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Abstract

Autoimmune diseases like rheumatoid arthritis are multifactorial in nature, requiring both genetic 

and environmental factors for onset. Increased predisposition of females to a wide range of 

autoimmune diseases points to a gender bias in the multifactorial etiology of these disorders. 

However, the existing evidence tol date has not provided any conclusive mechanism of gender- 

bias beyond the role of hormones and sex chromosomes. The gut microbiome, which impacts the 

innate and adaptive branches of immunity, not only influences the development of autoimmune 

disorders but may interact with sex-hormones to modulate disease progression and sex-bias. Here, 

we review the current information on gender bias in autoimmunity and discuss the potential of 

microbiome-derived biomarkers to help unravel the complex interplay between genes, 

environment and hormones in rheumatoid arthritis.

1. INTRODUCTION

Autoimmune diseases are characterized by alterations in normal immune function, resulting 

in hyperactive immune response against self proteins and tissues. Even though the etiology 

of autoimmune disorders is unknown, extensive clinical research over the past decade has 

pointed to genetic and environmental factors that interact to trigger disease. The genetic 

basis of autoimmunity is associated with a complex array of risk loci, the most important 

being those located in the Major Histocompatibility Complex (MHC), conferring 

susceptibility or resistance to disease [1]. Different disease outcomes in genetically identical 

individuals [2] imply that environmental triggers such as diet [3], infections and smoking 

exacerbate autoimmunity[4–6]. Although, in these studies, environment-derived antigens 

have been reported to increase (inflammatory reactions), mechanistic insight into how 

autoimmunity arises remain largely obscure.

Recent advances in “omic”-based approaches (metagenomics, metabolomics and 

proteomics) and bioinformatics have facilitated our understanding of the mechanisms of a 

broad range of diseases and have allowed us to identify potential biomarkers for diagnosis 
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and therapeutic intervention [7]. One particular area of research receiving increasing 

attention over the past 5 years has focused on using omic-based techniques to study how the 

gut microbiome, the collection of bacteria, viruses, fungi and protozoa lining the 

gastrointestinal mucosa, significantly impact health and disease [8–10]. These vastly diverse 

microbial communities not only play a vital role in nutrient synthesis and energy harvest 

from foods but also tightly regulate the innate and adaptive branches of immunity [11–16]. 

Recent research about the role of gut microbes in adaptive immune response has 

substantially changed our understanding of how genes, environmental factors and our 

“second genome” (the gut microbiome) interact to influence autoimmunity.

In this review we focus on the sex-bias of autoimmune disorders that, although well 

documented, still lacks mechanistic insight with regards to genetic and gut microbial 

interactions. Studies in humans and mouse models have revealed that females are 2–10 

times more susceptible than males into a wide range of autoimmune disorders, including 

rheumatoid arthritis (RA), Multiple Sclerosis (MS), systemic lupus erythematosus (SLE), 

myasthenia gravis (MG), Sjogren’s syndrome and Hashimoto’s thyroiditis [17, 18]. Yet, 

recent evidence is just beginning to emerge linking sex-specific microbial clades during 

disease progression, and pointing to complex interactions between gut microbes, genetic 

factors, environment and sex hormones. This review does not intend to discuss the current 

knowledge on the genetic or environmental triggers of autoimmune disorders and gender-

bias, which have been elegantly reviewed elsewhere [19–22]. Here, we review the current 

literature relating gut microbes to the sex-based differences observed in various autoimmune 

disorders and discuss how diverse experimental platforms contribute to developing useful 

biomarkers for disease progression and for therapeutics.

