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The regulation of neuronal mitochondrial metabolism
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Abstract Calcium signalling is fundamental to the function of the nervous system, in association
with changes in ionic gradients across the membrane. Although restoring ionic gradients is
energetically costly, a rise in intracellular Ca2+ acts through multiple pathways to increase ATP
synthesis, matching energy supply to demand. Increasing cytosolic Ca2+ stimulates metabolite
transfer across the inner mitochondrial membrane through activation of Ca2+-regulated
mitochondrial carriers, whereas an increase in matrix Ca2+ stimulates the citric acid cycle and
ATP synthase. The aspartate–glutamate exchanger Aralar/AGC1 (Slc25a12), a component of
the malate–aspartate shuttle (MAS), is stimulated by modest increases in cytosolic Ca2+ and
upregulates respiration in cortical neurons by enhancing pyruvate supply into mitochondria.
Failure to increase respiration in response to small (carbachol) and moderate (K+-depolarization)
workloads and blunted stimulation of respiration in response to high workloads (veratridine)
in Aralar/AGC1 knockout neurons reflect impaired MAS activity and limited mitochondrial
pyruvate supply. In response to large workloads (veratridine), acute stimulation of respiration
occurs in the absence of MAS through Ca2+ influx through the mitochondrial calcium uniporter
(MCU) and a rise in matrix [Ca2+]. Although the physiological importance of the MCU complex
in work-induced stimulation of respiration of CNS neurons is not yet clarified, abnormal
mitochondrial Ca2+ signalling causes pathology. Indeed, loss of function mutations in MICU1, a
regulator of MCU complex, are associated with neuromuscular disease. In patient-derived MICU1
deficient fibroblasts, resting matrix Ca2+ is increased and mitochondria fragmented. Thus, the
fine tuning of Ca2+ signals plays a key role in shaping mitochondrial bioenergetics.
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Introduction

In this review, we focus on the role played by Ca2+ ions
in the modulation of cellular respiration, as well as the
mechanisms involved. This role for Ca2+ is ubiquitous, and
most probably can be generalized to all cell types, as will be
discussed in the initial part of this review. We then consider
in more detail Ca2+-mediated regulation of mitochondrial
energy metabolism in neurons as the prototype of the
mechanisms involved. Indeed, neurons are responsible for
disproportionate oxygen consumption at rest in humans
(the brain uses �20% of the total oxygen consumed at rest
but represents only 2% of body mass; Mink et al. 1981).
In addition, neurons are critically and almost exclusively
dependent on mitochondrial oxidative phosphorylation
(OXPHOS) as a major source of ATP and have a limited
capacity to upregulate energy supply through glycolysis
when OXPHOS is compromised (Herrero-Mendez
et al. 2009). Mitochondria in these cells represent an
exclusive target for Ca2+ to guarantee activity-dependent
regulation of cellular energy metabolism. Overall,
Ca2+-dependent regulation of OXPHOS involves two
principal mechanisms: (i) Ca2+ entry into mitochondria
through the Ca2+ uniporter (mitochondrial calcium
uniporter; MCU) and (ii) Ca2+-dependent activation of
mitochondrial metabolite transporters (Ca2+-regulated
mitochondrial carriers), where Ca2+ acts on the external
surface of the inner mitochondrial membrane. Thus,
even though cytosolic and mitochondrial Ca2+ signals
are usually tightly coupled, they can also have distinct
effects on mitochondrial metabolism, ensuring differential
regulation in some cases. Because some of the mechanisms
employed by Ca2+ to modulate respiration have only
been described in cells other than neurons, we will
refer to other cell types (heart, fibroblasts) throughout
the review to address these specific mechanisms, which
particularly involve those related to the mitochondrial
Ca2+ uniporter complex (MCUC) that has only been
recently characterized at the molecular level; thus, only
a few studies directly address its role in the regulation of
OXPHOS.

Cell metabolism and ATP homeostasis

Specialized processes in differentiated cells consume
ATP, such as neuronal transmission, muscle contraction,

cellular motility and secretion. In addition, energy is
required for cellular maintenance and repair to counter
the forces of entropy. Events that require the disturbance
of ionic gradients across the membrane are also almost
invariably associated with Ca2+ signals, either through
influx across the plasma membrane or by release from
internal stores. Restoring ionic gradients by ion pumps
in the plasma membrane [Na+/ Ca2+ exchanger (NCLX);
Na+/K+ ATPase pump; Ca2+/H+ ATPase exchanger] and
within the organelles (Ca2+/H+ ATPase exchanger) in the
endoplasmic reticulum (ER) requires ATP consumption.
It has also been known for many years that cells match
the rate of ATP production and utilization with little or
no measurable change in metabolic intermediates. The
maintenance of cellular metabolites during alterations in
workload has been termed metabolic homeostasis, and is
probably most thoroughly studied in cardiac and skeletal
muscle (Balaban 2002; 2006; Glancy et al. 2013).

Neurons are also subject to changes in workload. Most
of the energy in the brain is consumed by synaptic trans-
mission (Attwell and Laughlin, 2001; Hall et al. 2012;
Harris et al. 2012). In high energy-demanding tissues
such as the brain and skeletal and cardiac muscle, the
rapid formation of ATP through phosphocreatine and
the creatine kinase reaction maintains the distribution of
ATP through the cell at almost constant levels and can be
important in peak conditions of energy demand (Cerdan
et al. 1990; Balaban et al. 2009). However, overall, the
major sustainable source of energy is ATP generated by
OXPHOS.

Recent studies have revealed that neuronal activity not
only contributes significantly to ATP consumption, but
also stimulates ATP synthesis through a Ca2+-dependent
increase in OXPHOS (Rangaraju et al. 2014). Neuro-
nal activity requires both rapid adaptation of oxidative
energy metabolism and a sufficient supply of oxygen
and nutrients and, thus, it is very sensitive to altered
mitochondrial function (Whittaker et al. 2011; Kann
et al. 2012). Furthermore, mitochondrial fission and
redistribution to regions of increased metabolic demand
have been observed during sustained impulse activity
(Sajic et al. 2013), confirming that mitochondrial function
is essential for the correct balance of neuronal function in
response to an imposed workload.

