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Abstract

Cancers detected at a late stage are often refractory to treatments and ultimately lethal. Early 

detection can significantly increase survival probability, but attempts to reduce mortality by early 

detection have frequently increased overdiagnosis of indolent conditions that do not progress over 

a lifetime. Study designs that incorporate biomarker trajectories in time and space are needed to 

distinguish patients who progress to an early cancer from those who follow an indolent course. 

Esophageal adenocarcinoma (EA) is characterized by evolution of punctuated and catastrophic 

somatic chromosomal alterations and high levels of overall mutations but few recurrently mutated 

genes aside from TP53. Endoscopic surveillance of Barrett’s esophagus (BE) for early cancer 

detection provides an opportunity for assessment of alterations for cancer risk in patients who 

progress to EA compared to nonprogressors. We investigated 1,272 longitudinally collected 

esophageal biopsies in a 248 Barrett’s patient case-cohort study with 20,425 person-months of 

follow-up, including 79 who progressed to early-stage EA. Cancer progression risk was assessed 

for total chromosomal alterations, diversity, and chromosomal region-specific alterations 

measured with single nucleotide polymorphism arrays in biopsies obtained over esophageal space 

and time. A model using 29 chromosomal features was developed for cancer risk prediction (Area 

under receiver operator curve=0.94). The model prediction performance was robust in two 
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independent EA sets and outperformed TP53 mutation, flow cytometric DNA content and 

histopathologic diagnosis of dysplasia. This study offers a strategy to reduce overdiagnosis in BE 

and improve early detection of EA and potentially other cancers characterized by punctuated and 

catastrophic chromosomal evolution.
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Introduction

Vast amounts of time and resources are spent on reducing the burden cancer has on 

individuals and society. One approach to cancer control is to identify individuals at highest 

risk of progressing to cancer and interrupt the process with currently available interventions 

such as resection. Unfortunately, many attempts to reduce cancer mortality through early 

detection tend to selectively identify individuals with slowly progressing or indolent 

conditions such as nonprogressing lesions of the esophagus, breast, prostate, thyroid, lung, 

and skin (1), resulting in overdiagnosis and overtreatment, and concomitantly fail to detect 

rapidly progressing disease (2).

Overdiagnosis and overtreatment are particularly relevant for persons with Barrett’s 

esophagus (BE). BE develops in an estimated 2% to 10% of patients who have chronic 

heartburn (3). In response to an acid and bile reflux environment, BE appears to be a 

protective adaptation in which the normal, stratified squamous epithelium of the esophagus 

is replaced by a specialized intestinal metaplastic columnar epithelium (4) with properties 

that protect the esophagus from reflux injury (3, 5). While BE is the only known precursor 

to esophageal adenocarcinoma (EA), the absolute lifetime risk of a BE patient developing 

EA appears to be low with the estimated annual incidence of cancer in large population-

based studies ranging from 0.12% to 0.43% (3, 6–8). The vast majority of patients (90–95%) 

in endoscopic biopsy surveillance programs for early cancer detection will neither be 

diagnosed with nor die of EA during their lifetime, resulting in overdiagnosis and 

overtreatment (3, 7). However, if EA is not detected until it is symptomatic, it is usually 

advanced and incurable with a 5-year survival of less than 15% (9).

The inherently dynamic, stochastic evolutionary processes that lead to cancer and the 

diversity of somatic genomic mutations and chromosome alterations in cancer make it 

difficult to identify specific alterations that may be used to predict risk of progression to 

cancer (10–12). The ideal study to identify robust markers of cancer risk would include a 

study design with sufficient sample size, spatial and temporal tissue sampling with 

prospective follow-up, a non-progressing control population with the same precursor 

condition, and a cancer outcome rather than non-valid surrogate endpoints. Cancer-only 

studies in EA have provided information about possible targets for treatment of advanced 

cancers (13–20), but lack non-progressing control populations required for early detection 

research. Cross-sectional studies have been frequently conducted in which tissue samples 

are compared across different patients that represent different stages of progression, but 
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these may not be representative of steps in progression in an individual patient given the 

diversity of genomic alterations present in different EAs (21–24).

