
Plasma autoantibodies associated with basal-like breast cancers

Jie Wang1,a, Jonine D. Figueroa2,a, Garrick Wallstrom1, Kristi Barker1, Jin G. Park1, 
Gokhan Demirkan1, Jolanta Lissowska3, Karen S. Anderson1, Ji Qiu1,*, and Joshua 
LaBaer1,*

1Biodesign Institute, Arizona State University, Tempe, AZ. 2Division of Cancer Epidemiology and 
Genetics, National Cancer Institute, Bethesda, MD. 3M. Sklodowska-Curie Memorial Cancer 
Center, Warsaw, Poland

Abstract

Background—Basal-like breast cancer (BLBC) is a rare aggressive subtype that is less likely to 

be detected through mammographic screening. Identification of circulating markers associated 

with BLBC could have promise in detecting and managing this deadly disease.

Methods—Using samples from the Polish Breast Cancer study, a high-quality population-based 

case-control study of breast cancer, we screened 10,000 antigens on protein arrays using 45 BLBC 

patients and 45 controls, and identified 748 promising plasma autoantibodies (AAbs) associated 

with BLBC. ELISA assays of promising markers were performed on a total of 145 BLBC cases 

and 145 age-matched controls. Sensitivities at 98% specificity were calculated and a BLBC 

classifier was constructed.

Results—We identified a 13-AAbs (CTAG1B, CTAG2, TP53, RNF216, PPHLN1, PIP4K2C, 

ZBTB16, TAS2R8, WBP2NL, DOK2, PSRC1, MN1, TRIM21) that distinguished BLBC from 

controls with 33% sensitivity and 98% specificity. We also discovered a strong association of 

TP53 AAb with its protein expression (p=0.009) in BLBC patients. In addition, MN1 and TP53 

AAbs were associated with worse survival (MN1 AAb marker HR=2.25 95%CI= 1.03-4.91 

p=0.04; TP53, HR=2.02, 95%CI 1.06-3.85, p=0.03). We found limited evidence that AAb levels 

differed by demographic characteristics.

Conclusions—These AAbs warrant further investigation in clinical studies to determine their 

value for further understanding the biology of BLBC and possible detection.

Impact—Our study identifies 13 AAb markers associated specifically with BLBC and may 

improve detection or management of this deadly disease.
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Introduction

Breast cancer is known to encompass multiple clinically, molecularly and pathologically 

defined subtypes that have very different etiologies, clinical presentations and outcomes 

(1-3). Mammographic screening has reduced mortality for breast cancer overall but not for 

all cancer subtypes; specifically, interval cancers that are estrogen receptor (ER) negative 

tend to be aggressive and are not well detected by mammography (4-6).

There is great interest in identifying circulating markers associated with aggressive ER-

negative basal-like breast cancers (BLBC), which although rarer than other subtypes, are 

more common in BRCA1 mutation carriers and African-Americans, and occur at younger 

ages when most mammographic screening programs have shown poorer performance to 

detect cancer (7, 8). In cancer studies, autoantibodies (AAbs) represent a promising class of 

biomarkers for early detection. AAbs are created by the immune system in response to host 

proteins and have been shown to be elevated in cancer patients (9-13). Large-scale 

proteomic screening is an important approach to identify AAb markers and we have 

previously identified AAbs associated with different diseases, including cancers, using 

nucleic acid programmable protein arrays (NAPPA) (14-18). The advantage of NAPPA over 

other proteomic screening methods is that it displays thousands of in vitro-expressed full-

length human proteins on glass slides without the need of laborious methods for protein 

purification (19, 20).

Few studies trying to identify AAbs associated with breast cancer have focused on 

identifying markers for specific molecular subtypes, primarily because of limited access to 

highly characterized samples of sufficient numbers. Although many immunohistochemical 

(IHC) signatures have been described to classify BLBC, the proposed IHC panel by Nielsen 

et al is the most robust with 100% specificity and 76% sensitivity to classify BLBC when 

compared to molecular profiling methods (21). The Nielsen IHC panel defines BLBC as 

those lacking estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) 

expression, with positive expression of epidermal growth factor receptor (EGFR) or basal 

cytokeratin 5/6 (CK5/6). Here we carried out a study to identify AAbs associated with 

BLBC using samples collected from a high quality, population based case-control study in 

Poland.