In neurons using glucose as the main metabolic sub-
strate, an increase in workload is necessarily associated
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with increased glucose oxidation and augmented oxygen
consumption, which is controlled by the mitochondrial
proton electrochemical gradient (�μH) and mainly used
for ATP synthesis (Mitchell & Moyle, 1969).

Regulation of OXPHOS in response to work was initially
considered to be carried out by a simple feedback of the
ATP hydrolysis products ADP and Pi on mitochondrial
ATP synthase (Chance & Williams, 1955; Jacobus et al.
1982). The classical principles of chemiosmotic coupling
dictate that increased ATP production by mitochondria
is coupled with increased oxygen consumption by the
respiratory chain and an increased substrate supply to
mitochondria. However, this is not the only mechanism
driving changes in mitochondrial function in response to
changes in workload. Indeed, it has become clear that Ca2+
regulation of mitochondrial function plays an important
role in maintaining ATP homeostasis (McCormack &
Denton, 1990; Rizzuto et al. 2012)

Calcium signalling and mitochondrial respiration

Ca2+ is a versatile and ubiquitous intracellular messenger,
acting as a mediator of almost all energy demanding
processes in mammalian cells. The capacity of
mitochondria to take up large quantities of Ca2+ in
a membrane potential-dependent manner has been
known for decades (Deluca & Engstrom, 1961; Harris,
1977; Nicholls, 1978). Mitochondrial Ca2+ accumulation
not only serves both as a Ca2+ buffering system in
the cell, but also as a pathway to modulate the energy
metabolism of the cell. Ca2+ handling involves a complex
dialogue between the mitochondria, the ER, lysosomes,
the plasma membrane and the nucleus. Gradients of Ca2+
across the membrane reflect a huge free energy and their
maintenance represents a significant energetic burden
(Glancy & Balaban, 2012; Rueda et al. 2014).

It is well known that Ca2+-dependent regulation
of OXPHOS is mediated through Ca2+ entry into
mitochondria through the MCU (Fig. 1). However, the
identification of Ca2+-regulated mitochondrial carriers
(CaMCs) (del Arco & Satrustegui 1998, del Arco
et al. 2000) revealed an additional target of cytosolic
Ca2+ signals in neuronal mitochondria. The critical
difference between these pathways is that Ca2+-dependent
regulation of OXPHOS through the carriers operates by
the action of Ca2+ at the outer surface of the inner
mitochondrial membrane, rather than in the matrix,
and so does not require mitochondrial Ca2+ uptake
(Fig. 1). [Ca2+]cyt-activated increase in ATP production
by OXPHOS contributes to metabolic homeostasis (i.e.
allows the ATP/ADP and NADH/NAD+ levels to remain
constant) despite an increase in workload, as reported by
Glancy & Balaban (2012).

To maintain substrate supply to mitochondria with
an elevated respiratory rate, further control mechanisms
acting upstream of mitochondria are required. For
example, through its association with calmodulin, Ca2+
activates phosphorylase kinase, which in turn activates
glycogen phosphorylase, initiating glycogen breakdown
and so increasing glucose supply. This is not only a general
pathway in tissues with significant glycogen stores, such
as liver or muscle (Picton et al. 1981), but also takes place
in astrocytes (Ibrahim et al. 1975; Newman et al. 2011;
Müller et al. 2014a,b) and, to some extent, in neurons
(Saez I et al. 2014). Thus, Ca2+ stimulates both glycogen
breakdown and glucose oxidation, increasing ATP supply
(McCormack et al. 1990; Müller 2014b).

The physiological importance of respiratory control
by Ca2+ in intact neurons and in the CNS in vivo is
still largely unknown. Rapid Ca2+-dependent changes
in oxygen consumption in response to membrane
depolarization have been described in cultured Purkinje
neurons (Hayakawa et al. 2005). However, other studies
have found no evidence for a role of cytosolic Ca2+
in activity-dependent rises in cerebellar rate of oxygen
consumption in the intact brain (Mathiensen et al. 2011).
The resolution of these questions is confounded by two
opposing actions of Ca2+ because it not only activates ATP
production through the stimulation of OXPHOS, but also
increases ATP consumption through the increased energy
demand required to recover the ionic resting state.

Mitochondrial Ca2+ uptake and its impact
on mitochondrial function

The inner mitochondrial membrane maintains a high
membrane potential (��) (�150–180 mV negative to the
cytosol) and Ca2+ uptake, an electrogenic process, induces
a small transient mitochondrial depolarization (Vitorica
& Satrustegui, 1985; Duchen, 1992), which correlates with
the rising phase of [Ca2+]cyt, reflecting the Ca2+ current
across the inner mitochondrial membrane. Because, in
most cells, the mitochondrial matrix represents a small
proportion of the total cell volume, and there is a strong
electrochemical potential favouring the accumulation of
Ca2+ into mitochondria, the movement of relatively few
Ca2+ ions promotes large concentration changes in the
matrix, with obvious signalling potential. Mechanisms
of Ca2+ buffering in the matrix are poorly understood.
Ca2+ uptake is facilitated by locating mitochondria close
to microdomains of high [Ca2+]cyt, allowing for its
operation even in the absence of global [Ca2+]cyt signals
(Rizzuto et al. 1998; Contreras et al. 2010).

Ca2+ entry into mitochondria requires the recently
identified MCU (Baughman et al. 2011; de Stefani et al.
2011), which forms part of a large complex, the MCUC
(Rizzuto et al. 2012; Marchi & Pinton, 2014; Pendin et al.
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2014), whose components are still not fully resolved. The
complex includes MCUb, a dominant negative component
of the oligomeric channel (Raffaello et al. 2013), the Ca2+
sensitivity modulators MICU1 and MICU2 (Perocchi
et al. 2010; Mallilankaraman et al. 2012b; Bai et al. 2013;
Plovanich et al. 2013; Patron et al. 2014), MCU regulator
1 (Mallilankaraman et al. 2012a; but see Paupe et al.
2015) and essential MCU regulator (Sancak et al. 2013).
Although the topology of MCU was initially a matter of
debate (Drago et al. 2011), its N- and C-terminal domains
probably span into the mitochondrial matrix and its nine
amino acid linker (i.e. the DIME domain) between the two
transmembrane domains faces the intermembrane space
(Baughman et al. 2011; Martell et al. 2012). The existence
of only two putative transmembrane domains strongly

suggests that an active and functional uniporter channel
could only be formed by oligomers of MCU.