Most EAs have extensive chromosomal instability, high levels of chromosome copy number 

alterations, and frequent catastrophic chromosomal events including whole-genome 

doublings (13, 15–21, 23, 24). In addition, EA has a high overall mutation frequency and a 

distinct mutation spectrum, yet with the exception of TP53, no recurrently mutated genes 

have been identified at high frequency in high-risk BE or EA to be useful as predictors of 

EA risk (13, 14, 22, 23). BE is an excellent model in which to study the somatic genomic 

evolutionary process at a stage before the widespread genomic instability that characterizes 

advanced EA. The clinical practice of periodic endoscopic biopsy surveillance for early 

cancer detection has allowed the systematic collection of mapped surveillance biopsies 

sampled over space and time from Barrett’s and normal control tissue in patients who did or 

did not progress to EA (25, 26). We have recently reported that patients with BE who do not 

progress to EA typically have low levels of somatic chromosomal alterations (SCA) that 

remain stable over prolonged periods of time, whereas those who progress to EA develop 

high levels of SCA, increased diversity, and evolve punctuated chromosome instability and 

catastrophic whole genome doublings within four years of EA detection (26).

We hypothesized that an EA risk prediction model based on SCA will improve risk 

stratification of BE patients. We developed cancer risk prediction models using genome-

wide SCA assessed over time and space in a large study with longitudinal follow-up and 

tested whether the risk models improved cancer prediction relative to current risk 

stratification approaches. These models were derived from a 248 person case-cohort study 

designed with a cancer endpoint and used longitudinal SCA data from 1,272 biopsies 

obtained by unbiased sampling at 2 cm intervals throughout the BE segment measured at 

two time points. The resulting SCA-based risk models were compared to histopathologic 

assessment of dysplasia, DNA content flow cytometry and TP53 mutations for cancer risk 

prediction. We show how the model can be applied in practice to deal with stochastic 

chromosome evolutionary processes during neoplastic progression. These results provide a 

path forward to identifying BE patients at highest risk for progression to EA who will 

benefit most from intervention.

Materials and Methods

Detailed methods are presented in Supplementary methods. The cohort study has been 

approved by the University of Washington Human Subjects Review Committee since 1983. 

A case-cohort study design (27, 28) was adopted and patients were drawn from a cohort of 

516 research participants with histopathologically documented BE at baseline and were 

followed based on a standard protocol (25). The case-cohort study included 248 individuals 

followed for 20,425 person-months, including all (n=79) individuals in the cohort who 

progressed to an endpoint of EA (progressors) and 169 who did not progress to EA during 

follow-up (nonprogressors) (Supplementary Table S1). Human Omni1-Quad v1.0 SNP 

arrays were used to assess genome-wide SCA in epithelial isolated cell populations every 2 

cm in the BE segment at two time points (T1=baseline, T2=penultimate) per individual (26). 

Genomes were divided into 3,064 1Mb segments and the frequencies of five SCA types in 
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each 1Mb segment (genome build hg19) and their risk relative (Hazard Ratio) for future 

cancer were quantified. Three methods were applied independently to identify SCA features 

for EA risk prediction including bootstrap and ranking, a combination of bootstrap and 

ranking with Lasso, and Lasso only. Eighty-six regions were selected for EA risk prediction. 

A 29-feature model (27 specific 1Mb regions representing the 86 regions, and two 

summation features from these 86 specific 1Mb segments) was built for risk prediction. The 

29 features were trained either with T1 data only or T1+T2 data and cross-validated to 

obtain two EA risk prediction models. The 29 SCA features were also measured using SNP 

array data from six independent EA surgical specimens and from an independent set of 47 

esophageal cancers from TCGA Research Network (29). The performance of the SCA based 

risk prediction models was compared with TP53 mutations and with dysplasia and DNA 

content flow cytometry using Receiver operating characteristic (ROC) prediction 

performance.

