
An improved approach to separating startle data from noise

Calum A Grimsley1, Ryan J Longenecker1,2, Merri J Rosen1, Jesse W Young1, Jasmine M 
Grimsley1, and Alexander V Galazyuk1

1Department of Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 
USA

2Biomedical Sciences Program, Kent State University, Kent, OH, USA

Abstract

Background—The acoustic startle reflex (ASR) is a rapid, involuntary movement to sound, 

found in many species. The ASR can be modulated by external stimuli and internal state, making 

it a useful tool in many disciplines. ASR data collection and interpretation varies greatly across 

laboratories making comparisons a challenge

New method—Here we investigate the animal movement associated with a startle in mouse 

(CBA/CaJ). Movements were simultaneously captured with high-speed video and a piezoelectric 

startle plate. We also use simple mathematical extrapolations to convert startle data (force) into 

center of mass displacement (“height”), which incorporates the animal’s mass.

Results—Startle plate force data revealed a stereotype waveform associated with a startle that 

contained three distinct peaks. This waveform allowed researchers to separate trials into ‘startles’ 

and ‘no-startles’ (termed ‘manual classification). Fleiss’ kappa and Krippendorff’s alpha (0.865 

for both) indicate very good levels of agreement between researchers. Further work uses this 

waveform to develop an automated startle classifier. The automated classifier compares favorably 

with manual classification. A two-way ANOVA reveals no significant difference in the magnitude 

of the 3 peaks as classified by the manual and automated methods (P1: p=0.526, N1: p=0.488, P2: 

p=0.529).

Comparison with existing method(s)—The ability of the automated classifier was compared 

with three other commonly used classification methods; the automated classifier far outperformed 

these methods.

Conclusions—The improvements made allow researchers to automatically separate startle data 

from noise, and normalize for an individual animal’s mass. These steps ease inter-animal and 

inter-laboratory comparisons of startle data.
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Introduction

The acoustic startle reflex (ASR) describes a reflexive movement in response to an auditory 

stimulus, typically one that is sudden and of high intensity (Landis & Hunt 1939). The ASR 

is found in many species and is believed to have evolved as a rapid defense mechanism 

(Koch 1999). Though the ASR is fundamentally a reflex movement, both the amplitude and 

probability of a resulting startle movement can be modulated by a number of external 

stimuli, and changes in internal state (Hoffman & Wible 1970, Davis et al. 1982, Acocella & 

Blumenthal 1990). Modulators of an ASR startle include: preceding visual pulses (Buckland 

et al. 1969, Ison & Hammond 1971), preceding auditory pulses (Graham 1975, Carlson & 

Willott 1996, Franklin et al. 2007), concurrent background noise (Gerrard & Ison 1990, Ison 

& Russo 1990, Longenecker and Galazyuk 2012), and gaps of silence in background noise 

preceding the startle sound (Ison 1982, Walton et al. 1997, Allen et al. 2008). Modulation of 

the ASR is used in behavioral paradigms to investigate a wide range of disorders in a range 

of disciplines including schizophrenia (Swerdlow & Geyer 1993, Grillon et al. 1992, 

Parwani et al. 2000), alcoholism (Krystal et al. 1997, Stanley-Cary et al. 2002) and 

psychopharmacology (Phillips et al. 2000, Davies & Menkes 1982). The ASR is also used to 

develop behavioral tests for neurological disorders such as posttraumatic stress disorder 

(Weston 2014) and tinnitus (Turner et al, 2006).

Current practice in the recording and analysis of the ASR in lab animals is greatly varied. 

One of the biggest challenges when interpreting data, or in comparing research from 

different laboratories, is the variation in how ASR data are collected and analyzed. To date, 

there has been little effort to standardize the method of analyzing data collected from ASR 

experiments.

In this paper, we use a variety of tools to methodically explore the ASR in mouse, and 

describe an easy to implement method for the detection and analysis of ASR that is 

substantially more accurate than the commonly adopted approaches.

First, we explored the fundamental movement of the ASR in mouse, utilizing high-speed 

video to record startle movements (Horlington 1968). Recorded animals were placed upon 

the same startle plates used during behavioral experiments. A light pulse, synchronized with 

the acoustic stimulus, allowed us to correlate the animal’s movements during a startle with 

the raw data produced by the piezoelectric startle plate. This initial step allowed us to 

identify a stereotyped waveform output produced by the plate during a startle movement. 

The discovery of this waveform allowed experienced researchers to visually separate trials 

with startle data from those without. The visual separation of trials in this manner was 

termed ‘manual classification’ and was used as a baseline to compare automated methods.

We then developed a mathematical method to separate trials with this stereotyped 

waveform, indicative of true startle movements, from those without, indicative of noise. 

Further, we used the criteria found to separate trials mathematically to create an automated 

program that separates trials where a startle has occurred from those where no startle 

occurred.

Grimsley et al. Page 2

J Neurosci Methods. Author manuscript; available in PMC 2016 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The accuracy of this new approach was then compared with other methods for startle data 

analysis, on a novel set of mouse data. Accuracy was determined by comparing the ability of 

each method to separate startles from noise relative to the manual classification of trials by 

three experienced researchers. For manual classification, trials were visually reviewed to 

identify startle trials and no-startle trials. Each classification method was then compared to 

the manual classification; values of percentage correct were calculated to quantitate the 

success of each method. In respect to a sample dataset, our automated method far 

outperformed all other methods.