2. The gut microbiome and autoimmunity

Mucosal surfaces are exposed daily to various environmental factors and therefore require 

an effective protection that can efficiently eliminate the majority of external agents. The 

mucosa-associated lymphoid system (MALT), which carries most of the immunologically 

active cells in the body, is the main barrier against potential insults from gut commensals 

and external agents. A characteristic feature of mucosal immunity that distinguishes it from 

systemic immunity is the maintenance of tolerance to non-dangerous antigens in the gut 

[23–26]. Intestinal bacteria are necessary for the development of competent mucosal 

immunity. Experiments with germ-free (GF) and specific-pathogen free mice (SPF) have 

shown that stimuli from intestinal commensals are required for maturation, development and 

function of important components of humoral and cell-mediated immunity [27, 28]. 

Bacterial metabolites and metabolic products generated from specific dietary substrates, 

mainly short chain fatty acids (SCFA), also regulate immune function. For instance butyrate 

is reported to exert immunomodulatory effects on intestinal macrophages and induce 

differentiation of T regulatory cells resulting in inhibition of IFN-γ-mediated inflammation 

[29, 30]. Thus, a homeostatic environment between the host and microbes is maintained by 

keeping these microorganisms from crossing the intestinal mucosa, yet maintaining 

tolerance to exploit the beneficial contribution of microbes to host physiology. However, 

failures in the epithelial integrity and mucosal immunity allow for bacteria to cross this 

barrier, triggering a pro-inflammatory response systemically. Consequently, diet-host- 
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microbe molecular interactions are critical components of immune-competence as well as 

autoimmune disease development.

A growing body of evidence has linked specific signatures of microbial clades to various 

autoimmune diseases. Additionally, there is a strong association between sex and incidence 

of disease in a variety of conditions. Thus, a deeper understanding of the gut microbial 

composition in males and females will be informative for sex-based treatment options. 

Although very few studies have made an association with the sex-biased nature of diseases, 

type I diabetes (T1D), an autoimmune disease occurring with male to female ratio of 3:2 in 

populations of European descent aged 15–40 years [31], is perhaps the most studied disorder 

for correlations with the gut microbiome. Patients with T1D have shown shifts in ratios of 

the main phyla within the gut microbiome exhibiting decreased Bacteroidetes: Firmicutes 

ratios, lower abundance of potential butyrate producers, and lower bacterial diversity [32]. A 

recent study in children showed that low abundance of bacteria typically associated to 

lactate and butyrate production was associated with β cell autoimmunity [33]. Additional 

evidence comes from another study where T1D incidence was associated with an increased 

abundance of specific taxa such as Clostridium and decreased Bifidobacterium and 

Lactobacillus compared to healthy subjects [34]. NOD mice develop disease with an 

increased incidence in SPF compared to GF conditions suggesting a potentially protective 

role of the gut commensals [35]. This is supported by the observations where segmented 

filamentous bacteria (SFB) were shown to segregate with protection from diabetes in NOD 

female mice [36]. Although the mechanism of the gender-bias protection is yet to be 

elucidated, it can, in part, be explained by an increase in testosterone levels by SFB [37]. 

Exploratory analyses in female-biased MS,, showed a decrease in abundance of 

Faecalibacterium Prausnitzii, a taxon with known butyrate producing potential, in affected 

individuals vs. controls [38]. Mouse models of MS, experimental autoimmune 

encephalomyelitis (EAE), showed that oral antibiotic treatment prior to EAE induction 

significantly reduced severity and onset of disease suggesting a role of gut microbes in 

pathogenesis [39].

3. Gut microbiome and rheumatoid arthritis

Rheumatoid arthritis has a strong genetic predisposition. Genome wide association studies 

have described multiple genes that are linked with susceptibility to RA; in partcular genes 

encoded in the class II loci provide the major risk factor. Alleles sharing the 3rd 

hypervariable region sequences with the DRB1*0401 called the “shared epitope” have been 

associated with predisposition to RA in most ethnic populations [40]. On the other hand, 

DRB1*0402 is considered a resistant allele for arthritis development. A role for hormones in 

pathogenesis of RA is underscored by the remission of arthritis during pregnancy and 

increased prevalence in women, occurring 2–3 times more often in women than in men. 