Results

Total SCA and SCA diversity

We have shown previously that total SCA and diversity increase in BE progressors at times 

closer to EA diagnosis (26). Therefore, we assessed the amount of five types of SCA 

(chromosome copy loss, copy gain, copy neutral loss of heterozygosity “cnLOH”, copy gain 

with balanced allele ratio “balanced gain”, and homozygous deletion) and SCA diversity 

throughout the genome as predictors of EA progression in BE at baseline (T1) and at the last 

endoscopy just prior to or at EA diagnosis in progressors or the penultimate endoscopy in 

nonprogressors (T2). Increasing amount of total SCA at T1 was associated with increased 

risk of progression (Fig. 1A). ROC curves were used to assess total SCA performance for 

EA prediction using biopsies from T1 (Area under ROC curve (AUC)=0.78) or T1 

combined with T2 (T1+T2) (AUC=0.80, Fig. 1B). Increasing genome-wide SCA diversity 

between T1 biopsies in an individual was also associated with increased risk of progression 

(Fig. 1C) and had similar ROC curves to total SCA (T1 AUC=0.79, T1+T2 AUC=0.80) 

(Fig. 1D). Thus, total SCA and SCA diversity are overall measures of chromosomal 

instability that confer an increased risk of progression to EA.

SCA frequency and hazard ratio

We hypothesized that prediction accuracy could be further improved by identifying only 

those SCA features selected during development of EA. The case- cohort study was 

designed to determine the temporal relationship between SCA and patient outcomes while 

preserving the characteristics of the entire cohort, allowing a cost-effective approach for 

genomic investigations (26–28). This study design allowed quantification of genome-wide 

SCA hazard ratios (HR) for risk of progression to EA to distinguish genomic alterations that 

occurred primarily during progression to cancer from those detected at similar frequencies in 

nonprogressors (Fig. 2). After SCA calls were made throughout the genome for each biopsy 

(Supplementary methods), the genome of each sample was divided into 3,064 one megabase 

(1Mb) segments and each of the five SCA types were called as a binary variable, either 

present or absent. HRs were calculated for all five SCA types independently at each 1Mb 

segment. Some high frequency SCA such as frequent loss and homozygous deletion 
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spanning CDKN2A, FHIT, and WWOX had a similar frequency in both nonprogressors and 

progressors and therefore conferred no or low risk (low HR) of progression to EA (Fig. 2A). 

In contrast, progressors were characterized by many low to moderate frequency SCA 

segments with high HRs that were infrequent in nonprogressors such as loss and cnLOH on 

chromosome 17p linked to TP53 and amplification spanning ERBB2 (Fig. 2B). Large-scale 

chromosome alterations, coupled with intra- or inter-individual heterogeneity, resulted in a 

large portion of the genome having significant HRs for one or multiple SCA types in the 

same chromosomal regions (Fig. 2C).

SCA feature selection for EA risk prediction

A stepwise feature selection was performed within each of the five SCA types using 

univariate hazard ratios to identify 1Mb genome segments that were significantly associated 

(p<0.1) with development of EA. Out of 15,320 possible 1Mb segments representing all five 

types of SCA throughout the 3,064 Mb genomic segments, 9,391 were significantly 

associated with progression to EA (Fig. 3). Further feature selection to reduce correlated 

events resulted in 86 SCA regions for cancer risk prediction (Supplementary Table S2, and 

Supplementary methods). To reduce the number of variables for EA prediction and 

minimize overtraining, bootstrapping and feature construction and ranking were used to 

identify a smaller set of predictors from the 86 SCA regions, resulting in 29 SCA features 

(Table 1, Fig. 3, and Supplementary methods). These 29 SCA features capture regions 

indicative of an overall process of genomic instability and take into account large genomic 

regions that are correlated (co-occur). Thus, any one of the 86 1Mb segments may involve 

many megabases and may not in and of itself be causative for progression. The robustness of 

this feature selection approach was supported by two independent feature selection methods 

(30) (Supplementary Fig. S1 and Supplementary methods).

The performance of these 29 features for EA risk prediction in BE was evaluated by 

multiple model training and cross-validation methods (Supplementary Fig. S2 and 

Supplementary methods). First, the 29 SCA features from T1 were used with one individual 

patient’s SCA data omitted during each round to train the prediction models. Parameters of 

the models were averaged to obtain the T1 risk prediction model (T1-model), and the model 

then was tested for predicting EA outcome using SCA data from T1 (AUC=0.94, Fig. 4A). 

