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Abstract

Tick selenoproteins have been associated with antioxidant activity in ticks. Thioredoxin reductase 

(TrxR), also a selenoprotein, belongs to the pyridine nucleotide-disulfide oxidoreductase family of 

proteins and is an important antioxidant protein. Molecular interaction between native microbiota 

and tick hosts are barely investigated. In this study, we have determined the functional role of 

TrxR in tick feeding, and maintenance of native microbial community. TrxR transcript levels 

remained high and microbial load was reduced throughout tick attachment to the vertebrate host. 

Results of RNA interference (RNAi) show that depletion of TrxR activity did not interfere with 

tick hematophagy or phenotype but did reduce the viability of the microbiome within the tick 

tissues, presumably by perturbing redox homeostasis. The transcriptional activity of various 

antioxidant genes remained unaffected while antioxidant genes MnSOD, Cu/ZnSOD and SelM 

were significantly downregulated in salivary glands of the ticks subjected to RNAi. The perturbed 

TrxR enzymatic activity in the knocked down tick tissues negatively affected the bacterial load as 

well. Furthermore, the bacterial profiles in all the tissues dominated by Rickettisiaceae family 

decreased in TrxR silenced tissues. Taken together, these results indicate an essential functional 

role for TrxR in maintaining the bacterial community associated with ticks.
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Background

Thioredoxin reductase (TrxR) belongs to the pyridine nucleotide-disulfide oxidoreductase 

family. This family also includes glutathione reductase (GSHR), lipoamide dehydrogenase, 

and mercuric ion reductase. Members of this homodimeric flavoprotein family contain one 

redox-active disulfide bond and one FAD per subunit; these reduce the active site disulfide 

in oxidized thioredoxin (Trx) (Holmgren 1989). TrxR is the only enzyme known to reduce 
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thioredoxin; it accomplishes this by transferring an electron from bound NADPH to the 

thioredoxin active site, thereby allowing thioredoxin to reduce its disulfide bonds. The 

reduced thioredoxin reductase is a powerful protein disulfide reductase catalyzing electron 

transport to ribonucleotide reductase and other reductive enzymes and transcription factors 

(Nordberg et al. 1998). TrxR is a unique selenoprotein, having a selenocysteine (Sec) 

incorporated at the opal (UGA) stop codon through a complex process utilizing a Sec 

incorporation sequence element (SECIS) in the 3’ untranslated region (Adamson et al. 

2013).

Blood feeding arthropods like ticks face a variety of oxidative stress conditions both on and 

off the vertebrate host. Stress in ticks can be caused by external stimuli, starvation or during 

blood meal acquisition when imbalances in oxidants and antioxidants can manifest 

themselves. An imbalance between reactive oxygen species (ROS) generation and 

detoxification of their reactive intermediates is known as oxidative stress. Living organisms 

experience a variety of oxidative stress conditions while facing abiotic or biotic stressors and 

must initiate a counter-response before highly reactive biological molecules can damage 

their cellular structures. Severe or prolonged oxidative stress can cause cellular necrosis and 

the induction of apoptosis. To counteract the deleterious effects of ROS and achieve redox 

hemostasis, organisms utilize a battery of antioxidant molecules such as catalases, 

peroxidases, superoxide dismutase (SOD) metallo-enzymes, glutathione reductases and 

thioredoxin reductases.

As a ferocious blood feeder, the Gulf Coast tick, Amblyomma maculatum, is a serious threat 

to livestock production and public health in the USA. This tick is a vector of the rickettsial 

pathogen Rickettsia parkeri, which causes a disease similar to Rocky Mountain spotted fever 

(Paddock et al. 2008). The sialotranscriptome of this tick reveals the presence of various 

antioxidants and selenoproteins including TrxR, which is a major contributor to the tick 

antioxidant system (Karim et al. 2011). Tick selenoproteins have been shown to play 

important roles in mitigating oxidative stress and pathogen colonization (Adamson et al. 

2014; Adamson et al. 2013). The functional role of TrxR has been implicated in various 

metabolic pathways including control of organismal growth, immune functions, and anti-

apoptosis via the thioredoxin-thioredoxin reductase system (Muller 1991; Salz et al. 1994; 

Yodoi and Uchiyama 1992). In Drosophila, TrxR has been shown to be involved in 

longevity and oxidative stress tolerance (Svensson and Larsson 2007). Interestingly, two 

isoforms of TrxR have been reported in Drosophila, neither of which can substitution for the 

other, as a mutation in either isoform results in a lethal phenotype (Missirlis et al. 2002).

Microbes in the tick midgut facilitate colonization of infectious agents, such as Borrelia 

burgdorferi, as evidenced by the reduction in Borrelia colonization following perturbation 

of gut microbiota (Narasimhan et al., 2014). Understanding the mechanisms by which 

microbiota colonize ticks would enhance our fundamental knowledge of the processes 

governing vector competence. Therefore, better understanding of the molecular mechanisms 

involved in the regulation and control of tick microbiota could benefit the development of 

new strategies to control and prevent tick-borne diseases. Blood meal processing involves a 

complex molecular interplay between the vector and microbiota residing within the vector 
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cells. However, many of the mechanisms underlying blood meal processing, particularly its 

regulation, have not been elucidated.