Finally, we put forward an approach to normalize startle data for an individual animal’s 

mass. By adopting some simple mathematical conversions used in the field of animal 

locomotor mechanics, the mass of each animal is used to convert force into center of mass 

displacement (COMd) or “height”. This mathematical conversion has two benefits: first, the 

procedure normalizes for mass, allowing legitimate comparisons between animals of 

different mass. Second, it converts the forces sensed by the piezoelectric startle plate into a 

more readily understandable unit of “height”: the center of mass displacement (COMd).

Material and Methods

Animals

A total of 24 adult male CBA/CaJ mice (4–9 months of age) made up the four datasets used 

in this study. All mice were obtained from Jackson Laboratories. Mice were housed in pairs 

within a colony room with a 12-h light–dark cycle at 25°C. Experiments were performed 

during the light phase of the light-dark cycle. All procedures used in this study were 

approved by the Institutional Animal Care and Use Committee at Northeast Ohio Medical 

University.

1) High-speed video recordings—Adult CBA/CaJ mice were filmed using a digital 

high-speed camera (HiSpec Lite, Fastec Imaging, San Diego, CA). Videos were captured at 

1000 frames per second onto a notebook computer (Latitude Ultrabook, Dell Computers, 

Austin, TX) using Fastec HiSpec video capture software. Mice were placed upon a Kinder 

Scientific piezoelectric startle platform that was connected to a TDT RZ6 multi-processor 

running custom OpenEx software. The OpenEx software controlled the production of 

acoustic and visual stimuli and synchronized the acquisition of all data. The stimulus used to 

elicit a startle, solely for video recording purposes, was a wide band noise burst (107dB, 

20ms duration 1ms rise/fall, 5–100kHz) delivered through a loudspeaker (FT17H, 

FOSTEX). The loudspeaker was calibrated with a 0.25-in. microphone (Brüel and Kjaer 

4135) attached to a measuring amplifier (Brüel and Kjaer 2525). Speaker calibration was 

performed to increase output voltages for frequencies where speaker roll-off occurred. The 

resulting speaker output had a flat (+/− 3dB) response across all frequencies of the mouse 

audiogram (5–100 kHz). A short (25ms) voltage pulse that was time-locked to the startle 

stimulus onset was delivered to an LED mounted in front of the piezoelectric startle 

platform (Fig. 1). This light pulse served as a timing reference for the high-speed video 

recording. The synchronizing LED voltage pulse, acoustic startle stimulus signal and 
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piezoelectric startle plate signal (Fig. 1) were continuously recorded (25KHz sampling rate) 

in OpenEx to enable precise pre- and post-stimulus analysis of the startle waveform.

Two separate video recording sessions were performed. In the first session, the mouse was 

restrained in a small cage placed on top of the startle plate. In the second session, the mouse 

was placed on the startle plate without a restrainer. The restrained paradigm allowed for 

evaluation of the startle waveform produced in conditions close to those of typical 

experimental conditions. During typical experimental conditions mice are restrained in an 

acoustically transparent restrainer (Longenecker and Galazyuk 2012). The unrestrained 

paradigm permitted the mouse to use its full range of motion during an ASR.

2) Developing a mathematical, automated, startle waveform classifier—Video 

analysis revealed that an ASR in mouse produced a stereotyped waveform from the 

piezoelectric startle plate (Fig. 2). Further analysis revealed that the first three peaks of this 

waveform, the first positive (P1), the first negative (N1), and the second positive (P2) peak, 

are necessary to identify it from non-startle waveforms. An automated classifier was 

developed to identify this stereotyped waveform and separate startle data from noise. Three 

criteria are used by the classification. First, the waveform must contain the three peaks of 

interest, second, these peaks have the appropriate timing, and third, each peak’s magnitude 

is greater than the trial specific threshold.

The timing of the peaks of interest was automatically identified using an iterative procedure 

implemented in a custom MATLAB script. This established timing windows for our 

automated ASR classifier. An initial dataset (Dataset 1) was collected using 400 randomly 

chosen startle trials using stimulus intensities ranging from 60 to 120 dB SPL from eight 

male CBA/CaJ mice (4–9 months of age). The timing windows were calculated in two steps. 

First, large timing windows (TP1, TN1 and TP2) were computed for each peak (P1, N1 and 

P2) by plotting the mean waveform of all 400 trials. TP1, TN1 and TP2 were taken as the 

time points where the average waveform crossed zero (Fig. 3). Because of the reliable 

latency of this reflexive movement, any waveform from a true startle event will have its P1, 

N1 and P2 peaks within these time windows. These initial large time windows were used as 

a starting point to refine the windows used in the automated ASR classifier. As overly large 

time windows would increase the probability of non-startles and/or random animal 

movement being misclassified at startles, a second dataset of 200 trials (dataset 2) was 

collected to calculate more precise timing windows for each peak of interest. Prior 

experiments have demonstrated that startle stimuli of 110dB SPL elicit a reliable startle 

response (Longenecker & Galazyuk 2012). Therefore, dataset 2 trials used a startle stimulus 

intensity of 110dB SPL. These data were collected from the same 8 male CBA/CaJ mice (4–

9 months of age) used in dataset 1. The time points of the maxima of the positive peaks (P1 

and P2) and the minimum of the negative peak (N1) were extracted for each trial. The mean 

± 2 standard deviations, for each peak, across all trials were then used to define the refined 

timing windows (P1win, N1win and P2win, Fig. 4).

