res
526, 303–307.

Zhou FM & Lee CR (2011). Intrinsic and integrative properties
of substantia nigra pars reticulata neurons. Neuroscience 198,
69–94.

Additional information

Competing interests

The authors declare no competing financial interest.

Funding

The authors gratefully acknowledge support from the National
Institutes of Health, grants R01 NS036362 (M.E.R.), F32
NS063656 (C.R.L.) and T32 DA007254 (B.O’N.), and from the
Olympia and Attilio Ricciardi Research Fund.

Acknowledgements

We thank Rijul Asri for recent contributions to studies of
H2O2-dependent modulation in mice, and previous members of
the Rice laboratory and our collaborators for their contributions
to the original studies reviewed in this article.

Author’s present address

C. R. Lee: Department of Cell Biology and Neuroscience,
Rutgers, The State University of New Jersey, 604 Allison Road,
Piscataway, NJ 08854, USA.

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society