Here, we report a link between tick TrxR and its association with the microbial community 

residing in A. maculatum. To the best of our knowledge, the role of TrxR has not been 

described previously in ticks. Hence, our findings extend current knowledge of this 

important enzyme in maintaining hemostasis of bacterial community in blood-sucking ticks.

RESULTS

Bioinformatics analysis

A full-length sequence (GenBank Accession: JO843723) with significant amino acid 

homology to TrxR was found in the transcriptional shotgun assembly of the A. maculatum 

sialotranscriptome (Karim et al. 2011). The deduced TrxR amino acid sequence was aligned 

against the deduced amino acid sequences of other invertebrates and vertebrates species to 

observe the similarity levels between them (Fig. 1). The A. maculatum TrxR amino acid 

sequence was also aligned against other TrxR orthologs previously identified from Ixodes 

scapularis, Rattus norvegicus, Drosophila melanogaster, and Anopheles gambiae. The 

residues highlighted in the alignment correspond to the conserved cysteine/Sec residues 

(Fig. 1). The A. maculatum TrxR protein sequence shared 47% identity with TrxR from I. 

scapularis, 51% with R. norvegicus, 52% with D. melanogaster, and 53% with A. gambiae 

(Tusnady and Simon 1998; Tusnady and Simon 2001). The phylogenetic relatedness of 

TrxR orthologs from vertebrates, invertebrates and A. maculatum was investigated (Fig. 2) 

using Mega 6 software (Tamura et al. 2013). The results showed the expected pattern of 

speciation of eukaryotic organisms, with A. maculatum TrxR grouping between prokaryotes 

and eukaryotes (Fig. 2). The A. maculatum TrxR protein lacks a secretory signal peptide 

suggesting it has an intracellular localization (Petersen et al. 2011). A possible intracellular 

location for TrxR is further supported by the dense alignment surface method 

transmembrane prediction server; this software predicts that TrxR contains three 

transmembrane helices, possibly indicating that it is localized in the mitochondrial 

membrane

TrxR transcriptional expression and immunolocalization

TrxR transcript expression in the midgut and salivary gland tissues of A. maculatum had 

similar patterns of expression across the normal blood meal cycle (Fig. 3). The relatively 

high level of transcriptional gene activity throughout the blood meal in both tissues 

underscores their potential role in blood feeding. The transcriptional expression of TrxR in 

salivary glands are significantly down regulated on day 4 (P-value <0.05) and remain similar 

across other time points but significant depletion was reported on days 2 and 8 (P-value 

<0.01) in midgut tissues compared to unfed tissues. Immunolocalization studies of TrxR 

were performed in unfed and partially blood-fed A. maculatum salivary glands using a rabbit 

TrxR antibody (Sigma-Aldrich, St. Louis, MO, USA). TrxR was localized in cells of the 

salivary gland acini in unfed (Figure 4A) and partially fed ticks (Fig. 4B). An increased level 

of staining was apparent in all cells of acini II and III upon blood feeding.
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TrxR gene silencing in vivo

TrxR transcripts were silenced using RNAi in order to assess their likely role in tick blood 

feeding. The qRT-PCR results showed significant depletion of the TrxR transcript levels, 

with a 66% reduction in transcripts from the midguts compared with 99% depletion in the 

salivary gland tissues (Fig. 5). Interestingly, no statistically significant differences were 

noted for mean engorged body weight, tick lethality, oviposition, and egg conversion (mass 

of egg/engorged tick weight) between the dsTrxR- and dsLacZ-injected groups (Table 2). 

However, TrxR enzymatic assay revealed a decreased level of TrxR enzyme activity in the 

knocked down ticks, a finding supported by the level of transcript depletion. Enzymatic 

activity was reduced by 96.0% in the midguts and 93% in the salivary glands of the knocked 

down ticks compared with the dsLacZ tissue controls (Fig. 6).

Compensatory mechanism for TrxR inhibition

The in vivo silencing of the TrxR gene confirmed the successful knockdown of transcript 

and protein levels in the tick tissues, although no obvious phenotypic changes were 

observed. To examine the potential compensatory mechanism(s) associated with the 

depletion of the A. maculatum TrxR gene, the transcriptional expression levels of various 

antioxidant encoding genes, specifically catalase, glutathione reductase (GSHR), glutathione 

peroxidase (Salp25d), SODs (MnSOD and Cu/ZnSOD), and selenoprotein genes (SelK, 

SelM, SelS) were assessed. The transcript levels of catalase, GSHR, and Salp25d genes 

remained unchanged in both tissues after TrxR gene silencing. In contrast, the transcript 

expression levels of MnSOD and Cu/ZnSOD decreased significantly in the salivary glands of 

the knocked down ticks (Fig. 5). Interestingly, SelK and SelM transcriptional expression 

appeared to be increased in the midgut tissues although not significantly. SelM, and SelS 

were depleted in salivary glands and SelS was also depleted in the midguts (Fig. 5). Overall, 