Once the automated classifier has identified the three peaks of interest and confirmed each 

peak occurs within its previously calculated time window (P1win, N1wind and P2win), it 

then checks each peak breaks threshold. Values are computed for both positive and negative 
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thresholds (pT and nT) on a trial-by-trial basis. Positive thresholds were defined as the mean 

of all positive values in the waveform preceding the startle stimulus, plus 2 standard 

deviations. The negative threshold was defined as the mean of all negative values preceding 

the startle stimulus minus 2 standard deviations (Fig. 2). For each trial, positive peaks (P1 

and P2) were defined as the maximum value within P1win or P2win with 3 ms of smaller 

values both before and after. Negative peaks (N1) were defined as the minimum value 

within N1win with 3 ms of larger values both before and after.

The following criterion was used to automatically determine if an ASR occurred: all three 

peaks occurred in the time windows specified and (P1>pT) & (N1<nT) & (P2>pT).

3) Testing the accuracy of the automated classifier—To assess the accuracy of the 

automated classifier, a third dataset (dataset 3) at startle stimulus intensities of 70, 85, 100 

and 115 dB SPL was collected from eight novel male CBA/caJ mice (4–9 months of age). 

100 trials were collected at each intensity for a total of 400 trials. Markers indicating the 

stimulus intensity were removed and the order of the trials was randomized. This step 

ensured researchers assigning trials as startle or no-startle by visual analysis (manual 

classification) had no idea of the specifics of the individual trials. The randomized dataset 

was then analyzed by both the automated classifier and manual classification. The dataset 

was then reordered to allow analysis of the accuracy of the automated classification 

compared with the manual classification, across stimulus intensities. The accuracy of the 

automated classifier was assessed using a two-way ANOVA.

4) Comparisons with other methods—A final dataset (dataset 4) was used to compare 

the accuracy of the automated startle classifier with other commonly used ‘separation’ 

methods. 100 trials at intensities of 0, 80 and 110dB SPL were collected from a novel group 

of eight male CBA/caJ mice (4–9 months of age), making a dataset of 300 trials in total. 

Four separation methods where then used to separate these trials into startle and non-startle 

groups. The separation methods tested where:

Method 1 (Auto) the automated classifier outlined in this manuscript.

Method 2 (Threshold) separates trials based on calculating a threshold from the pre-

stimulus data. The largest value found in the force plate waveform before the startle 

stimulus is used to set this threshold. If the largest value after the startle stimulus is 

greater than this, it is deemed a startle.

Method 3 (RMS) calculates the root mean square (RMS) of the values for the 100ms 

preceding the stimulus and the 100ms immediately after the stimulus. If the post-

stimulus RMS value exceeds that of the pre-stimulus RMS, the trial is classified as a 

startle.

Method 4 (Max) does not separate trials but includes all trials as startle data, taking the 

largest positive value in the waveform after the stimulus was played as the amplitude of 

the startle. While this approach does not distinguish between startle and non-startle 

trials, it was included in our analysis since it is the method used in some commercially 

available startle equipment.
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The accuracy of these methods was then computed as percentage agreement with manual 

classification. Trials in which the separation method and the manual classification both 

identified a startle were deemed ‘Correct startle’ trials, where both agreed there was no 

startle were deemed ‘Correct no-startle’ trials. Trials deemed as ‘Misclassified as startle’ 

were those in which the separation method classified a trial as containing a startle, where the 

manual classification did not. Trials termed ‘Misclassified as no-startle’ where those in 

which the separation method classified the trial as not containing a startle, while the manual 

classification deemed that it did.

The percentage of trials falling into the four possible outcomes; ‘Correct startle’, 

‘Misclassified as startle’ (Fig. 8A) ‘Correct no-startle’ and ‘Misclassified as no-startle’(Fig. 

8B) where calculated. These values were calculated as (‘number of trials in category for 

separation method’/’number of trial in category for manual classification’) × 100. For 

example, the percentage of trials classified as ‘Correct startle’ was the number of ‘Correct 

startle’ trials divided by the total number of startle trials classified as such by manual 

classification. This enables observations regarding the specific accuracies or inaccuracies of 

each separation method.

To enable a quicker assessment of any separation method, a value of ‘agreement with 

manual classification’ (Fig. 8C) is calculated. ‘Agreement with manual classification’ is 

derived by summing the values for percentage correctly classified as ‘Correct startle’ and 

‘Correct no startle’, and then divided by 2. As such, any separation method that classifies all 

trials as startles will get a value of 100% for ‘Correct startle’ and a value of 0% for ‘Correct 

no-startle’. Therefore a value of 50% for ‘agreement with manual classification’ will be 

considered chance.

4) Normalizing for animal mass in startle data—A major issue with interpreting 

startle data is the ability to compare outputs from animals of different masses. For a given 

movement amplitude (i.e., displacement), an animal with a greater mass will exhibit a larger 

force. Hence, the amplitude of the startle, as measured by the startle plate, will be greater for 

large animals than for small animals, even when both animal’s startle responses are the 

same. To be able to compare startle behavior of animals of different mass, or the same 

animal over a long time period (where the mass may change), it is important to be able to 

normalize the response magnitude to the mass of the animal. To do this, we adopted a set of 

simple mathematical extrapolations to convert force into center-of-mass displacement 

(COMd). COMd equates to the change in vertical position of the animal’s center-of-mass. 