On the other hand, a K+/H+ antiporter (Froschauer
et al. 2005; Nowikovsky et al. 2012; De Marchi et al.
2014; Doonan et al. 2014; Nowikovsky & Bernardi, 2014;
Nowikovsky et al. 2004) has also been proposed to mediate
Ca2+/H+ exchange; first, as a Ca2+ efflux pathway (Jiang
et al. 2009; 2013; Tsai et al. 2014) and, more recently, as
a Ca2+ influx pathway alternative to the MCU (Doonan
et al. 2014). Furthermore, other routes of Ca2+ entry into
mitochondria, such as a rapid mode of uptake (Gunter
& Sheu, 2009; Ryu et al. 2010), might be responsible for
residual Ca2+ uptake in mitochondria from MCU deficient
cells (Pan et al. 2013) and this requires further investigation
(Bondarenko et al. 2013; 2014).

Figure 1. Schematic representation of Ca2+regulation of mitochondrial respiration
Tricarboxylic acid cycle enzymes are highly sensitive to changes in [Ca2+], which presumably binds directly to
isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH), whereas PDH is activated by the
Ca2+-sensitive pyruvate dehydrogenase phosphatase. Complex IV and complex III may also be regulated by intra-
mitochondrial Ca2+. Matrix Ca2+ may also regulate OXPHOS through an effect on the ANT and on the F1Fo-ATP
synthase. Extramitochondrial Ca2+ activates Aralar/AGC1-MAS activity and SCaMC-3. P-PDH, phosphorilated
pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; PDP, pyruvate dehydrogenase phosphatase; Pyr,
pyruvate; AcCoA, acetyl coenzyme A; TCA: tricarboxylic acid cycle; NHX, Na+/H+ exchanger;
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Efflux pathways are also essential for equilibrating
mitochondrial and cytosolic Ca2+ (Takeuchi et al. 2015).
The major pathway is a Na+/Ca2+ exchanger that is distinct
from the exchanger at the plasma membrane and was
recently characterized as NCLX (Palty et al. 2010), whereas
the Ca2+/H+ exchanger remains elusive (Fig. 1).

A number of enzymes in the mitochondrial matrix
are regulated by Ca2+. In particular, the citric acid cycle
dehydrogenases are extremely sensitive to Ca2+, which
presumably binds directly to isocitrate dehydrogenase
and α-ketoglutarate dehydrogenase, whereas pyruvate
dehydroganase (PDH) is activated by Ca2+-sensitive
phosphatase activity (Balaban, 2009; Denton, 2009)
(Fig. 1). Ca2+ also modulates F1-FoATPase activity,
promoting ATP generation at a given driving force,
thus increasing the velocity of ATP production through
a post-translational modification whose specific
mechanism remains elusive (Balaban et al. 2009;
Glancy & Balaban, 2012). Direct Ca2+-dependent
activation of F1-ATP synthase by S100A1 has also been
implicated in the heart (Borries et al. 2007). The fact that
respiration rate increases with workload may also imply
Ca2+ activation of some of the respiratory complexes
(Balaban et al. 2009; Glancy & Balaban 2012) (Fig. 1).
Ca2+ may also regulate OXPHOS through effects on
adenine nucleotide translocase (ANT), which mediates
the electrogenic exchange of ADP3- with ATP4- between
the cytosol and the mitochondrial matrix without
modifying the net content of adenine nucleotides
(Klingenberg, 2008) (Fig. 1). A rise in intramitochondrial
[Ca2+] diminishes ANT activity (Moreno-Sanchez,
1983), lowering the matrix ADP content, which decreases
F1-FoATPase activity.

Signalling by extramitochondrial calcium

Aspartate-glutamate carriers (AGCs) and calcium-binding
mitochondrial carrier proteins (SCaMCs/APCs).
Aspartate-glutamate carriers and ATP-Mg/Pi trans-
porters (SCaMCs/APCs) (del Arco & Satrústegui, 1998;
Palmieri et al. 2001; del Arco & Satrústegui, 2004;
Fiermonte et al. 2004; Satrústegui et al. 2007) are
the two classes of mitochondrial carriers activated by
extramitochondrial Ca2+ (Pardo et al. 2006; Contreras
et al. 2007; Traba et al. 2008; Traba et al. 2012).

AGCs are components of the malate–aspartate shuttle
(MAS) and, under physiological conditions of polarized
mitochondria, comprise the main site of regulation of
the shuttle (Satrustegui et al. 2007). AGCs are activated
by modest increases of extramitochondrial [Ca2+] at
concentrations not far from the resting state. For example,
Aralar/AGC1, the isoform prevailing in the brain, has
an S0.5 of 324 nM Ca2+ (Palmieri et al. 2001; Pardo
et al. 2006; Contreras et al. 2007; Satrustegui et al.

2007). Aralar/AGC1 activation results in the transfer of
cytosolic reducing equivalents into the mitochondrial
matrix, increasing substrate supply to mitochondria.
Moreover, the MAS oxidizes cytosolic NADH, enhancing
pyruvate production from lactate and glucose (Safer
et al. 1971). Extramitochondrial Ca2+ activation of
Aralar/AGC1-MAS activity results in the net transfer
of reducing equivalents (NADH) from the cytosol to
mitochondria, which increases the state 3 respiration rate
when using glutamate plus malate as substrates in the pre-
sence of a physiological cytosolic free-Ca2+ concentration
(Gellerich et al. 2012, 2013), as well as promotion of
Ca2+-dependent pyruvate oxidation in the mitochondria
(Gellerich et al. 2012; 2013) (Fig. 1). Interestingly, the
mitochondrial pyruvate carrier, recently characterized at
the molecular level (Bricker et al. 2012; Herzig et al.
2013), has a low affinity for pyruvate (Km of 0.6 mM in
rat liver, Paradies et al. 1983) and so may limit pyruvate
oxidation (Schell & Rutter, 2013). This may be important
with respect to the role of Aralar/AGC1-MAS activity in
increasing pyruvate concentration, favouring its transport
into the mitochondrial matrix.