Materials and Methods

Study samples

Subjects were selected from a population-based breast cancer case-control study of 2386 

cases and 2502 age and study site matched controls, between ages 20 and 74 years who 

resided in Warsaw or Łódź, Poland from 2000-2003 (22). Breast cancer risk factors were 

obtained from a questionnaire as previously described (22). We specifically evaluated age at 

blood collection, age at menarche, parity, menopausal status, current BMI, family history of 

breast cancer, and history of benign breast disease. Pathology for all the study cases were 

reviewed centrally as previously described to provide standardized classification. The basal-

like subtype was defined by PAM50 signature when mRNA expression profiles were 

available (n=18); the rest (n=127) were identified by immunohistochemical (IHC) staining 
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for the five markers (ER, PR, HER2, CK5/6, EGFR) as previously described (23, 24). The 

Luminal A, Luminal B, and HER2-enriched subtypes were classified using PAM50 

signature. We identified 145 cases with tumor tissues and plasma samples available (25). 

Similar to previous reports (21), we observed an 80% concordance rate between the five-

IHC marker panel and the mRNA expression profiles. Each case was individually matched 

on age (5 years) and study site with population based controls. To determine the specificity 

of AAbs identified for BLBC, we selected an additional set of age-matched non-basal cases 

(age matched to sample sets 2 and 3) classified by mRNA expression profiles (30 Lum A, 22 

LumB and 18 HER2). The majority of blood samples among cases were collected prior to 

treatment (52% of BLBC, 57% of LumA, 86% of LumB and 78% of HER2). All subjects 

provided informed consent and the study was approved by IRB boards in Poland and NCI.

Protein array experiments

All open reading frames were obtained from DNASU (https://dnasu.org/). Production of the 

protein array and array quality control experiments were performed as previously described 

(26, 27). In brief, arrays displaying 10,000 human proteins (distributed evenly on five array 

sets) were manufactured. A common control plasma sample was repeated in every 

experiment to assess reproducibility. Consistency among experiments was determined with 

scatter plots comparing spot intensity measurements of the same plasma sample tested on 

different experiments. Details are described in Supplementary Materials and Methods.

Protein array image analysis and quantification

We measured the spot intensity of the scanned slides using ArrayPro Analyzer 

(MediaCybernetics). Raw intensity values were normalized by subtracting the background 

signal for the slide, which was estimated by the first quantile of signal intensity in spots with 

no printed DNA, and divided by the median of background-subtracted intensity from non-

control spots. In addition, to capture diffused signal (ring) that cannot be quantified by the 

image analysis software, one researcher qualitatively examined all images to identify and 

confirm positive responses, which was described previously (28). Briefly, the researcher 

adjusted raw images to extreme contrast and brightness using ArrayPro Analyzer, and 

graded each spot at a scale of 0 to 5 based on ring's intensity and morphology.

Antigen selection for focused array

Using the normalized array data from the screening, we calculated sensitivity at 95% 

specificity based on the data generated from printing batch 1 of each array set, area under 

receiver operating characteristic curve (AUC), partial AUC above 95% specificity (pAUC), 

as well as Welch's t test P value for each tested protein antigen. In addition, we designed a 

novel metric, named K, to measure antigens with strong antibody responses in a fraction of 

BLBC patients while remain consistent in controls to aid the candidate selection. K was 

empirically defined using the formula below.

Wang et al. Page 3

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://dnasu.org/


where qcases and qcontrols denote the empirical quantile functions of normalized data from 

cases and controls, respectively. Specifically, qcases(0.975) – qcases(0.800) was chosen to 

quantify the separation of the top 20 percentile of the cases’ signals, as K was designed to be 

sensitive to markers with moderate sensitivity yet better separation. The K value is useful at 

identifying biomarkers that work well for a subset of the true cases, even if the marker does 

not show a response in other cases. To demand that the selected marker works for more than 

one case, we chose the top boundary at 97.5 percentile. For antibodies with the same 

classification performance, a higher K value indicated greater separation of sero-reactivity 

of positive cases and negative controls.