We used standard principles of force plate ergometry (e.g., Manter 1938, Cavagna & 

Kaneko 1977) to calculate the finite change in COM height that result from the accelerations 

of the animal’s startle movement. First, from Newton’s second law of motion (F=ma), 

acceleration can be calculated by dividing the startle plate force data by the animal’s body 

mass. Then, changes in COM height can be calculated as the cumulative double integral of 

acceleration with respect to time (Young 2009). Constants for these integrations were set to 

zero, on the assumption that there was, on average, no net upward movement of the COM 

prior to the initiation of the startle response. Matching positional changes to the raw 

waveforms provides an intuitive graphical means of interpreting the ultimate biomechanical 

meaning of the startle waveform. Additionally, as we argue below, the maximum 
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displacement of the animal’s COM during the startle response provides an accurate metric of 

overall startle magnitude. It is important to note that the animals mass must be measured 

prior to each recording to allow precise measurements of COMd. In this study, researchers 

carefully measured the mass of each animal by weighing them on a calibrated Ohaus Scout 

Pro digital scale, immediately prior to inserting the animal into the startle chamber.

Results

1) Correlating animal movements with components of the startle plate waveform

To enable reliable identification of startle data from noise, we time-coupled video recordings 

made during a startle event with changes in the waveform generated by the piezoelectric 

startle plate. Each waveform produced by the startle plate during these video recordings was 

then superimposed onto the corresponding video (Fig. 1, Supplemental Video 1).

Startle on piezoelectric plate with restrainer—Startle data in mouse is typically 

collected while the mouse is loosely restrained, allowing enough movement for a startle, 

while retaining the animal over the startle plate. The first experimental condition tested with 

high-speed video replicates this level of restraint. This condition revealed that a startle 

movement results in a stereotyped waveform from the piezoelectric startle plate (Fig. 1). 

Video analysis revealed the first positive peak (P1) of the startle waveform corresponds to a 

downward force of the animal just prior to any vertical movement (Fig. 1a and Fig. 1b, panel 

2). The first negative peak (N1) corresponds to the maximum vertical displacement of the 

COM (Fig. 1a and Fig. 1b, panel 3). Due to the confined nature of the restrainer, we could 

not link the remaining phases of the waveform with the animal’s movement. Therefore, we 

conducted similar recording sessions using the same startle plate without a restrainer.

Startle on piezoelectric plate without restrainer—To further explore the mechanics 

of the startle in mouse, animals were placed on the same startle plate without any restraint. 

The lack of restraint allowed us to record the full range of movement and directly link these 

movements to the separate phases of the startle waveform previously identified (P1, N1 and 

P2).

Figure 1b shows a sequence of still frames demonstrating five phases of the animal’s 

movements during a startle. We can loosely think of these as ‘1 - resting’, ‘2 - pushing off’, 

‘3 - lifting off’, ‘4 - airborne’ and ‘5 - landing’ (Fig. 1b panels 1–5, respectively). We have 

linked two of the three peaks of interest with a specific and well defined phase of the 

animal’s movement during a startle. P1 corresponds to a net downward force prior to 

upward movement, or ‘pushing off’, and N1 corresponds to the animal unweighting from the 

startle plate (initiating a movement large enough to completely loose contact with the plate 

in some cases), or ‘lifting off’. We have no defined movement associated with P2, however.

2) Automated classifier

Time windows for the three peaks used by the automated startle classifier—
The time windows used by the automated classifier were calculated using two steps. First 

large time windows were extracted from the zero crossing points of a mean waveform of 
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400 randomly-picked waveforms. These were used as starting points for more refined 

calculations, with final windows resulting from the mean ± 2 standard deviation of the 

timing of the peaks from 200 trials at 110 dB SPL stimulus intensity (see methods and Fig. 

4).

This process resulted in time windows of 17.30 to 22.32ms, 30.37 to 38.39ms and 44.52 to 

57.31ms for peaks P1, N1 and P2 respectively (Table 1 and Fig. 3).

Automatic classification of waveforms—Waveforms were separated as startles or 

non-startles by the automatic classifier as described in the methods. The dataset used 

(dataset 3) consisted of a total of 400 startle responses, recorded from eight six-month old 

CBA/CaJ mice. These 400 waveforms can be divided into four groups each containing 100 

trials at four different startle stimulus intensities (70, 85, 100 and 115 dB SPL). Out of the 

400 waveforms comprising dataset 3, 213 were classified as startles based on criteria 

outlined in the methods, while the remaining 187 were classified as no-startle.

Manual classification of startle waveforms—The dataset analyzed by the automatic 

classifier (dataset 3) was also used to separate startle trials by manual classification as 

described in the methods. Manual classification identified 235 of the 400 waveforms as 

startles and the remaining 165 as no-startle. Inter experimenter consistency was assessed 

using both Fleiss’ kappa and Krippendorff’s alpha. Values were 0.865 for both metrics, 

indicating very good levels of agreement between the three researchers used. Manual 

classification is therefore consistent, making it a reliable baseline for comparison with other 

automated methods. The mean of all the waveforms from dataset 3 grouped as no-startle and 

startle, for both manual and automated classification, are shown in Figure 5. These traces are 

grouped by startle stimulus intensity.

Effectiveness of automatic startle identification compared to manual—Manual 

and automatic startle identification generated very similar groups (Fig. 4). Very few 

waveforms manually classified as no-startles were classified as startles by the automated 

categorization (1.2%, 2/165). Similarly, few waveforms manually classified as startles were 

classified as no-startles by automated analysis (10.2%, 24/235). A two-way ANOVA 

revealed that there was no significant effect of classification method on the magnitude of the 

3 peaks (P1: p=0.526, N1: p=0.488, P2: p=0.529). A significant main effect was found of 

signal intensity on the magnitude of all 3 peaks (P1, N1 and P2: p<0.001), where more 

intense sounds were likely to elicit a higher magnitude ASR. There was no interaction 

between intensity and classification method (P1: p=0.956, N1: p=0.955, P2: p=0.967), 

indicating that the manual and automatic classifiers were equally good at detecting ASRs 

across intensities (see Fig. 7).