TrxR knockdown triggered various transcriptional activities in the antioxidant factors tested 

herein, and may have contributed to normal tick feeding on the host (Table 2). Importantly, 

the significant depletion of SoDs and SelM in tick TrxR depleted tick salivary glands 

suggested differential impact of the TrxR depletion inside the tick. The A. maculatum tick 

sialotranscriptome also contained sequences related to caspases (Karim et al. 2011) such as 

caspase1 and 2 (Table 1); these were selected to test for apoptotic signaling in the TrxR 

knockdown ticks. Low levels of ROS are mitogenic and facilitate cell growth, while 

increased levels of ROS stimulate pro-apoptotic kinases, leading to cell death (Halliwell and 

Gutteridge 1984). Apoptosis in tick tissues was assessed by monitoring the transcript levels 

of selected caspases genes in the TrxR deficient tissues. Both caspases (Caspase 1 and 2) had 

increased expression in tick salivary glands though not statistical significantly while in tick 

midgut tissues capapase 2 was significantly reduced (Fig. 5).

Total bacterial load and bacterial profile in TrxR depleted tick tissues

The normal bacterial load was estimated in naïve ticks tissues across blood meal cycle (Fig. 

7A) and the impact of TrxR depletion (Fig. 7B) on the native microbes residing inside the 

ticks was examined by comparing the overall levels of bacterial 16s rRNA genes quantified 

and normalized against tick β-actin copies (see Methods). The bacterial load in normal ticks 

in both midgut and salivary glands tissues was observed to be significantly reduced along 
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the blood meal (Fig. 7A). The reactive oxidative stress upon blood meal digestion might 

have made bacteria unfavorable in tick tissues. TrxR gene silencing caused a significant 

decrease in the native bacterial loads of the ticks (p<0.01) in both the midgut and salivary 

glands (Fig. 7B). A 454-pyrosequencer was used to determine the variation in the bacterial 

community in the knocked down tick tissues (Budachetri et al. 2014). In total, 9948 reads 

were obtained after bioinformatic quality control, as described in the methods section. The 

results revealed the presence of the following three bacterial phyla: Proteobacteria, 

Actinobacteria and Firmicutes. Protobacteria were dominantly prevalent (>98%) in the 

samples. In total, 11 bacterial families were found and dominant bacterial families included 

Bradyrhizobiaceae, Methylobacteriaceae and Rickettsiaceae. Rickettsiaceae was the most 

prevalent bacterial family residing in the tick tissues and the prevalence of which were 

decreased in TrxR silenced tick tissues (Fig. 8). Interestingly, in the TrxR depleted tissues, 

additional bacterial sequence reads representing families Bradyrhizobiaceae, 

Dermabacteraceae, and Methylobacterium were observed (Fig. 8).

DISCUSSION

In this study, we investigated the role of tick thioredoxin reductase by computational 

analysis and characterized its function via an RNAi assay. Our data indicate a role for this 

gene in preserving tick microbiota. The Sec-encoded motif is found at the C-terminus in I. 

scapularis, A. maculatum and R. norvegicus whereas cysteine residues are present in other 

species, A. gambiae and D. melanogaster (Fig. 1), and has been described in other tick 

selenoproteins, specifically SelK and SelM (Adamson et al. 2014). At the C-terminus the 

Gly-Cys-Sec-Gly motif is essential for catalytic activity of enzyme thioredoxin reductase as 

determined by mutational analysis, and compared to the C-terminus of glutathione 

reductase, the presence of selenocysteine is the only change (Zhong and Holmgren 2000). 

The Sec-containing TrxR, along with other cysteine-containing homologs (Fig. 2, asterisk) 

in invertebrate and vertebrate TrxR sequences were used to identify phylogenetic relatedness 

among these proteins (Fig. 2). The invertebrate and vertebrate clades were distinct, while I. 

scapularis TrxR formed its own outgroup from the invertebrates, and A. maculatum formed 

an outgroup from the vertebrates. The divergence of A. maculatum TrxR from both the 

invertebrate and I. scapularis groupings suggests an evolutionarily bridge between the 

arthropods and higher vertebrates. The sequences identified in Bombus impatiens, Apis 

mellifera, and Harpegnathos saltator encode Cys containing TrxR homologs which do not 

have the capacity to be synthesized as selenoproteins, and, therefore, form a distinct clade.

In A. maculatum TrxR is transcriptionally active during the prolonged period the tick is 

attached to its host, but it remains high in the tissues of unfed questing ticks (Fig. 3).. 

Transcriptional expression of TrxR in midgut tissues was similar throughout early feeding 

until day 8 post-attachment when a marked decrease of 86% was detected (Fig. 3). The 24–

48 h time period before a tick drops off of its host represents a fast feeding stage where more 

than two-thirds of the total blood engorgement is ingested by the tick (Horn et al. 2009). The 

marked decrease in TrxR levels at the onset of the fast feeding stage suggests that the tick 

prepares itself for the assimilation of a large blood meal. Oxidative stress in unfed or feeding 

ticks is possibly responsible for the relatively high transcriptional expression level of TrxR. 