However, not all patients are carry the RA-susceptible alleles, suggesting that besides host 

genotype, environmental triggers may be important determinants of disease onset. An 

infectious etiology of RA has been suggested but the evidence is not conclusive [41]. The 

concept that resident commensal microbes may be a causal factor is not new [42]. An 

association between gut commensals and RA was inferred by the -discovery that some 

microbial DNA, likely of the gut origin, -is present in the synovial fluids of patients [43, 44]. 
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The involvement of resident commensals in driving RA progression is also supported by a 

high recurrence of periodontal inflammatory disorders in RA patients, caused by 

Porphyromonas gingivalis [45]. The mechanism by which P. gingivalis contributes to RA 

pathogenesis likely involves citrullination of bacterial and human antigens by this 

commensal and loss of tolerance to self-proteins in genetically susceptible individuals. An 

analysis of bacterial community composition through 16S rRNA high throughput 

sequencing in fecal samples of RA patients indicated that Prevotella copri and Prevotella-

like taxa were consistently found as a markers of disease, [46]. The involvement of gut 

commensals in the pathogenesis of RA is further supported by increased gut permeability, 

suggesting that compromised intestinal barrier integrity may lead to egress of luminal 

antigens including bacterial fragments and metabolites resulting in enhanced pro-

inflammatory response against specific commensals in RA [47].

An exposure to environmental factors early in life has a role in pathogenesis of RA [48]. The 

gut is the largest immune organ in the body that is exposed daily to environmental factors - 

but still maintains a tolerant state. The ability of antigen-specific oral tolerance to modulate 

arthritis suggests a role for the mucosal immune system in generating tolerance for 

protection from organ-specific autoimmunity [49]. Other factors associated with 

development of RA include aging and environmental factors like smoking. There is a 

growing interest in determining how genotype, hormones and environmental factors may 

impact the gut microbiome and RA. Recent data has suggested that genotype, age and sex 

may determine the gut microbiota. In RA patients, particular gut microbial community 

structure have also been found to be important determinants of disease onset [9, 50].

We have used humanized mice expressing RA-susceptible DRB1*0401 and resistant 

DRB1*0402 genes to determine if genetic susceptibility is associated with dysbiosis in the 

gut [47]. 16S sequencing of fecal samples showed differences in the gut microbial 

composition between susceptible and resistant mice, with significantly lower 

Bacteroidetes:Firmicutes ratios in the former. Further, data in these mice showed that the 

arthritis-susceptible mice had lost the dynamic changes that occur with age in the gut 

microbiota while the arthritis-resistant mice showed age-dependent changes. Dysbiosis in 

the gut microbiota of the susceptible mice was associated with increased gut permeability 

suggesting a gut-joint-axis in predisposition to RA.

A more direct evidence of commensal microbe causality in RA has come particularly from 

the use of germfree animal models [9]. One study showed that while joint inflammation was 

absent in GF mice, monocolonization of GF mice with a bacterium could lead to the 

development of T helper17-dependent arthritis [51]. These findings suggest that a dysbiotic 

intestinal microbiota present in a genetically susceptible host is required to trigger systemic 

autoimmunity leading to inflammatory arthritis in this animal model. The dependency of the 

gut microbial composition on the factors known to influence the onset and progression of 

RA mandate an understanding of the gut dysbiosis and associated metabolites that cause 

immune dysregulation in RA. Despite associations between specific microbial repertoires 

and autoimmune diseases, most reports have not considered the impact of sex hormones on 

the gut microbiome.
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4. Autoimmunity, sex hormones and gut microbes

The gender-biased nature of autoimmune disease in humans relies on an increase of innate 

and adaptive immune responses in females compared to males. In mice, antigen challenge 

can lead to increased autoreactive responses in females versus males [52]. Mechanistically, 

several fold increases in T cell activation, cytokine production, expression of genes involved 

in Toll-like receptor pathways and more efficient antigen presenting cell activity[53, 54] 