3) Assessing different classification methods

To test the accuracy of the automated classification against other separation methods, a 

novel dataset (dataset 4) of 300 different startle trials from a novel group of eight 4–9 month 

old male CBA/CaJ mice was analyzed. 100 trials at three different intensities (0, 80 and 

110dB SPL) were collected. These 300 waveforms were manually classified and the results 
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were compared to those from four different startle separation methods. It is assumed that the 

manual classification, carried out by three experienced researchers, yields the correct 

answer.

The four startle separation methods tested were:

Method 1: Automated startle classifier.

Method 2: Threshold the data based on the pre-stimulus movement.

Method 3: Compare root mean square (RMS) values of the pre-stimulus and the post 

stimulus waveform.

Method 4: Use absolute maximum value after stimulus onset (not truly a separation 

method, but included here as it is often the method used in commercially available 

startle software).

Pooling across all three stimulus intensities, the automated classification method showed the 

closest agreement with manual classification (Correctly classified trials = 296/300, Cohen’s 

κ = 0.973, p < 0.001) than either the threshold method or the RMS method (threshold: 

Correctly classified trials = 229/300, Cohen’s κ = 0.522, p < 0.001; RMS: Correctly 

classified trials = 201/300, Cohen’s κ = 0.331, p < 0.001). As expected, the max method 

performed close to chance (Correctly classified trails = 153/300, Cohen’s κ = 0, p = 1), 

identifying all 147 no-startle waveforms (49% of total) as startles.

Separating trials by stimulus intensity revealed that manual identification by experienced 

researchers indicated that none of the 0dB waveforms were startles. Whereas the automated 

method presented here accurately classified all of these 100 waveforms as no-startles, the 

threshold method and the RMS method inaccurately classified 34% and 60% as startles, 

respectively. The max method, by definition, inaccurately classified 100% as startles.

Manual identification identified 47 of the 80 dB waveforms as no-startles and 53 as startles. 

Of the four separation methods, our automated method showed the best agreement with 

manual classification (46 no-startle/54 startle, Cohen’s κ = 0.94, p < 0.001). Both the 

threshold and RMS methods performed worse than the automated method, overestimating 

the number of startle events (threshold: 10 no-startle/90 startle, Cohen’s κ = 0.223, p < 

0.001; RMS: 8 startle/92 no-startle, Cohen’s κ = 0.179, p = 0.002). The max method, again 

by definition, incorrectly identified 100% of the no-startle waveforms as startles (Cohen’s κ 

= 0, p = 1).

Finally, manual classification identified all of 110 dB waveforms as startles. The automated 

method correctly identified 99% of these waveforms as startles, whereas the other three 

methods correctly identified all of the waveforms as startles.

To further investigate how each classification method compared with manual classification, 

the percentage of trials correctly classified (‘Correct startle’ and ‘Correct no startle), as well 

as the percentage misclassified (‘Misclassified as startle’ and ‘Misclassified as no-startle) 

are shown in table. 2. Values for ‘agreement with manual classification’ were also calculated 

as ‘Correct startle’ + ‘Correct no-startle’/2 (see Table. 2 and Fig. 8).
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All separation methods were successful at correctly identifying startle trials. Percentages 

correct for ‘Correct startle’ were between 98 and 100% for all methods at all stimulus 

intensities tested which contained startles (Table 2, Fig8A). Across all intensities, the 

automated method (‘Auto’ in Fig. 8 and Table 2) far outperformed all other methods at 

identifying no-startles, shown by a higher ‘Correct no-startle’ percentage (95.7–100% 

compared to 0–66%).

The automated method closely followed the classification given by manual classification, 

outperforming other methods at lower stimulus intensities (0dB =100%, 80dB =96.9%, see 

Table. 2 and Fig. 8C). All separation methods worked well at 110dB, achieving values of 

99–100% for ‘agreement with manual classification’.

There were no values for ‘Correct startle’ and ‘Misclassified as no-startle’ for the 0dB SPL 

stimulus trials as there were no startles elicited at this intensity. Similarly there are no values 

for ‘Correct no-startle’ and ‘Misclassification as startle’ for the 110dB SPL trials as all trials 

resulted in a startle. This is represented by N/A in Table 2 and Figure 8.

4) Use of center of mass displacement to quantify startle magnitude and normalize for 
animal mass

Calculating center of mass displacement (COMd) is possible from startle data. COMd is a 

measure of the vertical displacement of the center of mass. It is useful when reporting startle 

data as it incorporates the animals mass, accounting for this variable (see methods).

Figure 10 shows the results of using COMd compared to raw force data. As the mass of the 

animal increases, it corresponding COMd will decrease, for a given force (Fig. 10). Figure 

10A illustrates this using an actual startle plate waveform (black trace) and 5 arbitrarily 

chosen animal masses. As the animals mass decreases, the COMd achieved increases for the 

same raw force plate waveform. Figure 10B and C represent the same relationship in a 

different way. In both panels actual startle plate waveforms are presented from 2 different 

mice. The amplitude of these force data are nearly identical (0.435N and 0.437N for panel B 

and C respectively). However, animal #14 (Fig. 10B) had a mass of 26.1g, while animal #19 

(Fig. 10C) had a mass of 43.2g. Due to the relationship between force and mass, animal #14 

therefore had to have a greater startle response than animal #19. This is shown clearly by the 

COMd traces (red lines), after the mass of the animals is considered, the startle response by 

animal #14 was far larger than that of animal #19 (COMd of 1.192mm and 0.649mm, 

respectively).