The performance of predictions using the leave-one-out-sample approach (the Jackknife 

cross-validation of T1 SCA) showed similar results with slightly lower AUC (AUC=0.86, 

Supplementary Fig. S3). Next, the 29 SCA features from T2 were used to test the T1-model. 

T2 biopsies were collected from independent locations in the esophagus on average 64.7 

months after T1 biopsies. The T1-model was robust for EA risk prediction when it was 

tested using 29 SCA features from T2 (AUC=0.84, Fig. 4B).

Application of longitudinal SCA data for EA risk prediction

We sought to develop a risk model that could be applied to SCA data for risk prediction 

regardless of whether it was collected from one or multiple time points from an individual 

patient. The same 29 features used in the T1-model were used to train a model with SCA 

data from both endoscopic time points (T1 and T2) treated independently to test whether this 

combined dataset, with roughly twice the number of endoscopies, would improve the 
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accuracy and robustness of EA risk prediction in BE (Supplementary Fig. S2, 

Supplementary methods). To minimize over-training, a random set of 2/3 of the combined 

T1 and T2 data were used for model training and the remaining 1/3 were used as a set to test 

prediction performance (AUC=0.86, Supplementary Fig. S4, Supplementary methods). This 

procedure was repeated 10,000 times, and the model parameters from these iterations were 

averaged, resulting in a single “T1T2-model”. This model was applied to a composite 

(maximum by patient T1+T2) SCA call at each of the 29 SCA features for EA risk 

prediction (AUC=0.94, Fig. 4C, Supplementary Fig. S2, Supplementary methods). A 

bootstrap method showed the T1T2-model had consistently higher AUC than the T1-model 

(bootstrap ranking test p=0.0136, see Supplementary methods). The T1T2-model was 

trained with data from two time points treated independently and therefore provides 

flexibility to be used for data collected from either one or multiple time points. The T1T2-

model, which generates an EA risk score (predicted probability of EA) ranging from low to 

high EA risk (0 to 1, Supplementary methods), was used in subsequent analyses.

Testing the prediction models with independent sets of EA samples

Validation of a prediction model would ideally be performed on a large, independent sample 

set from a separate prospective BE cohort. This is challenging due to the prolonged nature of 

the study, including some nonprogressors followed for more than two decades, and the 

relative rarity of EA outcomes without use of surrogate endpoints. However, the T1-model 

and T1T2-models generated high EA risk scores of ≥0.96 in six advanced EAs from 

esophagectomy specimens (Supplementary Table S2) and risk scores of >0.99 in 39 of 47 

EA samples from TCGA (downloaded September, 2014) (29) from individuals who were 

not part of the case-cohort study (Supplementary methods).

Comparison of SCA with histopathology, DNA content flow cytometry, and TP53 mutation 
for EA risk prediction in BE

Histopathological evaluation of surveillance biopsies is the current clinical standard to 

identify patients at high risk of developing EA. In this study, histopathology was assessed 

using a standard protocol of four biopsies every two centimeters, whereas SCA was assessed 

in one biopsy every two cm in the esophagus. To compare the performance of the T1T2-

model with histopathological diagnosis of dysplasia, the prediction performance was 

evaluated for histopathology using 1, 2, 3 or 4 biopsies per two cm intervals for EA risk 

prediction using only T1 histopathology data (Fig. 4D), and combined T1+T2 

histopathology data (Fig. 4E). High-grade dysplasia (HGD) or any dysplasia (either HGD or 

low-grade (LGD)) were separately evaluated for EA risk prediction. The highest AUC was 

obtained using 4 biopsies every 2 cm in combined T1+T2 data for HGD only (AUC=0.81), 

but dropped to a maximum AUC=0.75 with 1 biopsy per 2 cm (from LGD+HGD in 

combined T1+T2).

DNA content flow cytometry had been previously performed at the same time points in 239 

of the 248 participants in this case-cohort study in separate biopsies every two centimeters 

(31, 32). The performance of flow cytometry for EA risk prediction was evaluated using 

results from T1 only (AUC=0.75), and combined T1+T2 (AUC=0.79) (Fig. 4F). The T1T2-

model utilizing only one biopsy every 2 cm (AUC=0.94) outperformed both dysplasia and 
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DNA content flow cytometry, even when evaluating the histopathology in up to four times 

the number of biopsies.