(among others) characterize the female autoimmune landscape. The hormonal environment 

in autoimmunity suggests that androgens and estrogens strongly modulate the Th1/Th2 

balance [55]. Androgens such as testosterone are reported to have a down-regulating effect 

on natural killer (NK) cells, tumor necrosis factor-alpha (TNF-α) production and Toll-like 

receptor 4, while enhancing the production of anti-inflammatory IL-10. In contrast, 

estrogens show an enhancing effect on cell-mediated and humoral immune response, NK 

cell cytotoxicity and the production of pro-inflammatory cytokines IL-1, IL-6 and TNF-α 

[53, 56]. This explains the enhanced immune reactivity in females, which is associated with 

more effective resistance to infection compared to males [53] but consequently increases 

susceptibility to autoimmune diseases [57].

Most animal models for rheumatoid arthritis show development of disease with similar 

incidence in both sexes. To generate a model that mimics the sex-bias of human disease, we 

used humanized DRB1*0401 and DRB1*0401/DQ8 mice. Upon immunization with type II 

collagen, *0401 and *0401/DQ8 mice develop arthritis predominantly in females mimicking 

human female to male ratio of 3:1 as well as the associated autoantibodies, rheumatoid 

factor and anti-citrullinated antibodies [52]. The molecular basis of the sex-bias of arthritis 

in this model was due, in part, to the differential function of antigen presentation cells 

leading to an enhanced T cell activation resulting in significant differences in cytokine 

production and regulatory responses between males and females [58, 59]. Thus, an 

interaction between genetic factors and sex-hormones influences the immune response 

systemically in RA. This phenomenon may also define the immune responses in the gut and 

hence determine the microbial composition that is able to maintain the homeostasis in that 

environment and may have an advantage for colonization.

Although the molecules involved in the complex interplay between genes and sex hormones 

in gender-based autoimmunity have been long identified, the role that gut microbes play in 

this scenario is less clear. Studies reporting specific gender associations of the gut 

microbiome composition in healthy humans are inconsistent [60–63]. In these reports 

abundance of specific taxa have been correlated with males (Bacteroides (Bacteroidetes), 

Ruminococcus Eubacterium, Blautia (Firmicutes)) and females (Treponema (Spirochaetes)), 

however, these differences likely reflect specific lifestyle and cultural gender-related factors 

rather than hormone-associated gender differences. Since in human studies it is difficult to 

interpret causality versus consequence of diseases due to a myriad of factors influencing the 

overall immune response, mouse models have been critical in understanding the role of gut 

microbes on human health.

Studies in mice have shown strong associations between host genetic background and gut 

microbiota configuration, regardless of gender [64]. The abundance of taxa within the main 
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gut bacterial phyla (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria) has been 

reported to be mainly affected by specific quantitative trait loci (QTL) in mice [65, 66], 

many of which also control vital immunological functions. Thus, it is likely that, when 

controlling for the effect of environment, host genotype has the strongest influence on 

mammalian gut microbiomes. This has critical implications in disease-susceptible 

genotypes, consistent with the observation that particular microbial community structure 

could modify disease progression in autoimmune disorders [9, 50]. An important question, 

nonetheless, is how sex hormones and specific gut microbiome compositions interact in 

gender-biased autoimmunity.

Members of the gut microbiome are reported to interact with steroids, possibly impacting 

the steroid balance at the intestinal level and the metabolic activity in the colonic ecosystem 

[67, 68]. As such, some specific taxa have the capacity to metabolize sex steroid hormones 

and influence their activity [69]. For instance, the intestinal commensal Clostridium 

scindens encodes hydroxysteroid dehydrogenases and other enzymes involved in 

glucocorticoid conversion into androgens [70]. Slackia sp., a common member of the gut 

microbiome, can exert inter-conversion of B-estradiol and estrogen. Even though some 

sterols can be re-absorbed from the colonic ecosystem through enterohepatic circulation, it is 

unclear whether or how microbiome-derived sex steroids have an impact on host physiology 

and immunity, analogous to that of host-derived hormones.