This stress could be related to starvation, and/or desiccation, osmoregulation, or acquisition 
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of a blood meal and its subsequent processing (heme degradation). Blood meal induced 

oxidative stress might have a role in significantly reducing bacterial loads in both tissues 

compared to unfed tissues (Fig. 7A). The immunolocalization of TrxR in unfed and 4 day 

partially blood-fed salivary glands appears to increase (Fig. 4). These cells are primed with 

synthesized proteins, such as host immunomodulatory proteins and cement cone proteins, 

for secretion via the saliva prior to tick attachment. It is reasonable to speculate that that 

these acini cells are sites of high oxidative stress and deployment of antioxidant molecules, 

such as thioredoxin reductase. As a tick feeds, more cellular machinery is activated 

throughout the cells of the acini, accounting for the widespread protein localization seen in 

its partially fed tissues (Fig. 4B). Significant structural, cellular and biochemical changes are 

known to occur in tick salivary glands during blood feeding (Binnington 1978).

A significant depletion of TrxR enzymatic activity occurs in the midgut tissues at a level 

greater than that expected from the depleted level of transcripts (Figs. 5,6); this can 

potentially be attributed to the natural degradation of TrxR transcripts within tick tissue 

coupled with reduction from induced degradation via RNAi (Low and Berry 1996; Xu et al. 

1997). Day-to-day variation in gene depletion among the attached ticks cannot be ruled out 

either. Because most central antioxidant enzyme reactions can be catalyzed by at least one or 

more proteins of the antioxidant defense network, inhibition of a single target antioxidant 

protein is unlikely to be efficient at impairing tick feeding (Table 2) through induction of 

oxidative stress. The normal tick phenotype (i.e., tick attachment duration, weight gain/loss, 

fecundity and vitellogenesis) in TrxR-deficient ticks was not impacted, as has been shown in 

our previous studies (Adamson et al. 2014; Adamson et al. 2013).

Other antioxidants (catalase, GSHR, and Salp25d) with important roles in redox hemostasis 

within the tick vector showed no changes in transcript levels (Fig. 5). Catalase and 

glutathione peroxidase catalyze the reduction of hydrogen peroxide to form water (Aebi et 

al. 1974; Epp et al. 1983). GSHR is an important enzyme for catalysis of glutathione 

disulfides and generates a reduced environment within the cells. SODs catalyze two 

molecules of superoxide to form hydrogen peroxide and molecular oxygen, which is a 

source of cellular hydrogen peroxide (McCord and Fridovich 1969), but somewhat 

surprisingly, tissue-specific SODs gene expression was downregulated in the TrxR knocked 

down salivary glands (Fig. 7). This suggests a direct link between the function of TrxR and 

SODs and further amelioration of the elevated stress conditions in the TrxR knocked down 

salivary glands when compared with midgut tissues (Weisiger and Fridovich 1973). 

Similarly, selK and selM transcript levels were differentially regulated in the midguts and 

salivary glands, while selS transcript levels remained decreased in both of the tissues tested 

(Fig. 7). Both selK and selM have been shown to be involved in maintaining the antioxidant 

capacity of A. maculatum tissues and saliva (Adamson et al. 2014), and SelS is an important 

endoplasmic and plasma membrane protein involved in alleviating oxidative injury in 

human endothelial cells by increasing SOD activity (Zhao et al. 2013).

Midgut tissues are getting compensation by increased expression of SoDs, SelK and SelM. 

However, the transcript levels of SODs and SelM significantly downregulated in the tick 

salivary glands deprived of thioredoxin reductase. Low level of transcriptional expression of 

SelK and SelS compared to control tissues might have aggravated the situation (Fig. 5). 
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Hypothetically, elevated oxidative stress levels in the knocked down salivary glands may 

triggered caspase expression leading to apoptosis signaling (Fig. 5); elevated oxidative stress 

and apoptotic cell death are a closely related phenomena (Kannan and Jain 2000). Increased 

transcript level of caspases in salivary glands indicates the onset of apoptotic processes (Fig. 

5), however the salivary gland is a highly secretory tissue and undergoes incredible 

biochemical and physiological changes during the fast blood-feeding phase in ticks and 

caspase activation cannot be ruled out (Binnington 1978).

Depleted TrxR activity (Figs. 5, 6) possibly altered the redox status of the tick tissues. The 

possible imbalance in the redox status of the tick tissues might have altered the native 

microbiota in the ticks (Fig. 7B). In contrast to invertebrates, microbes, and mammals 

(Kanzok et al. 2001), thiol-based intracellular antioxidants in ticks and possibly other blood-

sucking invertebrates are generated by a single enzyme system in which TrxR plays a key 

role in maintaining the intracellular redox homeostasis (Kanzok et al. 2001). The results 

presented here show that depleting TrxR activity does not affect the tick phenotype or blood 

feeding, rather, it reduces the viability of the microbiome residing inside the tick tissues, 

seemingly caused by a perturbed redox homeostasis balance within the tick host. TrxR 

system-related genes are also transcribed in the salivary glands of A. gambiae. It is assumed 

that the corresponding proteins are especially important for protecting glands from heme-

driven free radical attack (Francischetti et al. 2002).

Previously, we have examined the microbial diversity in A. maculatum and observed each 

tissue harbored distinct bacterial species (Budachetri et al. 2014), although potential 

nonpathogenic interactions inside the tick tissues remain unknown. Microbial diversity in 

arthropods has been implicated in innate immunity and nutrition (Dillon and Dillon 2004), 

and alteration of these native microbial species has been shown to impair pathogen 

colonization or transmission success (Weiss and Aksoy 2011). Though, we did not observe 

significant depletion of reads from Rickettsiaceae but decreased level of percent sequence 

reads and occurrence of new bacterial families in TrxR depleted tick tissues is interesting. 