TP53 mutations status in exons 5–9 had been previously assessed in a longitudinal study in 

separate biopsies every two cm in the esophagus at a single time point before last endoscopy 

or EA diagnosis in 122 participants in this study, including 33 who subsequently progressed 

to EA (33). In these 122 patients TP53 mutations had 42% sensitivity and 92% specificity 

for future progression to EA. In comparison, for these 122 patients, the 29-SCA feature 

model with a 0.6 risk score threshold (Supplementary methods) resulted in 82% sensitivity 

and 92% specificity for future progression to EA using the T1-model, and 91% sensitivity 

and 90% specificity for future progression to EA using the T1T2-model

Dynamic stratification of EA risk: illustration of risk management during stochastic 
evolution to cancer

The stochastic nature of the development of cancer means that a cancer risk assessment at a 

single point in time may be insufficient (34). To demonstrate how the prediction model 

might be used for dynamic EA risk stratification over time, the T1T2-model was applied to 

T1 SCA data to stratify patients into low, intermediate and high risk scores (Fig. 5A, 

Supplemental methods). The patients with intermediate risk were then further stratified by 

using T2 SCA data (Fig. 5B). An additional 13 patients, eight of whom ultimately developed 

cancer, were identified as high risk based on the T2 data. This demonstrated that applying 

this risk prediction model to SCA data from a second time point increased the number of BE 

patients who could be stratified into low and high risk groups.

Discussion

While progress has been made in characterizing cancer genomes, other strategies beyond 

this catalog are needed to identify markers of future progression for early cancer detection. 

Our results provide an EA risk prediction model that achieved a 0. 94 AUC using 29 SCA 

features representative of chromosomal instability from individuals who progress to EA 

compared to those who remain cancer free during follow-up. Comparing the somatic 

genomes of progressors before cancer to the genomes of nonprogressors allowed us to 

identify SCA features that capture high-risk somatic genomic characteristics for accurate EA 

risk prediction. To our knowledge, this is the first cancer risk prediction model based on 

longitudinal investigation of genome-wide SCA with consideration of temporal and spatial 

heterogeneity to account for the dynamic, stochastic evolution in neoplastic progression.

There is a strong rationale for using the process of chromosome instability in BE as a 

biologically significant measure of risk for future progression to EA, rather than focusing on 

specific gene mutations. EA has been shown to have a high overall frequency of point 

mutations, yet with the exception of TP53, few individual genes are recurrently mutated in 

more than 15% of EAs (14, 20, 22). Most of the genes that are recurrently mutated in EA are 

also mutated at similar frequency in non-dysplastic BE, HGD, and EA (23). In contrast, the 

vast majority of EAs have high levels of chromosomal instability (13, 18) and punctuated 

events in which large regions of the genome are altered and detectable by SNP arrays. 

Catastrophic events are also common with half of EAs having evidence of genome 
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doublings (19) and nearly a third developing chromothripsis (20). In our study, 

chromothripsis was detected using SNP arrays (20, 35) (see Supplementary methods) in 13 

of 79 progressors (16.5%, CI: 9.4%–26.9%) before detection of EA (data not shown). All 13 

patients with chromothripsis had risk scores of 1, indicating the SNP array-based SCA 

features used in our risk models identify individuals who have undergone punctuated or 

catastrophic chromosomal events. Our study design allowed us to discount low-risk 

chromosomal lesions arising in nonprogressors and capture complex chromosomal 

alterations arising from punctuated and catastrophic events in cancer (19, 20, 36, 37). 

Therefore, measuring chromosome instability with SNP arrays provided a cost-effective tool 

for robust assessment of cancer progression risk in individuals with BE.