The SCaMCs (del Arco & Satrustegui, 2004) or
APCs (Fiermonte et al. 2004) are adenine nucleotide
carriers that perform the electroneutral exchange of
ATP-Mg2− or HADP− with HPO4

2− between the cyto-
sol and the mitochondrial matrix (Joyal & Aprille 1992;
Nosek & Aprille 1992; Fiermonte et al. 2004). The
SCaMCs are activated by extramitochondrial Ca2+ with
an S0.5 of activation within the range of the MCU
complex of �3–4 μM for the brain and liver isoform
SCaMC-3/Slc25a23 (Amigo et al. 2013) and of �12.7 μM

for the tumor cell isoform SCaMC-1/Slc25a24 (Traba
et al. 2012). The direction and magnitude of the trans-
port depend on the relative concentrations of ATP-Mg2−
or ADPH− and Pi. The Mg2+ and H+ associated with ATP
and ADP are essential for transport through the carrier.
Although its main substrate is magnesium-bound ATP,
the carrier can also exchange free ADP and, to a lesser
extent, free AMP (Asimakis & Aprille 1980; Fiermonte
et al. 2004). Thus, SCaMC activity regulates the total
adenine nucleotide pool in the mitochondrial matrix; the
sum of ATP+ADP+AMP (Fig. 1).

By changing the matrix adenine nucleotide content,
the ATP-Mg2−/Pi carriers play an important role in
the regulation of the mitochondrial metabolic pathways
that have adenine nucleotide-dependent enzymes,
including pyruvate carboxylase (gluconeogenesis),
carbamyl phosphate synthetase (urea cycle), protein
synthesis and the import of nuclear encoded proteins
into mitochondria (Aprille, 1993; Satrustegui et al. 2007).
The mitochondrial adenine nucleotide content increases
in adult liver mitochondria upon glucagon treatment as
a result of the activity of the liver ATP-Mg2−/Pi carrier
SCaMC-3 (Aprille, 1988, 1993, Amigo et al. 2013).
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The SCaMCs appear to be important for mitochondrial
maturation after birth. Indeed, the mitochondrial adenine
nucleotide pool increases several-fold in newborn rat
liver mitochondria within 3 h after birth, coinciding with
the maturation of mitochondrial respiration (Sutton &
Pollak, 1978; Valcarce et al. 1988).

Calcium regulation of mitochondrial respiration in
intact neurons: basal state

The contribution of Ca2+ signalling to respiration in intact
neurons may be inferred from the effects of the disruption
of genes involved in the process. In neuronal cultures
under basal conditions and in the presence of physio-
logical glucose concentrations, the rate of respiration of
cerebrocortical neurons is �30% of maximal uncoupled
respiration and is driven by a continuous ATP demand
(74% is coupled; Llorente-Folch et al. 2013). Spontaneous
Ca2+ signals in embryonic neurons in culture decrease
in frequency upon maturation (Gu & Spitzer, 1995).
Distinct aspects of neuronal differentiation encoded by
the frequency of spontaneous intracellular Ca2+ transients
(Gu & Spitzer, 1995) remain unknown. A major role for
intracellular Ca2+ under these conditions is improbable
because basal respiratory activity is not influenced by the
presence or absence of extracellular Ca2+ (Llorente-Folch
et al. 2013) or by the presence or absence of SCaMC-3
(Llorente-Folch et al. 2013). In addition, although the
influence MCU in respiration of cortical neuronal cultures
is unknown, total body basal oxygen consumption in MCU
knockout (KO) mice on an outbred genetic background
was the same as that of control mice (Pan et al. 2013),
suggesting that the lack of MCU does not cause major
respiratory defects. However, a compensatory effect on
basal respiration in MCU KO neurons in this model cannot
be ruled out because an MCU KO strain on the C57BL/6
genetic background was embryonic lethal (Murphy et al.
2014).

Basal respiration in neurons diminished by �46% in
the absence of Aralar/AGC1 (Llorente-Folch et al. 2013),
although this may be a consequence of a lack of MAS
itself, which decreases pyruvate supply to mitochondria,
rather than a lack of Ca2+ signalling through Aralar/AGC1.
Indeed, Aralar/AGC1 is not absolutely dependent on Ca2+;
in Ca2+-free media, MAS activity is attenuated by �70%
(Pardo et al. 2006; Contreras et al. 2007) and this may
be sufficient to maintain basal respiration in neurons in
culture. It must be noted that these considerations apply
to the basal state in cultured neurons, and not necessarily
to brain neurons in which baseline activity is energetically
much higher (Raichle & Mintun, 2006). In addition to a
low basal respiratory rate, Aralar/AGC1 KO neurons have
also a limited maximal uncoupled respiratory rate, which

may be rescued by exogenous pyruvate (Llorente-Folch
et al. 2013).

Calcium regulation of mitochondrial respiration
in intact neurons: response to workloads

To characterize the role of Ca2+ in the regulation of
energy metabolism, the double role of Ca2+ in regulating
OXPHOS has to be considered: (i) as an inducer of
workload (i.e. as an inducer of ATP utilization to restore
Ca2+ levels) and (ii) as a regulator of mitochondrial trans-
porters or dehydrogenases (i.e. as a signal molecule).
To dissect these aspects, we applied different stimuli to
produce different workloads as a result of an increase
in cytosolic Na+ and/or Ca2+. We imposed a high
workload using veratridine, a moderate workload with
depolarization using isosmotic high K+, and a small
workload using carbachol, which mobilizes Ca2+ from ER.
With each of these stimuli, the impact of the Ca2+ signals,
on the mitochondrial population also differed. Those
produced in response to veratridine and K+ stimulation
increase matrix Ca2+, whereas that induced by carbachol
primarily exerts an action at the external face of the inner
mitochondrial membrane. Experiments were conducted
in the presence or absence of 2 mM Ca2+ or in cells loaded
with BAPTA-AM, a rapid Ca2+ chelator, which allows for
a Ca2+-induced workload at the same tine as preventing
Ca2+ signalling (Llorente-Folch et al. 2013).