Our findings open new avenues for further investigating the functional role of TrxR in the 

colonization of pathogenic bacteria such as Rickettsia parkeri within the tick host.

In conclusion, the work presented here suggests that A. maculatum TrxR is important for 

neutralizing elevated ROS levels and maintaining redox hemostasis, and thereby provides 

new insights into the metabolic needs of blood-sucking arthropods. Silencing TrxR activity 

does not interfere with hematophagy but diminishes the viability of the microbiome residing 

inside the tick. This effect is possibly the result of a perturbed redox homeostasis balance 

within the tick host. Understanding how we can disturb tick redox balance during infections 

with these pathogens could lead to novel strategies to prevent tick-borne diseases.

Methods

Tick rearing

Gulf Coast ticks (Amblyomma maculatum) were purchased from the tick rearing facility at 

Oklahoma State University, and maintained according to standard methods (Patrick and Hair 

1975). Prior to infestation of the sheep, all unfed adult ticks were kept at ~ 24–26°C in 90% 
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relative humidity for a 14h light/10h dark photoperiod. All animal protocols were approved 

by the Institutional Animal Care and Use Committee (IACUC) at the University of Southern 

Mississippi, USA (protocol # 10042001).

Tick tissue dissection

Naive adult ticks were allowed to infest the sheep and were then removed routinely by 

pulling them off their hosts. The ticks (5–10) removed at each time point from a host were 

dissected to isolate their midguts and salivary glands tissues, which were transferred to ice-

cold 100 mM MOPS buffer containing 20 mM EGTA, pH 6.8. Once removed, the tick 

tissues were gently washed in the same ice-cold buffer and the pooled dissected tissues were 

used either immediately or stored at −80°C in RNAlater (Invitrogen, Carlsbad, CA, USA).

Bioinformatics analyses

The TrxR coding sequence from A. maculatum (GenBank Accession JO843723) was 

obtained by pyrosequencing an A. maculatum salivary gland cDNA library(Karim et al. 

2011). Nucleotide sequences were conceptually translated, initially aligned using ClustalX2 

(Thompson et al. 2002), refined by eye, and graphically presented using Jalview 2.7 (Larkin 

et al. 2007; Waterhouse et al. 2009). Phylogenetic relationships were inferred by MEGA 6 

using the neighbor-joining method (Tamura et al. 2013).

RNA Isolation, cDNA synthesis and qRT PCR

Total RNA extraction, conversion into complementary DNA and qRT-PCR were performed 

as previously described (Browning and Karim 2013). Briefly, the tick midguts and salivary 

gland tissues stored in RNAlater were used for total RNA extraction using Illustra™ 

RNAspin Mini Isolation Kit (GE Healthcare, Piscataway, NJ, USA) according to 

manufacturer’s instructions. Total RNA (~ 1 µg) was reverse transcribed into cDNA using 

Moloney murine leukemia virus reverse transcriptase according to the manufacturer’s 

protocol (Invitrogen). Gene-specific primers were designed to amplify the cDNA fragments 

from A. maculatum tissues. All primer sequences used in this study are listed in Table 1. 

First-strand cDNA was used to measure mRNA levels using qRT-PCR. Maxima™ SYBR 

Green qPCR Master Mix (2×) (Fermentas Life Sciences, Waltham, MA, USA). cDNA (25 

ng) and 150 nM of gene-specific primers (Table 1) were used in each reaction mixture 

(Browning et al. 2013). Reaction mixtures were subjected to 95°C for 10 min, followed by 

35 cycles of 95°C for 15 s, 60°C for 30 s, and 72°C for 30 s using the CFX96 Real Time 

System (BIORAD Inc.). All samples were run in triplicate and Bio-Rad Software was used 

for data analysis with the 2^ddCt method.

Bacterial load quantitation

We followed the bacterial load estimation protocol described previously (Narasimhan et al. 

2014). 16S rRNA primers were used to amplify the Staphylococcus aureus 16S rRNA 

bacterial gene. Similarly, we amplified the A. maculatum tick β-actin gene using tick actin 

primers (Table 1). The amplified PCR products were serially diluted 10-fold (108 to 101 

copies) and used to generate a standard curve. The qRT PCR reactions consists of 200nM of 

the primers, Maxima™ SYBR Green Master Mix (2×) (Fermentas Life Sciences, Waltham, 

Budachetri and Karim Page 8

Insect Mol Biol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MA, USA) and the serially diluted PCR products prepared for each standard curve. The 

reaction mixture was subjected to thermal cycling at 94°C for 5 min followed by 35 cycles 

of 94°C for 30 s, 60°C for 30 s, and 72°C for 30 s in a CFX96 Real Time System (Bio Rad 

Inc.) The standard curve generated was used to calculate the copy number of bacterial 16s 

rRNA genes and the tick β-actin gene. Using the same reaction conditions and thermal cycle 

parameters, 25ng of A. maculatum cDNA for each control and dsTrxR knocked down tissues 

were amplified and the standard curves produced were used to estimate the copy numbers of 

each gene in a given sample. The bacterial 16s gene copy numbers were normalized against 

the A. maculatum β-actin gene. As with the other qRT PCR reactions, all the samples were 

run in triplicate.