We created focused protein arrays for stringent evaluation of antigens that met at least one 

of the following criteria: 1) antigens ranked in approximately the top 2% of antigens on each 

array set based on any of these metrics: sensitivity at 95% specificity (n=228), AUC 

(n=185), pAUC (n=197), or P value of Welch's t test (n=197); 2) antigens with K > 1.2 and 

sensitivity at least 15% at 95% specificity (n=63); and 3) antigens with greater prevalence in 

cases than in controls by visual analysis (n=198). Specifically, frequency in cases minus 

frequency in controls was greater than or equal to 2, and frequency in cases divided by 

frequency in controls was greater than or equal to 1.5; 4) antigen with greater prevalence in 

controls than in cases by visual analysis (n=16). Specifically, frequency in controls minus 

frequency in cases was greater than or equal to 5, and frequency in controls divided by 

frequency in cases was greater than 1.5. In total, 748 proteins were included for 

manufacturing focused array.

Power analysis for the biomarker discovery

We calculated the power for antigen selection using a homogeneous disease model and a 

heterogeneous disease model (29). Using each model and Monte Carlo simulation, we 

calculated the proportion of markers with 20% sensitivity and 95% specificity that met 

criteria 1 or 3 in above section “Antigen selection for focused array”. The visual inspection 

criterion was not considered in the power analysis. Under the homogeneous disease model, 

95% of markers with 20% sensitivity and 95% specificity met the selection criteria, and 5% 

of non-markers with 5% sensitivity at 95% specificity met the criteria. Under the 

heterogeneous model, 73% of markers and 6% of non-markers met the criteria. Hence, 

nearly all such markers with 20% sensitivity and 95% specificity would be selected by our 

screening process if basal-like subtype is homogeneous, and if it is itself heterogeneous, our 

process would still be expected to select 73% of these markers.

Antigen selection for ELISA verification

Protein antigens were selected for subsequent ELISA verification when they showed higher 

prevalence in basal-like breast cancer (BLBC) in sample set 1 based on visual analysis. 

Specifically, they had to meet all of the following criteria: 1). their frequency in BLBC 

minus frequency in controls is greater than or equal to 3; 2). frequency in cases divided by 

frequency in controls is greater than or equal to 2; and 3). frequency in cases is greater than 

or equal to 4. Totally, eighty-two unique proteins met these criteria and we successfully 

developed programmable ELISA assay for 71 of them. Two pairs of samples (PBCS-1243, 
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PBCS-2930; PBCS-1754, PBCS-1325) were not measured in ELISA verification 

experiments due to limited amount of plasma at the time of experiment.

ELISA assays

ELISA assays were performed to verify selected AAb responses towards protein antigens 

using freshly produced human proteins as previously described (30). In brief, 96-well 

highbind ELISA plates (Corning) were coated with the goat anti-GST antibody (GE 

Healthcare) at 10 μg/ml in 0.2 M sodium bicarbonate buffer pH9.4 overnight at 4°C one day 

prior to experiment. All high-throughput liquid handling were performed using a BioMek 

NxP Laboratory Automation Workstation (Beckman Coulter). See Supplementary Materials 

and Methods for additional details.

Statistical analysis

Frequencies of tumor characteristics and demographics between cases were compared using 

chi-square tests. Associations with known breast cancer risk factors were determined using 

multivariable logistic regression models as previously described (22).

ROC analysis was performed without feature selection (to avoid over fitting) using leave-

one-out cross validation. The 13-AAb classifier was developed by classifying samples as 

positive if they exceeded antigen-specific cutoffs for at least 2 of the 13 antigens. Antigen-

specific cutoffs were set to achieve 98% classifier specificity by adjusting the specificity at 

the antigen level to 98.7%. In this cross validation, for a given antigen-level specificity, we 

calculated the cutoffs for each antigen using the remaining samples and used these cutoffs to 

classify the held-out sample. The ROC curve was calculated by adjusting the antigen-level 

specificity. 95% confidence intervals of ROC curve and AUC were estimated by 

bootstrapping within BLBC or controls.

We assessed the association of AAb levels in relation to demographic characteristics using 

Kruskal Wallis test. To determine AAb responders from ELISA analysis, we categorized 

subjects as responders to specific antigens of interest using 95-percentile cut-point using 

data from control subjects. This method was used to determine the association of AAb 

responses with tissue abundance of TP53 protein, as well as the overall survival.

The Kaplan-Meier (KM) method was used to generate survival curves for categories of the 

AAb responders/non-responders (31). HR and 95% confidence intervals (CI) associated with 

AAb markers adjusted for age, tumor size, grade, and node status, were estimated using Cox 

proportional hazard models (32). Survival analysis was performed using Stata/SE v11.2 for 

Windows (College Station, TX).