An increase in ATP demand to restore the ionic resting
state after a stimulus will in turn stimulate OXPHOS,
which might also be regulated by Ca2+ itself. In all
cases analysed, the oxygen consumption rate (OCR) was
severely reduced in the absence of Ca2+. In particular,
the absence of Ca2+ during veratridine stimulation
abolishes Ca2+-regulatory mechanism because the
veratridine-induced workload is mainly driven by the
massive entry of Na+ to the cytosol. Moreover, the
fall in cytosolic ATP in Ca2+-free media was even
more pronounced than that in the presence of Ca2+,
which is attributable to the absence of Ca2+-mediated
stimulation of mitochondrial respiration. Consequently,
these experiments clearly demonstrated the role of Ca2+ as
a regulatory signal to stimulate OXPHOS (Llorente-Folch
et al. 2013).

For every Ca2+ ion that enters the mitochondria, 3H+
must enter the matrix to remove it (assuming NCLX
stoichiometry 3Na+:1Ca2+ and 1Na+:1H+ for NHE)
(Boyman et al. 2013). With the known stoichiometry for
mitochondrial ATP production and exchange for ADP
(3-4H+/ATP) (Watt et al. 2010), this implies that removing
1 Ca2+ from mitochondria costs approximately 1ATP
(i.e. the same as removing it by efflux across the plasma
membrane) (Carafoli, 2012). By removing Ca2+ from the
media, both Ca2+ signalling and Ca2+-induced workload

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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in response to KCl and carbachol were abolished and
so, not unexpectedly, the increase in respiration and the
fall in cytosolic ATP was smaller in Ca2+-free media.
However, incubation with BAPTA-AM, which maintained
the workload but blocked Ca2+ signalling, also decreased
the respiratory response. This showed that Ca2+ regulation
is required to increase respiration and maintain cytosolic
ATP levels in response to any workload (Llorente-Folch
et al. 2013).

Mechanisms involved in Ca2+ regulation
of mitochondrial respiration upon an increase
in workload

To determine the specific role of Ca2+-dependent
mitochondrial carriers in the regulation of OXPHOS,
we studied the effects of selective removal of SCaMC-3
and Aralar/AGC1 in response to different stimuli
aiming to unmask the contribution of matrix versus
extra-mitochondrial Ca2+.

Large workloads. Studies in our laboratory have revealed
that SCaMC-3 and Aralar/AGC1-MAS are involved in the
Ca2+-dependent regulation of mitochondrial respiration
at high workloads, such as those imposed by veratridine
stimulation, in which the MCU complex and the
mitochondrial dehydrogenases pathway also operate.

SCaMC-3/APC2. Deficiency of SCaMC-3 decreased
the veratridine-induced stimulation of mitochondrial
respiration in the presence of Ca2+ (Llorente-Folch et al.
2013). This confirms that SCaMC-3 is recruited at large
workloads in which a high cytosolic Ca2+ concentration
activates the carrier (Amigo et al. 2013) and the cytosolic
ATP/ADP ratio falls. These conditions thermodynamically
favour exchange of cytosolic ATP-Mg2− or HADP2− for
mitochondrial Pi (Joyal & Aprille, 1992; Aprille, 1993),
increasing mitochondrial respiration.

ATP-Mg2−/Pi carrier activity probably favours
OXPHOS stimulation by increasing the total adenine
nucleotide pool of mitochondria exerting a mass action
ratio effect on complex V or the ANT, (Aprille, 1993;
Satrustegui et al. 2007; Glancy & Balaban, 2012; Amigo
et al. 2013). Moreover, ADP probably comprises the
adenine nucleotide transported by SCaMC-3 and may
allosterically activate tricarboxylic acid cycle enzymes
(Gabriel et al. 1986; Nicholls et al. 1994) and
inhibit pyruvate dehydrogenase kinase, preventing PDH
inactivation (Hucho, 1974; Pratt & Roche, 1979). Thus,
an increase in ADP would promote oxidative metabolism
and increase the supply of reduced cofactors to the
respiratory chain in response to cytosolic Ca2+ signals.
It is also possible that the entry of adenine nucleotides is
a protective mechanism against an early opening of the

permeability transition pore (PTP) which would cause
an immediate failure of OXPHOS. Adenine nucleotides
inhibit PTP opening (Chinopoulos & Adam-Vizi, 2012;
Traba et al. 2012; Giorgio et al. 2013) and also bind Ca2+
(Haumann et al. 2010), lowering the free matrix Ca2+
concentration, which would decrease the probability of
PTP opening. This mechanism has been characterized
in transformed cells which over-express SCaMC-1,
promoting cell survival by desensitizing mitochondrial
permeability transition (Traba et al. 2011).

Aralar/AGC1. Veratridine-induced workload promoted a
strong increase in mitochondrial respiration that was
severely attenuated, although not completely abolished,
in Aralar/AGC1 KO neurons (Llorente-Folch et al. 2013).
This showed a major role for the Aralar/AGC1-MAS
pathway in response to a high workload-induced
stimulation. However, Aralar/AGC1 KO neurons
still presented a Ca2+-dependent response, which
indicated that the Ca2+-dependent dehydrogenases and
SCaMC-3-dependent Ca2+ regulation are also signalling
mechanisms engaged under these high workloads.
Exogenous pyruvate, which bypasses Aralar/AGC1-MAS
activity, rescued the effects of the lack of Aralar/AGC1
on respiration, clearly showing that the major role of
Aralar/AGC1-MAS is to provide pyruvate to mitochondria
(Llorente-Folch et al. 2013). These results also reveal that
the accumulation of Ca2+ into mitochondria through the
MCUC is not sufficient to fully activate mitochondrial
respiration and that Aralar/AGC1-MAS activity, by
providing pyruvate into mitochondria, is unambiguously
required.