Whole genome sequencing technology is rapidly becoming accessible for discovery 

research, but it is currently cost-prohibitive compared to using SNP array technology to 

assess chromosomal alterations for clinical cancer risk prediction. Our study required 

measuring SCA in 1,272 biopsies, and SNP arrays provided a relatively inexpensive tool to 

assess SCA including cnLOH. Previous studies have used fluorescence in situ hybridization 

to assess copy number alterations, but this technology does not scale-up sufficiently to 

encompass the 86 regions captured by the 29 SCA features. Additionally, 39 of the 86 

regions are cnLOH, which FISH cannot measure. We used a method to enrich for epithelial 

cells that does not require flow cytometric cell sorting and can readily be performed to 

reduce normal cell contamination. Our approach should be adaptable to SNP array platforms 

that have been validated for use in formalin fixed paraffin embedded samples routinely 

processed in clinical laboratories (38). The 29-feature model measures genomic segments 

representative of larger or correlated SCA events in somatic genome evolution, thus creating 

an opportunity for translating progression-associated chromosome instability measures to 

technology platforms applicable to clinical settings for screening for high-risk BE (23, 39).

Formal criteria for evaluating surrogate biomarkers for disease outcome were developed 

nearly two decades ago (40). Surrogate markers such as high-grade dysplasia do not meet 

these criteria (40, 41); they cannot be objectively and reproducibly measured, do not 

accurately represent the true endpoint (EA) and are variably predictive of cancer with 

misclassification relative to risk of EA in the published literature ranging from 42% to 84% 

(3). Despite the poor reproducibility of histopathological evaluation of BE biopsies, 

histopathology has remained the standard for evaluating risk of progression to EA. Our 

SCA-based models improved EA risk prediction compared to traditional histopathological 

assessment of dysplasia using a diagnosis of HGD or combined LGD or HGD as predictors 

of future EA, even when the histopathological assessment was made in four times as many 

biopsies as the SCA assessment.

TP53 is the most commonly mutated gene in EA with mutation frequency of 72–81% (13, 

14, 20, 22, 23). TP53 mutations can be detected before development of EA in BE with TP53 

mutations having 44.1% sensitivity and a 91.4% specificity for future progression to EA 

base on a previously published longitudinal study (33). Weaver et al. sequenced commonly 

mutated genes in EA and reported that only TP53 mutations could discriminate HGD from 

non-dysplastic BE and non-BE controls in a cross-sectional study (23). A recent study found 

TP53 mutations in 81% of EAs and an additional 9% of the remaining EAs harbored 
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structural alterations inactivating TP53 or amplifying MDM2 (20). We show that using 

specific features of SCA improves EA risk prediction over general measures of 

chromosomal instability such as total SCA and flow cytometry. Our results suggest 

assessing the outcome of disruptions of the TP53 signaling pathway and resultant high-risk 

chromosomal instability using measures of cancer risk associated chromosomal alterations 

improves EA risk prediction over using TP53 mutation alone.

Spatial diversity among cell populations within an individual’s Barrett’s segment and 

stochastic temporal evolutionary dynamics during neoplastic progression are challenges for 

early detection (10, 26, 34, 42). The majority of progressors (62 of 79) in this study were 

categorized by the SCA prediction model as high risk for cancer based on results from their 

T1 endoscopy alone. However, using samples from a second time point identified additional 

patients whose high risk SCA would have been missed if only a single time point were 

evaluated. For a new patient entering into the clinic, whether they will progress to EA and 

their actual time to cancer is unknown. In our study, measurements of SCA at follow-up 

time points improved assessment of EA risk in BE, especially for individuals with 

intermediate EA risk at baseline. Therefore, we suggest that models of cancer risk will be 

improved by incorporating both spatial and temporal dynamics of SCA and somatic 

genomic heterogeneity within individuals. Additional studies will be required to determine 

the optimal frequency and timing of sampling required for risk assessment.

There is a paucity of BE cohorts followed to a cancer endpoint available for validation 

because patients are generally managed using dysplasia with intervention before a cancer 

diagnosis, precluding longitudinal follow-up. We evaluated the 29-SCA features in six 

independent cancers and 47 EAs available at the time of manuscript preparation from TCGA 

(downloaded September, 2014) (29). While not an EA risk prediction validation, it is 

reassuring that 83% of EAs had risk scores of >0.99 using genotyping and chromosome 

copy number calls made with TCGA algorithms applied directly in our prediction model. 