Results

Sample tumor characteristics and risk factors

BLBC for 145 cases with plasma and individually age-matched controls were identified in 

the Polish breast cancer study and their characteristics presented in Table 1. Sample set 1, 

used for protein array screening, comprised 45 cases and 45 controls (Figure. 1; Table 1). 

The remaining 100 BLBC were randomly assigned to sample sets 2 and 3 for follow up 
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studies of promising AAb markers. Sample set 4 were age-matched non-basal subtypes 

selected to determine specificity of AAbs identified for BLBC. Analysis of tumor 

characteristics showed cases in sample set 1 more likely to be of higher grade and less likely 

to be node positive compared to sample set 2 and 3. Evaluation of established breast cancer 

risk factors for the 145 BLBC cases and 145 age-matched controls showed early age at 

menarche, positive family history of breast cancer, history of benign breast disease and ever 

having a screening mammogram associated with increased breast cancer risk (Table S1).

AAb screen of 10,000 antigens using NAPPA array

We performed comprehensive profiling of 10,000 full-length human proteins in sample set 1 

to identify promising AAb markers associated with BLBC using both quantitative and visual 

analysis (Figure S1). Quality of protein array and plasma experiments was assured with 

consistent protein display (Figure 2A-C) and high reproducibility (Figure 2D-E; Figure S2). 

Across the 10,000-antigen array, the median number of AAb responses was similar between 

cases and controls (Figure S3; Table S2; Table S3). The protein array data have been deposit 

in the National Center for Biotechnology Information's Gene Expression Omnibus (GEO) 

and are accessible through GEO series accession number GSE68119 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68119). To assess protein characteristics 

that trigger AAbs in general, we performed gene set enrichment analysis (GSEA) of 

potential common biochemical protein properties, such as protein length, isoelectric point, 

aromaticity and fractions of predicted secondary structures, as well as predicted antigenicity 

by common algorithms using proteins that elicit AAb responses in both BLBC cases and 

controls (see Supplementary Materials and Methods). We found significant over 

representation of proteins predicted with high antigenicity (Figure S4). AAb responses were 

positively associated with protein length, isoelectric point, and fraction of turns, and 

negatively associated with aromaticity, fraction of α helices (Figure S5). Gene ontology of 

cellular component analysis indicated that autoantigens identified by visual analysis were 

significantly enriched in the nucleus and centrosome; while significantly depleted in the 

plasma membrane, extracellular region and endoplasmic reticulum membrane (Figure S6).

In order to identify candidate AAbs among the 10,000 antigens that distinguished BLBC 

from controls, we took two complementary approaches (Figure 1). In the first approach, 

using the array data from sample set 1, we selected 748 antigens (see Materials and 

Methods; Table S4; Figure S7; Figure S8) to produce focused arrays for testing using 

sample set 2 (Table 1). From these, fourteen antigens with sensitivities above 10% at 98% 

specificity and K>0.9 in sample set 2 were selected for blinded replication testing with 

sample set 3 (Table S5). In our second approach, using visual analysis, we selected 82 

antigens on the 10,000 array that distinguished BLBC compared to controls in sample set 1 

for ELISA (see Materials and Methods). ELISA assays were successfully developed for 71 

of the 82 antigens (Table S6). After analysis of sample set 1, 15 antigens with sensitivities 

above 10% at 98% specificity and K>0.9 (Table S7) were identified. Using these two 

approaches, focused arrays and ELISA, AAbs against 26 unique proteins were carried 

forward for a subsequent blind test by ELISA.
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Blind test of 26 AAb markers associated with BLBC

To test these 26 candidate antigens from our staged screen, an ELISA study using sample 

sets 1 and 2 as a training set was performed in order to set threshold values (98% specificity) 

for each antigen. We then blindly tested the performance of these 26 markers using sample 

set 3 (Figure 1). In the training set, plasma antibodies against CTAG1B and CTAG2 

proteins demonstrated the best ability to differentiate patients from controls with sensitivities 

of 21%, 19% respectively at 98% specificity (Table 2). In the blinded test, all 26 antigens 

were assessed using cutoff values defined by the control samples in the training study. AAbs 

against TP53, CTAG1B, PPHLN1, WBP2NL, DOK2 showed sensitivities above 5% at 98% 

specificity in both training and test sets. AAbs against CTAG2 showed lower specificity 

(96%) in the test set, but its sensitivity remained high at 18% (Table 2).