Small workloads. Aralar/AGC1-MAS pathway is the only
Ca2+-regulated mechanism responsible for upregulation
of respiration in response to small Ca2+ signals produced
by carbachol (Llorente-Folch et al. 2013). Small Ca2+
signals generated by activation of G-protein-coupled
receptors and Ca2+ release from intracellular stores
did not reach mitochondria in neurons (Pardo et al.
2006; Llorente-Folch et al. 2013) but increased neuro-
nal mitochondrial NAD(P)H mediated by activation
of Aralar/AGC1-MAS (Pardo et al. 2006). Carbachol
stimulation resulted in a small increase in ATP
demand and coupled respiration in intact neurons
which, not unexpectedly, was absolutely dependent on
Aralar/AGC1-MAS (Llorente-Folch et al. 2013).

Moderate workloads. Depolarization in response to iso-
smotic high K+ promoted an increase in cytosolic Ca2+
that reached the mitochondrial matrix and produced a
moderate fall in cytosolic ATP levels (Llorente-Folch et al.
2013) (Fig. 2). This in turn stimulated mitochondrial
respiration (Llorente-Folch et al. 2013) (Fig. 3A and E).
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Interestingly, Ca2+-dependent regulation of
mitochondrial respiration by high K+-induced
depolarization was completely abolished in the absence
of Aralar/AGC1 and the addition of external pyruvate
rescued the lack of Aralar/AGC1 (Fig. 3B and D).

Paradoxically, the lack of response of Aralar/AGC1 KO
neurons to K+-depolarization occurred despite increased
cytosolic and mitochondrial Ca2+ concentrations
and increased mitochondrial NAD(P)H levels (Pardo
et al. 2006), which would be expected to increase

Figure 2. Changes of cytosolic and mitochondrial Ca2+ and cytosolic ATP in cortical neurons in response
to potassium
Changes in [Ca2+]cyt, in Fura-2 loaded neurons (A–C) or [Ca2+]mit, in neurons transfected with Mit GEM-GECO1
probe (D–F) obtained by stimulation with 30 mM KCl in 2 mM Ca2+ medium (A and D), Ca2+ free medium in the
presence of the Ca2+ chelator EGTA (B and E), or in 50 μM BAPTA-AM preloaded neurons, an intracellular Ca2+
chelator that preserves the workload preventing Ca2+ signalling, in 2 mM Ca2+ medium (C and F). Recordings
from at least 60 cells per condition and two independent experiments were used for cytosolic Ca2+ imaging and
a minimum of 15 cells and eight independent experiments were used for mitochondrial Ca2+ imaging. Individual
cell recordings (in grey) and average (thick black trace) were shown. G–I, cytosolic ATP levels after a switch from
HCSS medium to isosmotic high K+ medium in which 30 mM NaCl was replaced by 30 mM KCl either in 2 mM

Ca2+ medium (G) or 100 μM EGTA medium (H). Comparison between the two previously mentioned conditions is
shown in (I). The drop in ATP values with respect to basal levels 200 s after high K+ stimulation was 18.6 ± 0.3%
in the presence and 9 ± 0.1% in the absence of Ca2+ (∗∗P = 0.009, two-tailed unpaired Student’s t test). Data
are expressed as the mean ± SEM (modified from Llorente-Folch et al. 2013).
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respiration. Moreover, wild-type and Aralar/AGC1
KO neurons showed a similar activation of PDH after
5 min in isosmotic 30 mM KCl (1.20 ± 0.09-fold versus
1.21 ± 0.06-fold increase in the PDH/P-PDH ratio
in wild-type and Aralar/AGC1 KO neuronal cultures,
respectively) (Fig. 4A–C). Thus, the absence of stimulation
of mitochondrial respiration in Aralar/AGC1 KO neurons

is not a result of differences in PDH dephosphorylation
compared to wild-type. Treatment with the PDH
kinase inhibitor dichloroacetic acid (DCA), 1 h before
K+ stimulation, also causes a similar maximal PDH
dephosphorylation in wild-type and Aralar/AGC1 KO
neurons (1.35 ± 0.01-fold versus 1.39 ± 0.05-fold increase
in PDH/P-PDH ratio in wild-type and Aralar/AGC1

Figure 3. OCR responses to potassium in Aralar/AGC1-deficient neurons
Cellular OCR was measured using a Seahorse XF24 Extracellular Flux Analyser (Seahorse Bioscience, North Billerica,
MA, USA) (Qian and Van Houten, 2010). Cortical neurons were plated in XF24 V7 cell culture at 1.0 × 105 cells/well
and incubated for 9–10 days in a 37ºC, 5% CO2 incubator in serum-free B27-supplemented neurobasal medium
with high levels of glucose. To study OCR, cells were equilibrated for 1 h in 2.5 mM glucose HCSS in the presence
of 2 mM CaCl2. Next, neurons were either maintained in the same medium or stimulated with 30 mM KCl in
2.5 mM glucose in Ca2+-containing isosmotic HCSS medium in which 30 mM NaCl was replaced by 30 mM

KCl at the start of the respirometry experiments. Calibration of respiration took place after the vehicle (veh)
injection in port A. Substrates were prepared in the same medium in which the experiment was conducted and
were injected from the reagent ports automatically to the wells at the times indicated. Mitochondrial function
in neurons was determined through sequential addition of 6 μM oligomycin (Olig), 0.5 mM 2,4-dinitrophenol
(DNP) and 1 μM antimycin/1 μM rotenone (A/R). This allowed the determination of basal oxygen consumption
(BS), oxygen consumption linked to ATP synthesis (ATP), non-ATP linked oxygen consumption (leak), mitochondrial
uncoupled respiration (MUR) and non-mitochondrial oxygen consumption (NM) (Qian and Van Houten, 2010;
Brand and Nicholls, 2011). Respiratory profiles are shown for control (A) and Aralar/AGC1-deficient neurons (B)
upon K+ stimulation, in neurons pre-treated or not with 2 mM DCA for 1 h, in the presence of 2 mM Ca2+.
Respiratory profiles are shown for control (C) and Aralar/AGC1-deficient neurons (D) upon K+ stimulation, with
or without the addition of 2 mM pyruvate just before starting the experiment, in the presence of 2 mM Ca2+.
Stimulation of mitochondrial respiration (E) and maximal uncoupled respiration (MUR) (F) is shown upon K+
stimulation after 2 mM DCA pre-teatment or 2 mM pyruvate addition. Data correspond to four or five and two to
four independent experiments in wild-type and Aralar/AGC1 KO cultured neurons, respectively (one-way ANOVA,
∗P � 0.05; ∗∗P � 0.01). KCl, isosmotic high K+, 30 mM; Pyr, pyruvate, 2 mM.
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KO neurons, respectively) (Fig. 4A–C). However, DCA
treatment increases basal respiration only in wild-type
and not in Aralar/AGC1 KO neurons, and this increase
in respiration caused by DCA was not increased any
further by 30 mM KCl (Fig. 3A). However, DCA treatment
did not change basal or K+-stimulated respiration in
Aralar/AGC1 KO neurons (Fig. 3B and E).