Tick cDNA and 454 pyrosequencing

Tick salivary gland cDNAs were individually processed for the bacterial tag-encoded 

titanium amplicon pyrosequencing (bTETAP) approach (Dowd et al. 2008a). In a modified 

version of this process, 16S universal eubacterial primers 530F (5'-GTG CCA GCM GCN 

GCG G) and 1100R (5'-GGG TTN CGN TCG TTG) were used to amplify the 600 bp region 

of the 16S rRNA genes. A single-step 30 cycle PCR using a HotStarTaq plus master mix kit 

(Qiagen, Valencia, CA, USA) was used with the following conditions: 94°C for 3 min 

followed by 32 cycles of 94°C for 30 s, 60°C for 40 s and 72°C for 1 min, and a final 

elongation step at 72°C for 5 min. Following PCR, all amplicons from the different samples 

were mixed in equal concentrations. The mixtures were purified using Agecourt Ampure 

beads (Agencourt Bioscience Corporation, Danvers, MA, USA). Samples were sequenced 

with Roche 454 FLX titanium instruments and reagents (Roche, Branford, CT, USA), 

following the manufacturer’s guidelines. The amplicons obtained were curated on a 

proprietary analysis pipeline (www.mrdnalab.com, MR DNA, Shallowater, TX, USA). 

Sequences were depleted of barcodes and primers. Next, short sequences <200 bp were 

removed, as were those with ambiguous base calls and homopolymer runs exceeding 6-bp. 

Sequences were then denoised and the chimeras removed. Operational taxonomic units were 

defined after removal of singleton sequences, clustering at 3% divergence (97% similarity) 

(Dowd et al. 2008a; Dowd et al. 2008b; Edgar 2010; Eren et al. 2011; Swanson et al. 2011). 

Thereafter, the sequences obtained were subjected to BLASTn analysis against the 

GreenGenes database (DeSantis et al. 2006). The homologies obtained were assigned to 

taxonomic classification for bacteria and operational taxonomic units.

dsRNA synthesis, tick injections and feeding

Synthesis of dsRNA for the TrxR gene and tick manipulations were performed according to 

the methods described previously (Browning and Karim 2013). Briefly, TrxR PCR products 

were joined to the Block-iT™ T7 TOPO® linker using a BLOCK-iT™ RNAi TOPO® 

Transcription Kit (Invitrogen, Carlsbad, CA, USA). The TOPO® linking reaction was used 

to produce sense and antisense linear DNA templates using gene-specific and BLOCK-iT™ 

T7 primers in two separate PCR reactions. The sense and antisense DNA templates were 

used to transcribe sense and antisense ssRNA, and were then heated to facilitate dsRNA 

formation. The dsRNA generated was analyzed to verify its size using agarose gel 

electrophoresis. Subsequently, unfed adult females were injected with 1–1.5 µL of TrxR 

dsRNA or LacZ dsRNA using a 31-gauge needle. After injection, the ticks were maintained 
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at 37°C overnight under high humidity to promote their survival. The surviving ticks were 

placed in designated, contained cells on a naive sheep and allowed to take blood feeds. The 

ticks (5–10) were removed on days six and eleven post-infestation, but the remaining ticks 

were allowed to remain attached and ingest blood until repletion. Ticks feeding success was 

determined by attachment duration, replete weight, and oviposition (Karim and Adamson 

2012). Ticks removed from the dsLacZ and dsTrxR groups were dissected individually and 

their tissues were pooled in assigned groups. Some dissected salivary glands and midgut 

tissues were kept for total RNA extraction for investigating the knockdown effect of the 

dsTrxR RNAi assay.

Protein extraction and enzyme assays

Total soluble proteins from pooled tick midguts and salivary glands tissues from 5–7 ticks 

were extracted using a phosphate-buffered saline (1X PBS) cocktail containing protease 

inhibitors with brief sonication (Branson Sonifier Model 250, 35% output, two 3 s pulses, 

Branson, Danbury, CT, USA). The tissue homogenates were centrifuged at 5000 × g for 10 

min at −4°C and the supernatant was collected. The protein concentration of each 

supernatant was estimated (Bradford 1976). TrxR enzymatic activity assays were performed 

on tick midgut and salivary glands protein homogenates using a commercial kit (BioVision, 

Milpitas, CA, USA). Briefly, a comparative standard curve was generated using standard 

TNB concentrations of 0, 10, 20, 30, 40, and 50 nmol. All samples were run in duplicate, 

both with and without the inhibitor, and in accordance with the manufacturer’s 

recommendations. Approximately 12 µg of total soluble protein was used for each sample. 

The total reaction mixture containing 40 µL of assay buffer, 5,5’-dithio-bis-(2-nitrobenzoic 

acid (DTNB) solution, and NADPH was added to each sample, and a final volume of 100 

µL was reached by adding an appropriate additional amount of assay buffer. The optical 

density (OD) was measured at 412 nm to generate a T1 reading (before incubation) and T2 

reading (after incubation) at 25°C for 20 min. TrxR activity was calculated using the 

formula provided by the manufacturer according to the standard curve.