Recent reports on the influence of gut microbes on gender-based autoimmunity suggest that 

both bacteria and sex hormones interact directly to regulate disease fate in genetically 

susceptible individuals. Two elegant studies recently showed that the GF NOD mice do not 

exhibit a gender bias in diabetes [37, 71]. However, gender-bias in the SPF conditions 

occurs more often in females and can be reversed via transfer of gut microbiota from males. 

These data suggest that a feedback loop between sex-hormones and gut microbes determine 

the expansion of microbial lineages that can likely influence autoimmunity by triggering an 

inflammatory or tolerogenic effect. Overall, these studies argue that gut microbes drive 

testosterone-dependent attenuation of T1D via immune regulation, which could be a 

mechanism characteristic of other gender-biased autoimmune disorders (Figure 1).

Using the humanized transgenic mouse model of rheumatoid arthritis, we showed that 

arthritis-susceptible (DRB1*0401) and -resistant (DRB1*0402) mice exhibit a significantly 

different gut microbiome composition [47]. In addition, only resistant mice showed gender- 

driven and age-dependent gut microbiomes. The presence of Allobaculum, a genus related to 

Clostridiales, in susceptible mice was associated with proinflammatory conditions in the 

gut, which likely resulted in increased gut permeability in arthritic mice compared to naïve 

mice. Interestingly, the expansion of Clostridiales showed a significant correlation with 

increases in gene transcripts of pro-inflammatory cytokines (Th1/Th17) with a concomitant 

decrease in regulatory cytokines (IL-4, IL-22) in *0401 females as compared to males. The 

Clostridiales, one of the prevalent clades in the mammalian gut, have been isolated from 

synovial tissue of RA patients [43] suggesting translocation of gut commensals to peripheral 

tissues in the setting of increased gut permeability. While the arthritis-susceptible mice 

displayed high abundances of taxa related to the Clostridiales order, the arthritis-resistant 

mice showed increased abundance of Bifidobacteria and taxa related to Parabacteroides 
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(Bacteroidales, Porphyromonadaceae family). Interestingly, these protective microbiome 

traits were always significantly enriched in resistant females compared to resistant males. 

However, when the microbiomes of genetically susceptible mice were explored, a higher 

abundance of Bifidobacteria was common to males. Taxa related to Porphyromonadaceae, 

normal gut commensals, have been associated with protective and balanced microbiomes 

after antibiotic-associated dysbiosis [72] and Bifidobacteria and Lactobacillaceae are known 

health-promoting taxa in the gut [73]. These observations point not only to a possible pattern 

of health and disease biomarkers in gender-biased autoimmunity but also indicate that these 

pathologies may be further understood by taking into account the role of environmental, 

dietary and lifestyle factors,, for disease progression. These observations led us to propose 

that while susceptibility in *0401 mice are determined by HLA-driven control of dysbiotic 

(unbalanced) microbiomes, the sexual dimorphism of disease may be due to hormonal 

impact on gut microbes.

Although a tremendous effort has been made -to characterize the gut microbial community 

structures and microbe-derived metabolites that shape the immune responses in health and 

disease, several questions still remain. It is still unclear how sex hormones or genotype 

primarily modulate the colonic ecosystem to impact immunity in gender based autoimmune 

disorders. The mechanisms involved may differ substantially in different autoimmune 

pathologies and may be confounded by an interaction between the three axes; genotype, sex 

steroids and gut microbes (Figure 2). To clarify the complex interactions between these 

three axes in influencing autoimmunity, one could be looking for specific gut bacterial 

clades with either potentially protective or pro-inflammatory roles. Most importantly, 

biomarker characterization based on microbiome studies will further allow us to assess the 