Given that EA is a relatively rare cancer with low population incidence, and biorepositories 

of fresh frozen specimens collected in a longitudinal cohort are lacking, independent 

validation in BE will be difficult because many patients with dysplasia are treated, which 

may alter their disease trajectory. Future validation may be feasible using FFPE optimized 

SNP arrays such as OncoScan® FFPE or Infinium FFPE DNA Restore Kit with the 

HumanOmniExpress-FFPE array in formalin-fixed, paraffin embedded samples collected in 

a longitudinal cohort, or as part of the control arm of a randomized trial with a cancer 

outcome. Additional validation studies could be performed based on endoscopic “mapping” 

of EAs and surrounding BE prior to treatment similar to Gu et al (21), but also incorporating 

controls in endoscopic surveillance who do not progress to EA and have not undergone 

intervention, to assess the extent to which our EA risk prediction model can reduce over-

diagnosis and over-treatment while more accurately defining the patients who will benefit 

most from therapy.

There are potential limitations to using SNP arrays to assess genomic instability in BE. In 

this study four progressors had low total SCA (<100 Mb) with low EA risk scores. These 

individuals may have had biopsies taken before the onset of large-scale chromosomal 

alterations, had a small, focal, chromosomally unstable cell population that was unsampled, 
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or progressed to EA through alternate pathways such as microsatellite instability (14, 22). 

Whole genome sequencing has revealed somatic DNA structural changes and combinations 

of gene mutations that SNP array technologies do not measure (20). Characterization of 

these events could feasibly be incorporated into our SCA-based risk prediction model. 

However, the timing of structural alterations before cancer is unknown (14, 22, 23). Future 

studies measuring structural alterations, punctuated or catastrophic chromosomal events, 

and/or whole genome mutation rate or mutation spectrum, in addition to the 29-SCA 

features may improve our EA risk model, thereby extending the early detection window. 

Univariate analysis at a 1Mb resolution did not identify any genomic segments significantly 

associated with decreased EA risk. Whole genome sequencing or combinatorial analyses 

may allow identification of SCA events or breakpoints associated with protection from EA 

in nonprogressors. Successful translation of these additional measures into a clinically 

relevant model for cancer risk prediction will require well-designed longitudinal cohort 

studies with sufficient sample size and a cancer endpoint.

Our approach to measure the process of chromosomal instability may also be successful in 

common cancer types such as breast, ovary, colon, and lung in which over half are 

characterized by chromosome instability, genome doublings, and catastrophic chromosomal 

alterations and for which over- and/or underdiagnosis are also challenges (12, 19, 43, 44). 

Cancer prevention and control models have been proposed for comprehensive EA incidence 

and mortality reduction strategies, beginning with general population models and moving 

toward more specific EA risk stratification tools (3, 45). The importance of any single 

mutation depends on the underlying inherited genotype, the environment when the mutation 

arose, and the current tissue architecture (46). An extension of our study will be to develop a 

comprehensive EA risk management plan that includes EA prevention strategies, host and 

environmental factors (3, 45, 47–49) and EA risk assessment based on our SCA model, 

which could then be applied to at risk populations (50). This will be achieved by using either 

quantitative methods or computer simulations to optimize an objective function that 

considers risk and benefits of patients (10, 51) and cost at the population level to determine 

the optimal number of risk groups and the timing of follow-up endoscopies for each risk 

group, and ultimately translating a measure of chromosomal instability into EA risk 

management in clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Total SCA, SCA diversity and EA risk
(A) Kaplan-Meier survival curves showing cumulative probability to develop EA over time 

per risk group stratified by total SCA at T1. SCA amount per biopsy was calculated as the 

sum of all base pairs of SCA from start to end of each alteration. For each patient, the T1 

biopsy with the maximum SCA was used. (B) ROC curves showing performance of 

maximum SCA for EA risk prediction using T1 data only (grey line, AUC=0.78) and T1+T2 

combined data (black line, AUC=0.80). (C) Kaplan-Meier survival curves showing 

cumulative probability to develop EA over time per risk group stratified by maximum SCA 

diversity across 3,064 1Mb genomic segments at T1. (D) ROC curves showing performance 

of maximum SCA diversity for EA risk prediction using T1 data only (grey line 

AUC=0.79), and T1+T2 combined data (black line AUC=0.80). Kaplan-Meier plots were 

adjusted for case-cohort study (see Supplementary methods).
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Fig. 2. SCA frequency and hazard ratio (HR) for EA risk
SCA types are colored for cnLOH (blue), loss (green), balanced gain (yellow), allele 

specific copy gain (orange). SCA data were combined from baseline (T1) and last 

endoscopy before EA diagnosis or final endoscopy (T2) for hazard ratio (HR) estimation. 