TrxR immunolocalization

Immunolocalization studies of tick TrxR were performed on unfed and partially fed salivary 

glands from untreated controls and TrxR knocked down ticks. The tick salivary glands were 

fixed in 1X PBS containing 4% formaldehyde and kept at −4°C until further manipulation, 

as described elsewhere (Villarreal et al. 2013). Briefly, the salivary glands were 

permeabilized using 0.5% Triton X-100 for 30 min and then blocked in 1X PBS containing 

3% bovine serum albumin (BSA) for 1 h at room temperature. Salivary glands were 

incubated overnight at −4°C with a rabbit TrxR antibody (1:100) (Sigma-Aldrich, St. Louis, 

MO, USA) in 1X PBS containing 3% BSA, after which they were incubated with an anti-

rabbit Alexa Fluor® 555 secondary antibody (1:100) in 1X PBS containing 3% BSA for 1 h 

in the dark. All incubations were maintained on a rocking plate at room temperature unless 

otherwise indicated. Salivary glands were mounted on glass slides using VECTASHIELD® 

mounting medium with 4’,6-diamidino-2-phenylindole (DAPI) stain. Tissues prepared in 

this manner were mounted and viewed under a Zeiss LSM 510 META confocal microscope 

(40× objective) using 555 nm and 220 nm lasers.
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Statistical analysis

All data are expressed as the mean ± SEM. Statistical significance between the two groups 

was determined by a Student’s t-test and comparative differences among multiple 

experimental groups were determined by ANOVA (SigmaPlot ver. 11, San Jose, CA, USA). 

Transcription expression levels considered by Bio-Rad Software (Bio-Rad CFX manager V 

3.1) to be significantly different between samples for two-fold differences with p-values of 

<0.01.
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Figure 1. Multiple sequence alignment of TrxR
The Clustal-X alignment was imported into Jalview. Amino acids highlighted in red are key 

cysteine/ or selenocysteine residues within TrxR. At the C-terminus, the opal codon (UGA 

or TGA in case of DNA) translated to selenocysteine (Sec, represented by U). The Gly-Cys-

Sec-Gly at C-terminus is essential for catalytic activity. The selenocysteine containing 

thioredoxin reductase from I. scapularis, A. maculatum and R. norvegicus were aligned with 

cysteine homologs containing thioredoxin reductases from A. gambiae and D. melanogaster. 

I_scapularis (Ixodes scapularis); A_maculatum (Amblyomma maculatum); R_norvegicus 

Budachetri and Karim Page 14

Insect Mol Biol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Rattus norvegicus); A_gambiae (Anopheles gambiae); D_melanogaster (Drosophila 

melanogaster).
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Figure 2. Phylogenetic analysis of TrxR from various eukaryotes using the neighbor joining 
method
The percentage of replicate trees in which the associated taxa clustered together in the 

bootstrap test (1000 replicates) is shown next to the branch. The sequences denoted with 

asterisks are derived from species that lack the capacity to synthesize selenoprotein and 

represent cysteine-containing homologues. The scale bar represents the degree of amino acid 

substitutions per position. The following vertebrate and invertebrate species were used for 

the analysis: Brown rat (Rattus norvegicus), Rhesus macaque (Macaca mulatta), Sumatran 

orangutan (Pongo abelli), Human (Homo sapiens), Horse (Equus caballus), Cattle (Bos 

taurus), Chicken (Gallus gallus), Chimpanzee (Pan troglodytes), House mouse (Mus 

musculus), Zebra Finch (Taeniopygia guttata), African clawed frog (Xenopus laevis), Zebra 

fish (Danio rerio), Gulf Coast tick (Amblyomma maculatum), Black legged tick (Ixodes 

scapularis), Bumble bee (Bombus impatiens), Honey bee (Apis mellifera), Jumping ant 

(Harpegnathos saltator), Fruit fly (Drosophila melanogaster), malaria-transmitting 
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mosquito (Anopheles gambiae), Yellow fever mosquito (Aedes aegypti), Southern house 

mosquito (Culex quinquefasciatus).
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Figure 3. Transcriptional gene expression of TrxR in untreated midguts and salivary glands 
throughout the blood meal of A. maculatum adult females
Transcriptional expression fluctuates throughout the blood meal, but never rises above the 

unfed stage in both the salivary glands and midguts. The transcriptional expression in 

salivary glands significantly down regulated on day 4 (P-value <0.05) and remained similar 

across other time points. But transcriptional expression in midgut significantly depleted on 

days 2 and 8 (P-value <0.01). TrxR gene expression was normalized against the unfed 

developmental stage using tick β-actin as the reference gene.
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Figure 4. Immunolocalization of thioredoxin reductase in salivary glands from unfed (A) and 4 
day partially fed (B) A. maculatum
In the unfed salivary glands (A), thioredoxin reductase was localized in the cells most 

closely associated with the salivary duct and punctate staining is evident in the remaining 

cells. In the partially fed salivary glands (B), thioredoxin reductase was seen throughout the 

acini cells.
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Figure 5. Knockdown of thioredoxin reductase and evaluation gene expressions of select 
antioxidants in knocked down tick tissues
AmTrxR transcript depletion was seen in the midguts (66.15%) and salivary glands (99.7%) 

indicating successful knockdown. The normalized fold change in transcriptional expression 

of selected antioxidant genes in thioredoxin reductase depleted midgut and salivary gland 

tissues are shown. The transcript level of each candidate gene in the tissues injected with 

dsLacZ was set to 1.0 as a reference point. Gene expression was normalized against the tick 