Moreover, as a metric of startle magnitude, absolute COM displacements correlate to 

stimulus intensity as well as the peak amplitude of the startle waveform. Non-parametric 

Spearman’s rank-based correlations of startle magnitudes against a 60–120 dB SPL range of 

startle stimuli demonstrate that there is a similar level of association between stimulus 

intensity and COMd (rho=0.629, p<0.001) as between stimulus intensity and maximum 

waveform amplitude (rho=0.596, p<0.001). Thus, these two measures of startle magnitude 

correlate equally well with stimulus intensity.
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Discussion

Startle identification

There is currently no consensus on how to assess the occurrence of a startle. This is a critical 

problem, as the probability of a startle occurring in any given trial varies greatly depending 

on the experimental paradigm. Furthermore, at low stimulus intensities, a significant number 

of successful startles have small magnitudes (Fig. 5D), but should be included in any 

analyses. If an animal’s movement before the stimulus has a higher or even similar 

amplitude to a small startle, these data are often discarded. Here we demonstrated an 

improved approach for identifying the startle-related waveforms produced on piezoelectric 

startle plates that is virtually independent of startle magnitude. We utilized high-speed video 

to correlate the movements of the animal with components of the startle waveform. We 

demonstrated how to interpret the waveform and offered evidence as to which specific 

component of the waveform correlates with specific phases of the startle movement. We 

then developed a robust approach to automatically distinguish true startle events from noise 

with ~88% accuracy, even at very low startle amplitudes. We also introduce a new metric, 

COMd, which not only gives a salient unit with which to report startle magnitude, but also 

normalizes force plate data for the mass of the animal.

1) Correlating animal movements with components of the startle plate waveform

Initial high-speed video experiments revealed a stereotyped waveform produced during a 

startle event. We were successful at correlating the first 2 peaks of interest in this waveform, 

P1 and N1, with distinct phases of the animal’s movement. P1 corresponds to a ‘pushing’ on 

the plate in preparation for the upward movement of the startle (Fig. 1 Panel 2). N1 

corresponds to the initial ‘unweighting’ of the plate, starting the animal’s upward trajectory 

(Fig. 1 panel 3). We could not correlate the third peak, P2, with a clear and distinct 

movement. It is possible that this peak is due to an oscillation of the Plexiglas startle plate, 

as a result of the initial weighting and unweighting of the plate during the P1 and N1 phase. 

Experiments to assess the resonance of the plates indicated that these plates will ‘ring’ for an 

extended period of time as a result of a single movement.

2) Automated classifier

The stereotyped waveform associated with a startle allowed for visual classification of 

waveforms by experienced researchers, a process we termed ‘manual classification’. 

Throughout this study we have used manual classification as the basis to assess varies 

mathematical methods to separate startle trials. The manual classification of startle data 

consisted of three experienced researchers deciding, by eye, whether each trial consisted of a 

startle or not. This is the best method we currently have to validate other methods. Manual 

classification has proven to be consistent, with little inter-experimenter disagreement, as 

shown by high values of Fleiss’s kappa and Krippendorff’s alpha (0.865 in each case). 

However, it is unlikely to be perfect as some inherent human error is likely. It is quite 

possible that some trials that were manually classified as startle are not (for example figure 

6D). Similarly some trials classified as no-startle by the manual method may be true startles 

(figure 6A). We see this as further reason to develop an automated method based on a 

Grimsley et al. Page 11

J Neurosci Methods. Author manuscript; available in PMC 2016 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



repeatable mathematical structure, rather than relying upon subjective opinions of human 

researchers.

The need to be able to separate startle data in an automated way, based upon mathematical 

criteria lead to the development of our automated classifier. An important aspect of this 

classifier was the ability to separate startle trials, regardless of the startle amplitude. The 

automated classifier has very good agreement with manual classification across stimulus 

intensities and startle amplitudes (Fig. 5). Results from a two-way ANOVA on the 

amplitudes of each of the three peaks of interest show no significant difference between 

those classified by manual classification and the automated classifier (P1: p=0.526, N1: 

p=0.488, P2: p=0.529), regardless of stimulus intensity (Fig. 7).

3) Assessing different classification methods

The lack of standardized methods for handling startle data make it impossible to directly 

compare the automated method with every startle separation method used. Here we compare 

the automated classifier to three methods that are commonly used on startle data: 1) setting a 

pre stimulus threshold that needs to be crossed, 2) calculating the RMS of the pre and post-

stimulus waveform and 3) simply using the largest positive value post-stimulus without any 

separation of trial (for more details see methods section 4). We show that for high startle 

stimulus intensities many separation methods are successful (Table. 2). Such stimulus 

intensities often result in a high probability of a startle occurring and a large amplitude 

startle (Fig. 5). As such, it is often at lower stimulus intensities where a robust separation 

method is most useful. We demonstrate that at lower intensities our automated classifier 

outperforms all others (Table. 2, 80dB), especially at correctly rejecting no-startles (Fig. 

8B), effectively eliminating noise from the data to be analyzed.