Each data point in the scatter plots represents a 1Mb segment SCA HR for EA (x-axis) vs. 

its SCA frequency (y-axis) in nonprogressors (A) and progressors (B). The plots show all 

1Mb segments in which the frequency in nonprogressors and/or progressors is significantly 

larger than zero (statistical significance adjusted for multiple comparisons). Many of the 

1Mb segments with SCA were correlated due to whole chromosome arm alterations or large 

chromosomal events spanning many Mb. SCA HR (x-axis) and genomic location (y-axis) 

are shown in panel C. Regions of significant homozygous deletions with significant HR 

were small and few in number and therefore not plotted.
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Fig. 3. Procedures for prediction model feature selection
Schematic diagraming multi-step approach to SCA data dimension reduction, and feature 

selection resulting in 29 SCA features to be used for risk prediction models.
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Fig. 4. ROC curves of EA risk prediction models, histopathology, and DNA content flow 
cytometry
ROC curve of the T1-model applied to SCA data from T1 (A) or T2 (B) biopsies to predict 

EA risk. (C) ROC curve using the T1T2-model to predict EA risk based on maximum SCA 

calls by patient (T1+T2 data), where the maximum SCA at each of the 29 SCA features was 

used from any biopsy, regardless of whether it came from T1 or T2,. AUC=area under the 

ROC curve. (D–F) Histopathology and DNA content flow abnormalities were treated as 

binary variables to generate ROC curves, with each curve consisting of three points; one 

with sensitivity equal to 0 (perfect specificity), one with specificity equal to 0 (perfect 

sensitivity) and the third being the sensitivity and specificity for EA risk prediction of the 

binary variable. (D) ROC curves of histopathologic diagnosis of high-grade dysplasia 

(HGD) alone (blue), and low-grade dysplasia (LCD) and/or HGD (red) from 1, 2, 3, or 4 

biopsies per 2 cm sampled in BE along the esophagus from T1 data. (E) ROC curves of 

histopathologic diagnosis of high-grade dysplasia (HGD) alone (blue), and low-grade 

dysplasia (LGD) and/or HGD (red) from 1, 2, 3, or 4 biopsies per 2 cm sampled in BE along 

the esophagus from combined T1+T2 data. (F) ROC curves of DNA content flow 

cytometric assessment of tetraploidy and/or aneuploidy from 1 biopsy per 2 cm in the 

esophagus from T1 (grey curve) and from combined T1+T2 data (black curve).
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Fig. 5. SCA based risk stratification of BE patients over time
(A) The Kaplan-Meier (KM) curves of BE patients at baseline stratified into three EA risk 

groups based on the T1T2-model SCA data from T1 biopsies only. Risk groups included 35 

patients with low EA risk (green, progressors=0, nonprogressors=35), 147 patients with 

medium EA risk (red, progressors=17, nonprogressors=130) and 66 with high EA risk 

(black, progressors=62, nonprogressors=4) (B) The KM curve of the 147 medium risk 

patients identified at baseline were further stratified into low, medium, and high risk group 

using the SCA data from T2 biopsies. This resulted in 13 patients changing to low EA risk 

(green, progressors=1, nonprogressors=12, 117 patients remaining at medium EA risk (red, 

progressors=5, nonprogressors=112), and 13 patients changing to high EA risk (black, 

progressors=8, nonprogressors=5). Four patients in the medium risk group from 6A had T1 

data only and are plotted in 6A but not plotted in 6B. The proportion of patients stratified in 

each risk group reflects the makeup of the case-cohort study design which is enriched with 

progressors; different proportions would be expected when examining the entire cohort. The 

KM plots were adjusted for case-cohort study (see Supplementary methods).
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