Of the 26 AAbs, 13 antigens had sensitivity ≥5% and ≥98% specificity and receiver 

operating characteristic (ROC) analysis showed the 13 AAb classifier had an area under the 

curve (AUC) of 0.68 (95% confidence interval, 0.67-0.70) to distinguish BLBC from 

controls (Table S8). The curve was computed under leave-one-out cross-validation by 

varying the cutoff values in the prediction model (see Materials and Methods, Figure 3). 

This plasma 13-AAb panel predicted BLBC from controls at a sensitivity of 33% and a 

specificity of 98%. Assessment of these 13-AAb markers by demographic characteristics 

among controls found limited evidence of associations, with none meeting Bonferroni p 

value <5×10−4. The most significant relationships seen were with PPHLN1 and higher 

levels with younger ages at menarche (P=0.009) and RNF216 and higher levels among 

subjects whose BMI>30 compared to lower BMIs (P=0.008, data not shown).

AAb marker responses in other breast cancer subtypes

To examine the specificity of the 13 AAbs relative to other non-basal subtypes, we 

performed ELISA using sample set 4 comprising 30 Luminal A, 22 Luminal B, and 18 

HER2-enriched patients, and compared them to BLBC. Results indicated that AAbs 

targeting CTAG1B, CTAG2 and TP53 were significantly higher in BLBC patients’ plasma 

(Figure 4; Table S9) relative to other breast cancer subtypes. Other markers showed some 

responses in other breast cancer subtypes including RNF216, PPHLN1, PIP4K2C, 

WBP2NL, DOK2, and MN1 (Table S9).

Immunohistochemical data on TP53 and mRNA expression for 13-AAb targets

AAbs to TP53 was one of the most significant markers associated with BLBC and because 

disease-specific AAbs are usually associated with presence of the corresponding antigens in 

the tumor tissue (33), we examined if higher protein level expression of TP53 assessed by 

immunohistochemistry (IHC) on tumor microarrays was associated with AAb levels. 

Analysis of AAb response to TP53 by IHC positive staining from 79 (54%) of BLBC, 

showed positive TP53 AAb responses observed in 30% (16/54) with positive TP53 IHC 

staining, compared with 4% (1/25) of cases with AAb responses that were negative for TP53 

expression (p=0.009, Table S10). For the remaining 12 AAb biomarkers, using TCGA 

breast cancer data we found CTAG1B, RNF216 and PSRC1 to show significantly elevated 

mRNA levels in BLBC compared with other subtypes (34) (Figure S9). Other markers did 

not show any significant changes in mRNA expression from TCGA.
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Association of AAb and survival

Survival analysis of the 13 AAb markers showed two markers associated with overall 

survival: TP53 and MN1 (Table S11). Among BLBC, those who displayed AAbs against 

TP53 protein had shorter survival than those without responses (p=0.03) (Figure S10A). 

Patients with AAbs against MN1 protein also presented worse survival than those without 

responses (p=0.04) (Figure S10B), although in multivariable models the Hazard Ratio (HR) 

was similar, the association was no longer statistically significant (Table S11).

Discussion

Using plasma samples from 145 patients with BLBC and equal number of age-matched 

controls derived from a large population-based case-control study of breast cancer, our 

proteomic screen of 10,000 antigens with NAPPA technology identified a 13-AAb signature 

that distinguishes BLBC from controls with 33% sensitivity and 98% specificity (CTAG1B, 

CTAG2, TP53, RNF216, PPHLN1, PIP4K2C, ZBTB16, TAS2R8, WBP2NL, DOK2, 

PSRC1, MN1, TRIM21). Some of these markers are likely related to overexpression of their 

corresponding mRNA/protein targets in BLBC themselves (TP53, CTAG1B, RNF216 and 

PSRC1). Our analysis also suggests AAb markers may be important to consider for 

prognosis/survival of BLBC patients (specifically, TP53 and MN1) and warrant further 

investigation in future clinical studies.

In general, the NAPPA arrays used to discover AAb responses for BLBC were highly 

reproducible and our 10,000-antigen panel tested about half of the proteins encoded by 

human genome. We did not find overall AAb responses to differ significantly between cases 

and controls and there was considerable variability between subjects. Our data from NAPPA 

arrays showed AAbs tend to develop in response to proteins with a high fraction of turns, a 

low fraction of helices and low aromaticity and tend to be located in the nucleus or 

centrosome. These biochemical properties and subcellular localization preferences hint at 

protein characteristics likely to be auto-immunogenic. However, a more definitive study of 

auto-immunogenicity at the proteome scale would require a larger sample size. It would be 

particularly interesting to evaluate whether such biochemical properties are specific to 

cancer.