4) Use of center of mass displacement to quantify startle magnitude and normalize for 
animal mass

There is currently no consensus of how to report a startle magnitude. Some researchers will 

report force (N) without considering the effect of the animal’s mass, yet others will report 

the voltage (mV) value generated by the sensor in the startle plate. We advocate the simple 

conversion of force to COM displacement when reporting startle amplitudes. The 

mathematical procedures outlined above (cumulative double integration of the raw 

waveform) provide a means by which researchers can normalize their data for the mass of 

individual animals, eliminating this otherwise confounding variable. It is our firm belief that 

this benefit alone makes these conversions a valuable tool to anyone utilizing startle reflexes 

in their work. This is especially true of studies requiring animals to be tested over long 

periods of time where the mass of each animal is likely to change. We also demonstrate that 

COMd is as faithful a measure of startle magnitude as absolute magnitude of the largest 

peak. We thus advocate use of this technique whenever the quantification of startle 

magnitude is of interest.

Replication of our automated classifier

Due to the wide variety of equipment and data formats used to collect startle data, it is 

beyond the scope of this work to supply ‘plug-and-play’ code for our automated classifier. 
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We do, however, strongly encourage its adoption by researchers interested in quickly and 

easily separating startle data from that of noise. As such, we offer the following steps as a 

guide for researchers wishing to replicate our method on their own data.

Step 1. Confirm that the test apparatus utilizes a piezoelectric sensor; this method is 

optimized for sensors of this type.

Step 2. Identify whether your system outputs a stereotyped waveform similar to that in 

Figure 2. To do this, calculate and view the average response from 100 trials that are 

likely to elicit a startle response in your model (e.g. trials with a high stimulus 

intensity).

Step 3. Create conservatively large peak timing windows based on the mean waveform 

of 400 randomly chosen startle trials. Use the zero crossing points of the peaks (see Fig. 

3).

Step 4. Using your conservatively large windows, for each of the 400 trials find the 

value for each peak (largest positive value for P1 and P2, largest negative for N1) and 

its corresponding time point in milliseconds. Before using these values in step 5, ensure 

that the values taken are the very tip of the peak.

Step 5. Calculate the mean times of all the peaks (P1, N1 and P2) identified in step 4. 

The mean time minus 2 standard deviations will be the start point of the refined window 

for that peak. The mean time plus 2 standard deviations will be the end point.

Step 6. Create the automated classifier. The automated classifier needs to do three 

things;

1. For each trial, calculate the positive threshold (pT) and the negative threshold 

(nT). pT is the mean of all positive values preceding the startle stimulus, plus 2 

standard deviations. nT is similarly the mean of all negative values preceding the 

startle stimulus minus 2 standard deviations. Note that these thresholds are 

created on a trial-by-trial basis

2. Identify peaks within the refined time windows calculated in step 5. Ensure that 

they are actual peaks, surrounded to either side by decreasing values (or by 

increasing values for N1)

3. The trial is deemed a startle if P1, N1 and P2 occur within the time windows 

specified and if P1 and P2 are above pT, while N1 is below nT.

Step 7. Assess the accuracy of the automated classifier. The two methods outlined in 

this manuscript both rely on first manually assigning a dataset of trials as startle or no-

startle. Once this is done, the accuracy of the automated classifier can be assessed by 

calculating percentage correct values and/or investigating the difference between the 

values found for the peaks designated as startle by manual classification and those 

designated as startle by the automated classifier.
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Conclusions

Here we offer a method to confidently remove a high percentage of noise from startle data. 

Our method is unique in that we go to great lengths to demonstrate that the startle movement 

in the mouse results in a stereotyped and recognizable waveform from the piezoelectric 

sensor. We show that this stereotyped waveform can be successfully identified and used to 

visually separate trials by experienced researchers, a process we term ‘manual 

classification’. We further show that this waveform can be mathematically and 

automatically separated from waveforms that do not conform and are thus noise. We 

demonstrate that this automated classifier has a high correlation with manual classification 

of startle trials, even at low startle amplitudes. Comparisons with other startle separation 

methods reveals many are successful at very high startle amplitudes but only the automated 

classifier described here is successful at lower startle amplitudes. We then demonstrate a 

method to convert force data into COMd. COMd conversion allows an intuitive unit for 

startle amplitude (mm) as well as eliminating a massive confound in startle data, that of the 

animals mass.

Though our method was developed in mouse, we believe it should be easily adapted to other 

laboratory animals. Researchers who currently add behavioral trials to reduce the effect of 

noise in their data would likely reduce the total time they need to conduct experiments if our 

approach were adopted. To adapt our approach to laboratory animals other than mice it 

would be necessary to analyze the shape of the startle waveform and the timing of its 

individual components. Assuming the shape is the same, which is likely if a piezoelectric 

sensor/Plexiglas platform is utilized, laboratories with access to simple programming 

capabilities (MATLAB, Visual Basic, Python, etc.) can then write their own custom, 

automated classifier program to automatically separate out startle data from noise.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ASR Acoustic Startle Reflex

P1(t)(win) First positive peak of the startle waveform (timing)(window)

P2(t)(win) Second positive peak of the startle waveform (timing)(window)

N1(t)(win) First negative peak of the startle waveform (timing)(window)
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LED Light emitting Diode

pT postitive threshold

nT negative threshold

COMd Center of mass displacement

dB SPL decibels sound pressure level
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Highlights

• We explored the fundamental movement of the ASR in mouse, utilizing high-

speed video to record startle movements.

• We created an automated program that classifies raw force traces into startles 

and non-startles

• The accuracy of this new approach was then compared with other common 

methods for startle data analysis.