effect of environmental factors (i.e., diet, lifestyle) on triggering gender-based 

autoimmunity. However, while these biomarkers may provide clues to associations between 

the specific microbiome traits and disease and help us understand possible mechanism of 

pathogenesis, they do not predict the cause or provide details on the involvement of gut 

bacteria in disease. Nonetheless, despite the existence of certain common taxonomic and 

functional traits between healthy or disease and specific bacterial markers, they may not 

always be consistent. This inconsistency may be due to variable conditions including 

experimental and sequencing platforms and differences in disease models. Table 1 shows 

bacterial taxa found to be associated with gender-biased autoimmune disease. However, the 

abundance or detection of specific taxa in diseased or healthy subjects does not illustrate on 

their specific involvement in disease development.

5. Conclusions and Future perspectives

The reviewed evidence suggests that specific gut microbiome patterns are associated with 

autoimmunity. However, the etiology of sex-biased autoimmune disease with regards to, the 

role of gut microbes and their interactions with hormones and other environmental factors 

(Figure 2) is still poorly characterized. There is a need to clearly separate the effect of sex 

background when analyzing the gut microbial ecology of autoimmune disease, an approach 

that few studies have adopted. Also, it is interesting to see that in many cases in which the 

effect of sex background on microbial composition has been clearly stated, the bacteria 

involved are known to have specific dietary roles in the colonic ecosystem (i.e. Clostridium 
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and sugar fermentation) or potential probiotic effects (i.e. Lactobacillus). These observations 

open the door for exploiting the usability of other “OMIC” based technologies to further 

unravel the interactions between diet, hosts and gut microbes in sex-biased autoimmunity. 

Metabolomics surfaces as an attractive tool to identify specific biomarkers that profile the 

diet-host-microbe co-metabolic environment in stool, urine and plasma in autoimmunity. 

This approach has been widely implemented in T1D, where disturbance of glucose, lipid and 

amino acid metabolism as well as of the tricarboxylic acid cycle influenced by gut microbes 

(bile acids, p-cresol sulfate) are common[74]. In RA, the available reports using 

metabolomics as an exploratory tool do not specifically address the role of gut microbes in 

sexual dimorphism and disease etiology [75], but rather, have focused on the effect of 

specific therapeutic agents on disease progression [76, 77]. As meta-transcriptomics and 

metagenomics are also incorporated to unravel the role of gut microbes in sex-biased 

autoimmune disorders, a system-level understanding of disease mechanisms can be 

achieved. Adopting a systems-biology approach by exploring metabolomics-microbiome-

metagenomics and meta-transcriptomics in the colonic ecosystems will make it easier to 

delineate how diet- microbe co-metabolism converges in sex-biased autoimmunity. This 

might open new avenues for dietary interventions and design of pre and pro biotics that can 

be used as therapeutic agents to modulate disease progression.
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Highlights

Interaction between environmental and genetic factors with gut microbiota 

influences gut immunity

Sex hormones influence autoimmunity via gut microbial composition

Modulation of gut microbial composition may provide a novel target for treatment 

for autoimmune diseases
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Figure 1. Influence of sex-hormones on the gut microbial composition and immune response
Environment and genetic factors have a significant effect on gut microbial composition and 

modulate the abundance of specific taxa within the microbial ecosystem. Gender-bias in - 

gut microbiome profiles is caused, in part, by the sex hormones, estradiol and testosterone, 

which may influence gut microbial composition directly (a) or indirectly (b) by shaping the 

gut mucosal immune environment. β-estradiol promotes differentiation of conventional 

dendritic cells (DCs) into IL-12, IFNγ-producing DCs which activates pathways for pro-

inflammatory cytokines IL-6 and IL-8 and polarization of T cells into Th1/Th17 (red dots) 

rather than anti-inflammatory cytokines (green dots). Estradiol also enhances the survival of 