Previous work on breast cancer-associated AAbs have had mixed results (17, 35-38), likely 

related to the fact that breast cancer encompasses multiple diseases with limited studies on 

specific subtypes (29). A handful of studies have evaluated blood markers for triple negative 

breast cancers (TNBC, defined as ER, progesterone receptor and HER2 negative through 

IHC analysis) (35, 38), which is a heterogeneous group that includes BLBC subtype. Among 

the 13 AAbs we identified to be associated with BLBC, sensitivities ranged from 6% to-21% 

with 98% specificity for all markers. AAbs to CTAG1B, CTAG2 and TP53 were specific to 

BLBC compared to other molecular subtypes. The top AAb marker we identified was 

CTAG1B/CTAG1A genes (the protein product known as NY-ESO-1) antigen, which has 

been identified in other cancer sites and first discovered in a study of esophageal cancer 

(39). CTAG2 AAb was the second best performer with 18.8% sensitivity at 98% specificity, 

and has 91% sequence homology with coding region of CTAG1B/CTAG1A. Our data are 

consistent with a recent small study of TNBC by Ademuyiwa et. al, in which they reported 
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positive plasma AAb responses against NY-ESO-1 in 8 of 11 TNBC patients who had 

elevated tissue protein levels of NY-ESO-1(40). This observational study did not include 

controls or any validation.

Among the other markers we identified, data suggest these to be biologically plausible and 

relevant markers. For example, PPHLN1 encodes periphilin-1, which is involved in 

epithelial differentiation and shown to elicit AAbs in gastric and breast cancers (41). PSRC1 

encodes the mitotic proline/serine rich coiled-coil protein 1 and data support the presence of 

its AAb in blood to indicate the transition of the precursor lesion ductal carcinoma in situ to 

invasive disease (11). AAbs to TRIM21, an E3 ubiquitin ligase that promotes p27 

degradation, were initially associated with autoimmune rheumatic disease (42), but their 

appearance in cancer patients’ sera was observed in subsequent studies (43). It also 

participates in destabilization of TP53 protein according to a recent study (44).

Of all the AAb markers we identified, TP53 is by far the most widely studied one. In our 

analysis, TP53 AAbs had 12.4% sensitivity and 98% specificity for BLBC. Interestingly, 

AAbs against TP53 and CTAG1B proteins have also been reported in patients with tumors 

from other organ sites, such as ovarian cancer (14, 45, 46), colorectal cancer (33, 45, 46), 

and lung cancer (33, 45-47). The rare occurrence of these two AAbs in non-basal subtypes 

(LumA, Lum B, HER2-enriched) is encouraging for their potential use as a diagnostic tool 

for these aggressive breast cancers. Furthermore, the fact that multiple tumors with 

aggressive phenotypes also show associations with these AAbs suggests this marker might 

have value in detection of multiple cancers (33). This is also consistent with recent Cancer 

Genome Atlas (TCGA) transcriptomic profiles showing similarities between breast, ovarian 

and lung tumors (3).

The mechanism of AAb generation remains unclear. Possible explanations include high 

protein abundance in tumor tissues and mutations (33). IHC staining of TP53 and CTAG1B 

proteins in previous studies have shown increased tumor tissue expression in TNBC (40, 48, 

49), and our IHC data in relation to AAb responses for TP53 are consistent. Using TCGA 

data we found CTAG1B, RNF216 and PSRC1 to show significant evidence of elevated 

mRNA levels in BLBC compared with other subtypes. Although other markers did not show 

altered mRNA levels, it is widely accepted that mRNA expression does not always predict 

protein levels, and future proteomic profiling could help clarify the underlying molecular 

underpinnings that elicit AAb responses.

Our data also suggested AAb markers may have prognostic value consistent with previous 

reports in other cancer studies (11, 50). In particular, we found AAbs against TP53 and 

MN1 proteins associated with worse survival among BLBC patients consistent with other 

cancer studies (33, 48). MN1 encodes meningioma 1, a probable tumor suppressor protein of 

unknown function. MN1 mRNA is a negative prognostic marker in acute myeloid leukemia 

(AML) (51) and its low protein expression is associated with better treatment response (52). 