Figure 4. Pyruvate dehydrogenase complex dynamics after
K+- depolarization in wild-type and Aralar/AGC1 KO primary
cortical neurons
A, scheme depicting the complex dynamics of pyruvate
dehydrogenase. PDH-E1 subunit is active in its dephosphorylated
state. Pyruvate dehydrogenase kinase (PDK), whose activity is
negatively controlled by NAD/NADH, ADP/ATP and Pyr/AcCoA ratios,
phosphorylates the enzyme in the Ser(293) residue, inactivating the
complex. On the other hand, pyruvate dehydrogenase phosphatase
(PDP), which is positively regulated by intramitochondrial Ca2+,
dephosphorylates PDH-E1, recovering the active form. DCA inhibits
PDK, favouring the active form of PDH. B, representative western
blot against PDH (anti-PDH subunit E1, mouse monoclonal antibody,
dilution 1:5000; Invitrogen, Carlsbad, CA, USA) and p-Ser(293) PDH
(anti-PDH, rabbit polyclonal antibody, dilution 1:2000; Novus
Biologicals, Littleton, CO, USA) and IRDye secondary antibodies
optimized for use with Oddysey (800 CW goat anti-rabbit IgG and
680 RD goat anti-mouse IgG, dilution 1:50000; Li-Cor, Lincoln, NE,
USA). Neurons were obtained under control conditions, or after
5 min of exposure to isosmotic 30 mM KCl, or under these same
conditions prior to pre-treatment for 1 h with 2 mM DCA. Merged
image combines both green and red fluorescence to denote the
PDH/phosphorylated pyruvate dehydrogenase (P-PDH) ratio. C,
western-blotting quantification expressed as the fold increase in
anti-PDH/anti-p-Ser(293) PDH ratio compared to control. Data
correspond to three to five independent experiments in wild-type
and Aralar/AGC1 KO cultured neurons, respectively (Student’s t test,
∗P < 0.05). Pyr, pyruvate; AcCoA, acetyl coenzyme A; KCl: isosmotic
high K+, 30 mM.

The findings in wild-type neurons are consistent
with a role of matrix Ca2+ in ‘pulling’ pyruvate
into mitochondria during K+-induced stimulation of
respiration (Rueda et al. 2014). By activating PDH
phosphatase and enzyme dephosphorylation, matrix Ca2+
will activate PDH and the decarboxylation of pyruvate,
which will pull pyruvate from the cytosol to mitochondria
across the pyruvate carrier by mass action ratio effects.
The finding that activation of PDH by DCA results
in an increase in OCR similar to that obtained by
K+-depolarization is consistent with a role of PDH activity
in driving pyruvate into mitochondria.

However, K+-induced or DCA-induced activation
of respiration does not take place in Aralar/AGC1 KO
neurons even though PDH is activated under both
conditions (Fig. 4A–C). The lack of Aralar/AGC1-MAS
activity and the diminished pyruvate levels in
Aralar/AGC1 KO neurons (Pardo et al. 2011) reveal
that activation of PDH is insufficient to increase pyruvate
entry in mitochondria under this workload.

MCUC in the regulation of mitochondrial respiration

The role of the MCUC in basal respiration or
workload-induced respiration in neurons is still unknown.
MCU is clearly responsible for glutamate/NMDA-induced
Ca2+ entry in neuronal mitochondria, and knockdown of
endogenous MCU decreased NMDA-induced increases in
mitochondrial Ca2+ in neurons and slightly attenuated the
sensitivity to excitotoxicity (Qiu et al. 2013). However, this
approach did not completely eliminate NMDA-induced
increases in mitochondrial Ca2+, either as a result of the
insufficient silencing efficiency or the presence of other
pathways for Ca2+ uptake (Qiu et al. 2013). Thus, the
consequences of MCU silencing on neuronal respiration
remain to be determined.

On the other hand, the description of an MCU KO
mouse with an unexpectedly mild phenotype (Pan et al.
2013) and of human diseases as a result of mutations
in MICU1 (the Ca2+ sensitive regulatory subunits of
MCUC) may shed light of the role of MCUC in the
regulation of mitochondrial respiration. Mitochondria
from MCU KO mice had no Ru360-inhibitable Ca2+
uptake in mitochondria, with no functional compensation
for the rapid entry of Ca2+ into the matrix because
MCU KO mitochondria do not take up any measurable
Ca2+ over a 10–20 min period (Pan et al. 2013; Murphy
et al. 2014). However mitochondrial Ca2+ levels were
depleted but not completely absent, suggesting a possible
slow mechanism for Ca2+ uptake independent of MCU
(Murphy et al. 2014).

As discussed earlier, MCU KO mice did not present
alterations in basal metabolism at the whole animal
level, or any defect in respiration in mouse embryonic
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fibroblast cultures, even though the Ca2+ content in
skeletal muscle mitochondria was decreased and the
PDH phosphorylation state was increased (Pan et al.
2013). Consistent with a role of MCU at high workloads,
skeletal muscle peak performance was slightly decreased
(�15%) in MCU KO mice. Whether compensatory
mechanisms explain the mild effect of MCU deficiency
on mitochondrial metabolism remains to be established.
Indeed, MCU KO generated a viable phenotype only in a
mixed background as a hypomorph, although this has
proven to be embryonic lethal in pure inbred strains,
including the C57BL/6 background (Murphy et al. 2014).