• We suggest a method for normalizing for animal mass by combining raw force 

data with each individual animal’s mass into a simple mathematical equation.
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Figure 1. 
Different phases of mouse movement during a startle response recorded by a high-speed 

video camera. (A) The major phases of startle movements recorded inside a Plexiglas 

restrainer. The startle response waveform was recorded simultaneously with the video 

recording using a piezoelectric sensor (piezoelectric startle plate waveforms are shown 

below every picture frame). The black dot on the startle waveform indicates the time when 

the corresponding pictures were taken. (B) Mouse movement during a startle response 

without restrainer. Also see supplemental materials for video recordings.
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Figure 2. 
Automated startle waveform identification. The following startle waveform parameters were 

required for identification of a waveform as a startle. The first and second positive peaks (P1 

and P2) as well as the first negative peak (N1) occur within previously identified time 

windows (indicated by black horizontal bars) and the absolute amplitude values of the peaks 

exceed the trial-specific positive and negative thresholds. The grey vertical bar indicates the 

startle stimulus.
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Figure 3. 
Obtaining overly large time windows (TP1, TN1 and TP2) for peaks in a startle waveform. 

TP1, TN1 and TP2 are derived from the time points at which the mean waveform of 400 

randomly selected trials crosses zero (indicated by ‘x’s).
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Figure 4. 
Method for determination of the time windows for P1, N1 and P2 peaks on a startle 

waveform for automated startle identification. Precise timing of each peak is extracted, 

using the overly large time windows previously calculated. 100 example waveforms are 

shown, superimposed. Startle stimulus was 110dB SPL for each trial. The timing of the P1, 

N1 and P2 peaks in every startle waveform are indicated by blue, red, and green dots, 

respectively. The grey vertical bar indicates the startle stimulus. Black horizontal bars 

indicate the time windows calculated for each peak (P1, N1 and P2) using the timing of the 

apex of the peak in each trial (mean time from all trials ± 2 SD).
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Figure 5. 
Manual and automatic startle waveform classification. Top panels show manual 

classification; bottom panels show automatic classification. 100 waveforms where analyzed 

for each stimulus intensity (115, 100, 85 and 70 dB SPL). The number of trials classified as 

startle and no-startle are indicated in the top left of each panel, as such, each row totals 100 

trials. (A–D) Mean waveform of all trials classified as startle. (E–H) Mean waveform of all 

trials classified as no-startle. Error bars are standard deviation. Startle stimulus is 

represented by a vertical grey bar. All axis are on the same scale.
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Figure 6. 
Examples of startle waveforms that were misclassified by manual or automatic 

classification. Black traces indicated misclassified waveforms. Grey traces are a typical 

startle waveform for comparison (the same on all panels).
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Figure 7. 
Mean magnitude of each peak of interest (P1, N1 and P2) as classified by manual 

classification (white bars) and the automated classifier (grey bars). A two-way ANOVA 

revealed that there was no significant effect of classification method on the magnitude of the 

3 peaks (P1: p=0.526, N1: p=0.488, P2: p=0.529) and no interaction between intensity and 

classification method (P1: p=0.956, N1: p=0.955, P2: p=0.967), indicating that the manual 

and automatic classifiers were equally good at detecting ASRs across intensities. Error bars 

are standard deviation.
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Figure 8. 
Comparison of the effectiveness of four different startle identification methods (‘Auto’, 

‘Thresh’, ‘RMS’ and ‘Max’) at different startle stimulus intensities (0, 80 and 110 dB SPL). 

All four methods were compared to manual classification to calculate values for percentage 

classified and percentage misclassified. (A) Percentage classified as ‘Correct nostartle’ and 

‘Misclassification as startle’. (B) Percentage classified as ‘Correct startle’ and 

‘Misclassification as no-startle’. (C) Agreement with Manual Classification for the four 

methods across startle level, calculated as (% ‘Correct startle’ + % ‘Correct no-startle’) / 2.
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Figure 9. 
Mathematical conversion of startle force to center of mass (COM) displacement. (A) Force 

output of startle plate. (B) Force in A converted to acceleration (F=ma). (C) Velocity, 

calculated from acceleration. (D) Position of animal’s COM, or ‘height jumped,’ calculated 

from velocity. The initial extrapolation, from force to acceleration, requires knowledge of 

the animal’s mass (F=ma) and incorporates this mass into the equation. As such, animal 

mass is normalized when converting force data into COMd.
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Figure 10. 
Effect of animal mass on COM displacement (position). (A) Black trace = force output of 

piezoelectric startle plate. Color traces = corresponding COM positions for an animal of that 

mass. Note that a 20g animal achieves twice the COMd (‘height jumped’) of a 40g animal, 

while exerting the same force on the startle plate. (B) Force plate waveform (black trace) for 

a 26.1g animal and its corresponding COMd position (red trace). (C) Force plate waveform 

(black trace) for a 43.2g animal and its corresponding COMd position (red trace). Note the 

maximum force for both animals is very similar (0.435N and 0.437N) whereas the COMd 

differs greatly (1.192mm and 0.649mm) due to the difference in mass between the two 

animals (26.1g and 43.2g). Absolute force may not be the best metric for startle amplitude.
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Table 1

Timing of the 3 peaks from startle waveforms used for automated startle classification. Values derived from 

200 trials, each using a startle stimulus of 110dB SPL (dataset 2). All units are in milliseconds.

P1 N1 P2

Mean 19.81 34.38 50.91

Standard deviation 1.25 2.00 3.20

Timing window (mean ± 2 SD) 17.30–22.32 30.37–38.39 44.52–57.31
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