B cells and polyclonal B-cell activation, which could be related to increased autoantibody 

production. In females, there is an increased expression of genes involved in Toll-like 

receptor pathways. The pro-inflammatory immune environment compromises gut 

permeability, causing translocation of gut commensals in to the lamina propria where they 

can amplify pro- inflammatory responses. In males (right panel), testosterone has a 

suppressive effect on T cell proliferation, resulting in attenuated immune responses and a 

balanced immune system. DCs maintain a tolerant environment by generating Th1/Th17 as 

well as T regulatory cells by production of IL-4, IL-10, IL-22 and CCL20. Testosterone is 

associated with decreased expression of genes involved in Toll-like receptors pathways and 

antigen presentation so that integrity of the intestinal barrier is not compromised. Thus sex-

hormones modulate local immune response by involving cells of the adaptive immune 

system which leads to changes in systemic immune responses contributing to pathology.
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Figure 2. Genetic factors, sex hormones and environment modulate the outcome of gut microbial 
composition and disease phenotype
In genetically susceptible individuals, a dysbiotic gut microbiome exacerbates a detrimental 

diet-microbe-host co-metabolism resulting in an unbalanced or pro-inflammatory mucosal 

immune environment conducive to autoimmunity. A protective phenotype in healthy 

individuals is maintained by both genomic and dietary control of a homeostatic colonic 

ecosystem. Sex hormones can modulate the local immune environment. The impact of 

estrogen on various immune cells contributes to a hyperactive immune environment while 

androgens (testosterone) maintain an anti-inflammatory mucosal immune environment. 

Thus, dietary interventions have the potential to modulate the microbiome composition in 

susceptible individuals and change disease outcome, especially in affected females.
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Table 1

Bacterial taxa reported in autoimmune disease and their association with sex-biased autoimmunity

Taxa or bacterial feature Background Sex-bias Ref.

Bacteroidetes:Firmicutes ratio Low ratios associated with T1D in affected children. Low 
ratio in genetically arthritis-susceptible humanized mice

NR [32, 47]

Lactobacillus Potentially protective role in T1D, low abundances in 
affected children. Also enriched in male mice showing 
resistance against T1D. Also low abundances in affected 
female mice in a SLE model.

SLE, T1D [34, 78, 79]

Clostridium, Bacteroides, Veillonella, 
Allistipes

High abundances associated with high T1D incidence and 
increased acetate and propionate in distal gut

NR [79, 80]

Bifidobacterium Low abundance in T1D affected children. High abundance in 
disease susceptible males (which exhibit less severe RA 
symptoms). High abundance in arthritis- resistant humanized 
female mice

RA [34, 47]

Faecalibacterium and Subdoligranulum Low abundance associated with low butyrate concentrations 
in distal gut and high T1D incidence. Decreased abundance 
in (F. prausnitzi) in Multiple Sclerosis

NR [38, 80]

Prevotella and Akkermansia Low abundance associated with low mucin degradation 
potential and high T1D incidence

NR [80]

Prevotella copri and Prevotella related taxa High abundance in RA NR [46]

Lachnospiraceae High abundance and prevalence in affected mice in a SLE 
model.

SLE ([79]

Clostridiales Increased in collagen induced model of RA NR [47]

Parabacteroides and Barnesiella High abundances in disease resistant females (compared to 
males) in a collagen induced model of RA. Also increased in 
males (Parabacteroides), with resistant phenotypes for T1D

RA (6, 10)[47, 71]

Roseburia, Blautia, Coprococcus Bilophila High abundances in susceptible females in a murine T1D 
model

T1D [71]

Porphyromonadaceae High abundance in males resistant to T1D in murine model T1D [37]

Enterobacteriaceae, Peptostreptococcaceae and 
segmented filamentous bacteria

High abundance in males resistant to T1D in murine model T1D [36]

RA-rheumatoid arthritis, SLE- Systemic lupus erythematosus, T1D- type1diabetes, NR- not reported
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