Future clinical studies warrant investigation for their value as markers for prognosis or 

response to treatment in BLBC.
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Strengths of our study include use of a large number of BLBC patient samples and age-

matched controls collected within a population-based case-control study of breast cancer, 

with detailed data on tumor characteristics, demographics, treatment and survival. To 

identify AAb markers we used highly reproducible NAPPA arrays with validation in 

independent sample sets and validation of promising AAb markers using more clinically 

relevant ELISA assays. A limitation of this study is, although we screened for proteins 

encoded by ~50% of the human genome, these arrays do not display many proteins with 

post translational modifications that might also be important AAb targets for distinguishing 

cases from controls (53-57). Moreover, given that we performed this analysis in a case-

control study with a few samples collected post-treatment, it is unclear how early these 

markers are present with respect to clinical diagnosis. And future studies evaluating these 

markers in prospective cohorts are needed.

In summary, we have performed the largest proteomic screen using NAPPA technology and 

identified 13 AAb biomarkers associated with BLBC. With further validation, these markers 

might contribute to improved detection of BLBC, an aggressive subtype that afflicts younger 

women where mammography is less sensitive (4-6). Our analysis of AAbs associated with 

BLBC represent promising markers for early detection because: 1) their sensitivity is not 

dependent on visualization, so young women with poorly imaged dense breasts may still 

benefit; and 2) blood testing can be performed repeatedly without risk of radiation exposure 

or expensive techniques such as MRI, making this a good approach for those who may 

require frequent testing. Future work in clinical and prospective observational studies is 

needed to determine the value of these markers for early detection, prognosis and response 

to treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of study design.
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Figure 2. 
Protein array screening. Protein array was quality controlled by both DNA staining with 

picogreen (A), and anti-GST staining of in vitro produced proteins (B). C. Scatterplot of 

signal intensity measures of protein displays of two protein arrays produced in one single 

print batch. D. Scatterplot of signal intensity measures of two identical protein arrays probed 

with the same plasma sample. E. Scatterplot of signal intensity measures of two replicate 

spots with one array.
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Figure 3. 
ROC curve of the 13-AAb classifier. 95% confidence interval was also computed (yellow).
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Figure 4. 
AAb responses in various breast cancer subtypes.
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Table 2

Training and test statistics for potential BLBC autoantibody biomarkers.

Antigen
Training (Sample sets 1&2: basal, n=95; control, n=95) Blinded Test (Sample set 3: basal, n=50; control, n=50)

sensitivity specificity cutoffs
a sensitivity specificity

CTAG1B 0.213 0.979 1.606 0.200 1.000

CTAG2 0.191 0.979 1.149 0.180 0.960

TRIM21 0.158 0.979 1.208 0.140 0.860

RNF216 0.110 0.978 1.369 0.043 0.956

MN1 0.105 0.979 1.311 0.060 0.920

PIP4K2C 0.105 0.979 1.200 0.020 1.000

TP53 0.084 0.979 3.171 0.200 1.000

ZBTB16 0.084 0.979 1.393 0.040 0.980

DOK2 0.074 0.979 1.164 0.060 1.000

PPHLN1 0.063 0.979 3.394 0.080 1.000

TAS2R8 0.063 0.979 1.064 0.080 0.940

SSMEM1 0.063 0.979 1.562 0.060 0.960

DYRK3 0.063 0.979 1.462 0.040 0.940

KRT8 0.053 0.979 1.645 0.060 0.960

LMO4 0.053 0.979 1.199 0.020 0.980

WBP2NL 0.053 0.979 1.991 0.060 0.980

JUNB 0.042 0.979 1.165 0.020 0.960

TSGA13 0.042 0.979 1.313 0.020 0.980

PVRL4 0.042 0.979 0.899 0.020 0.920

CCDC68 0.042 0.979 2.438 0.000 0.940

BCL2 0.042 0.979 1.160 0.000 1.000

SNRK 0.032 0.979 4.127 0.020 0.960

PSRC1 0.032 0.979 1.372 0.120 0.960

KCNIP3 0.032 0.979 0.973 0.000 0.960

POU4F1 0.032 0.979 0.992 0.080 0.940

RNF32 0.021 0.979 1.445 0.040 0.980

a
ELISA relative absorbance at 98 percentile of controls.
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