β-actin gene (* p<0.01; ** p<0.05).
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Figure 6. Enzymatic activity of TrxR in midguts and salivary glands from partially fed A. 
maculatum injected with dsLacZ (control) or dsRNA-TrxR
The enzymatic activity of thioredoxin reductase was reduced by 96.0% in midguts and 

93.5% in the salivary glands of dsTrxR-injected ticks, when compared to the control dsLacZ 

group. The depletion of the enzymatic activity in dsTrxR knockdown tick tissues were 

statistically significant (P-value < 0.01).
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Figure 7. Native microbial load estimation in tick tissues
(A) The bacterial load estimation across the normal blood meal cycle in A. maculatum tick 

tissues. (B) The bacterial load in dsLacZ and dsTrxR injected tick tissues. The bacterial 

loads were calculated as number of bacterial 16S rRNA gene per tick β-actin (mean ± SD). 

The copy number of each gene was derived from the standard equations obtained from Ct 

values of known concentration of 16s rRNA and tick β-actin as described in method. The 

depletion of bacterial load/100 tick actin were significant in tick tissues depleted with 

thioredoxin reductase (P-value <0.01).
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Figure 8. Bacterial profile changes after the TrxR silencing in tick tissues
Bacterial profiles were assessed from 16S rRNA amplicon sequencing from representative 

tick tissues cDNAs with 454-pyrosequening approach, the sequences representing bacterial 

families were used in estimation of percent in tick tissues.
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Table 1

Gene-specific primers used in this study

Gene Accession
Number

Forward
Reverse

Size (bp)

AmTrxR

JO843723 (dsRNA and qRT PCR)

5’-TCGACACAAGCTGAAGCTGACTGA-3’
5’-CAATGCGTTCTGCCATGTCTTGGT-3’

320

AmTrxR 5’-TGTGACTACACCAACGTGCCTACA-3’
5’-AGTAGCCTGCATCCGTTCCTCTTT-3’

175

AmCatalase JO843741 5’-AAAGGACGTCGACATGTTCTGGGA-3’
5’-ACTTGCAGTAGACTGCCTCGTTGT-3’

173

AmGSHR JO844062 5’-ACCTGACCAAGAGCAACGTTGAGA-3’
5’-ATCGCTTGTGATGCCAAACTCTGC-3’

170

AmSalp25d (GPx) JO843645 5’-TGCCGCGCTGTCTTTATTATTGGC-3’
5’-AGTTGCACGGAGAACCTCATCGAA-3’

102

Am MnSoD (SOD3) JO843979 5’-GCATCTACTGGAC AAACCTCTC-3’
5’-GCAGACATCAGGCCTTTGA-3’

115

Am Cu/ZnSoD (SOD1) JO844140 5’-GGAACCGAAGACAGCAAGAA-3’
5’-GAGAAGAGGCCGATGACAAA-3’

143

AmSelK JO843326 5’-AGTTCCAGCAGGTCATCAGTGTCA-3’
5’-TCCAGGAATAGGGCAGTCCATTGT-3’

132

AmSelM JO842653 5’-ATGATACCTGAATGGCCATCCGCA-3’
5’-TGATCGCGGGTCATCTTCTCCAAA-3’

171

AmSelS JO842687 5’-AGAACAAGTGCACCACAACAGCAG-3’
5’-ATTTCTTGCATCCTTCGACGTGCC-3’

107

AmActin JO842238 5’-TGGCTCCTTCCACCATGAAGATCA-3’
5’-TAGAAGCACTTGCGGTGCACAATG-3’

177

Amcaspase1 JO842755 Am2600-F(qrtpcr) : GAGGAGTCTAGCAGGATGTTTC
Am2600-R(qrtpcr): ACTGTCATGCTCCGTGTAATC

127

Amcaspase2 JO845022 Am29082-F(qrtpcr): GGTGATCGTGATGTCCTGTATG
Am29082-R(qrtpcr): CGACAGGCCTGAATGAAGAA

128

16srRNA microbial-F(qrt): AGAGTTTGATCCTGGCTCAG
microbial- R(qrt): CATGCTGCCTCCCGTAGGAGT
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Table 2

Phenotype data for dsLacZ and dsTrxR treated A. maculatum ticks (Mean ± SD), the weights are in miligram 

scale.

Group # of ticks Tick weight
(Range)

Egg mass
(Range)

Egg conversion
(Range)

dsLacZ 7 712 ± 145
(475–875)

343 ± 188
(80–620)

0.464±0.224
(0.168–0.839)

dsTrxR 21 786±130
(515–987)

437± 164
(160–710)

0.542±0.148
(0.207–0.771)

Insect Mol Biol. Author manuscript; available in PMC 2016 October 01.