By contrast to the mild phenotype of the MCU KO
mouse, loss of function mutations of MICU1, the first
genetic human disease to be identified involving mutations
of the MCUC, were associated with proximal myopathy,
learning difficulties and a progressive extrapyramidal
movement disorder in children (Logan et al. 2014).
Genetic analysis identified two mutations, a splice acceptor
site mutation, c.1078-1G>C, and a splice donor site
mutation, c.741 + 1G>A, in MICU1 in a total of 15
affected individuals from seven families, resulting in
nonsense-mediated decay and loss of protein. Cellular and
mitochondrial Ca2+ homeostasis were analysed in primary

Figure 5. Consequences of MICU1/2 loss on mitochondrial Ca2+ homeostasis, shape and metabolic
function
A, relationship between cytosolic and mitochondrial [Ca2+] during evoked Ca2+ signals. MICU1/2 defective cells
have an increased basal mitochondrial Ca2+ load, which follows linearly the increase in cytoplasmic [Ca2+]
(reproduced with permission from Logan et al. 2014). B, increased mitochondrial Ca2+ load can activate
mitochondrial metabolism by stimulating Ca2+-dependent dehydrogenases of the mitochondrial matrix. On the
other hand, chronic Ca2+ load in the mitochondrion might also have also a metabolic cost by resulting in futile Ca2+
cycling (inset) and opening of the mitochondrial permeability transition pore (mPTP), both leading to depolarization.
In addition, we observed increased mitochondrial fission, which might impact on the metabolic capacity of the
organelle. In the human fibroblast model of the disease, no changes in ER mitochondria tethering were observed.
mfn2, mitofusin 2; ERMES, ER-mitochondria encounter structures; Miro, mitochondrial Rho GTPase; MINOS:
MINOS/MitOS/MICOS complexes; RC, respiratory supercomplexes; F1/FO, F1FO ATPase.
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skin fibroblasts from patients showing that MICU1
deficiency caused loss of the physiological cooperative
sigmoid regulation of mitochondrial Ca2+ concentration
(Szabadkai & Duchen, 2008), increasing the basal Ca2+
load in the organelle with a significant increase in the
velocity of mitochondrial Ca2+ uptake in response to a
rise in cytosolic Ca2+ concentration. The increased resting
mitochondrial Ca2+ concentration was associated with
a highly fragmented mitochondrial network. The data
suggested that loss of MICU1 leads to chronic activation
of the MCU channel even at resting cytosolic Ca2+
concentrations, highlighting the functional importance
of the sigmoid dependence of mitochondrial Ca2+
uptake on extramitochondrial [Ca2+]. The expression
of MICU1 effectively results in a threshold effect
at low, submicromolar extramitochondrial [Ca2+] and
cooperative Ca2+-mediated activation of Ca2+ uptake
kinetics at higher (> μM) extramitochondrial Ca2+
levels. Such a dual role of MICU1 has been previously
shown in cellular models (Mallilankaraman et al. 2012a;
Csordas et al. 2013) and the molecular details of the
regulatory mechanism were recently refined further by
the description of MICU1/MICU2 heterodimers (Patron
et al. 2014). Importantly, although all of the studies agree
that MICU1 (and consequently MICU2) loss leads to a
significant increase in basal resting mitochondrial [Ca2+],
no clear metabolic consequences have been demonstrated.
This might be a result of the highly glycolytic phenotype
of human fibroblasts (Logan et al. 2014) and cancer
cell lines (Mallilankaraman et al. 2012a; Csordas et al.
2013), although, similarly, primary hepatocytes, where
cellular energy metabolism relies more on OXPHOS, have
also shown unaltered basal respiration after knockdown
of MICU1 (Csordas et al. 2013). By contrast, in the
hepatocyte model, Ca2+-dependent activation of oxygen
consumption was blunted in the absence of MICU1. These
findings might indicate the relatively minor importance
of basal Ca2+ levels on mitochondrial metabolism (in
contrast to previous findings; Cardenas et al. 2010) or
can be attributed to a more complex role of Ca2+ in
mitochondrial metabolism.

Ultimately, these data show that the MICU1-mediated
sigmoid Ca2+ activation of mitochondrial Ca2+ uptake
serves as a signal-to-noise discriminator, protecting cells
from chronic futile Ca2+ cycling, which represents
an important energy drain. In the absence of
MICU1/MICU2, increased uptake of Ca2+ even at rest
would represent chronic activation of a futile Ca2+
cycle, dissipating the proton motive force and preventing
OXPHOS (Fig. 5). The net result on cellular metabolism
in this case might not be evident from measurements of
membrane potential and O2 fluxes, particularly in cells
where the reverse mode of the ATP synthase (Campanella
et al. 2009) is also involved in maintaining the resting

membrane potential. Thus, although the results from
MCU KO mice and MICU1 deficient models suggest
that intramitochondrial Ca2+ signalling makes a relatively
small contribution in metabolism, its tight regulation and
its conservation under evolutionary pressure are evident
from the pathology of the human MICU1 deficiency,
affecting primarily muscle and neurons. The precise
influence of the MCU-mediated pathway on respiration
of brain neurons awaits clarification using the models now
available.

On the other hand, Aralar/AGC1-MAS activity by itself
or through stimulation by extramitochondrial Ca2+ has a
strong relevance both under basal conditions and upon
stimulation. Aralar/AGC1-MAS deficiency significantly
compromises glucose oxidation, basal respiration and
maximal uncoupled respiration (Llorente-Folch et al.
2013). Moreover, the Aralar/AGC1-MAS pathway, by
regulation of pyruvate supply to mitochondria, plays a
paramount role in the response to the small, moderate and
strong signals that we have investigated (Llorente-Folch
et al. 2013, Rueda et al. 2014). The roles played by MAS
activity itself with respect to Ca2+ regulation through Ca2+
binding to Aralar/AGC1 remain to be established.
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