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Abstract

Screening and diagnostic procedures often require a physician's subjective interpretation of a 

patient's test result using an ordered categorical scale to define the patient's disease severity. Due 

to wide variability observed between physicians’ ratings, many large-scale studies have been 

conducted to quantify agreement between multiple experts’ ordinal classifications in common 

diagnostic procedures such as mammography. However, very few statistical approaches are 

available to assess agreement in these large-scale settings. Existing summary measures of 

agreement rely on extensions of Cohen's kappa [1 - 5]. These are prone to prevalence and marginal 

distribution issues, become increasingly complex for more than three experts or are not easily 

implemented. Here we propose a model-based approach to assess agreement in large-scale studies 

based upon a framework of ordinal generalized linear mixed models. A summary measure of 

agreement is proposed for multiple experts assessing the same sample of patients’ test results 

according to an ordered categorical scale. This measure avoids some of the key flaws associated 

with Cohen's kappa and its extensions. Simulation studies are conducted to demonstrate the 

validity of the approach with comparison to commonly used agreement measures. The proposed 

methods are easily implemented using the software package R and are applied to two large-scale 

cancer agreement studies.
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1. Introduction

Ordered categorical scales with three or more ordered categories are commonly used in 

screening and diagnostic tests to classify a patient's disease or health status, with higher 

scores often linked with increasing disease severity. Examples include the Gleason grading 

scale for categorizing severity of a patient's prostate cancer from biopsies [6,7] and the New 

York Heart Association functional four-point classification scale for categorizing a patient's 
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level of heart failure [8]. Due to imperfect screening and diagnostic test procedures, 

classification of a patient's test result often involves some degree of subjective interpretation 

by an expert, and substantial variability between experts’ ratings has been observed in many 

widely used diagnostic and screening procedures, including mammography [9-11]. 

Consequently large-scale agreement studies involving many experts and ordinal 

classification scales are becoming increasingly common to assess levels of agreement and to 

investigate factors that may be linked with the observed variability between experts [9-13], 

providing a strong motivation to develop statistical approaches that can flexibly handle 

many raters. While some statistical methods exist to assess agreement between two experts 

using an ordinal classification scale, only a very limited number of approaches exist to 

assess agreement between ordinal classifications in larger-scale studies involving multiple 

(more than two or three) experts.

In this paper we explore a flexible approach to assess agreement between multiple experts 

classifying the same sample of patients’ test results according to an ordered categorical 

scale. Since diagnostic tests have such widespread use, an important advantage of our large-

scale approach is the ability to generalize findings to experts and patients who typically use 

these diagnostic tests, if experts and subjects are randomly sampled from their populations.

Measures of agreement for ordinal classifications focus on quantifying levels of exact 

agreement between experts, i.e. where experts each assign an identical category to a patient's 

test result. Existing summary measures for assessing agreement between multiple raters 

when ordinal classifications are being examined include Fleiss’ kappa [3], Light's and 

Conger's kappa [4,5], Kraemer's kappa coefficient [14] and an AC2 statistic [15]. Many of 

these existing summary measures of agreement for ordinal classifications are either 

extensions of Cohen's kappa or are formulated as a Cohen's kappa-like statistic [3-5,16] and 

are prone to the same issues as the original Cohen's kappa, including sensitivity to marginal 

distributions of the experts and disease prevalence effects [16-18]. Model-based approaches 

for assessing agreement between multiple experts for ordinal classifications include log-

linear models [19-21], latent class models [22], a marginal model generalized estimating 

equations method with Cohen's kappa-like formulated summary measures of agreement 

[16], a Bayesian approach with a nested random effect structure [23] and an exploratory 

graphical approach [24]. In practice, many of these procedures and measures are difficult to 

implement due to a lack of availability in statistical software packages, and/or become 

increasingly complex for more than three experts. Banerjee et al [25] provide a 

comprehensive list of agreement measures for nominal and ordinal classification data.

The proposed population-based approach utilizes the framework of ordinal generalized 

linear mixed models and generates a model-based summary measure of agreement for 

ordinal classifications based upon variance components for unobservable variables. Unlike 

most other available summary measures, our proposed agreement measure appropriately 

corrects for chance agreement in a different formulation from Cohen's kappa, and 

consequently is not influenced by the prevalence of the disease. Earlier work has 

demonstrated use of variance components in agreement studies for binary (for example, 

diseased versus not-diseased) classifications [26,27], and ordinal classifications [23,28,29], 

where the ordered nature of the classifications brings a unique set of challenges to the 
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estimation and modeling process beyond those of binary classifications. Our methods can be 

extended to incorporate characteristics of experts and subjects that may potentially influence 

agreement. Unbalanced observations are allowed, where not every expert classifies every 

subject in the sample. Unique features of individual experts in the study can be examined, 

and the population-based nature of the approach ensures that conclusions can be drawn 

about agreement between typical experts and subjects from their respective underlying 

populations, not only about experts and subjects included in the study.

The paper is structured as follows. General concepts of agreement for ordered classifications 

in the population-based setting are defined in the next section. Section 3 describes the 

proposed model of agreement with details on estimation and fitting, and the proposed 

measure of agreement is presented in Section 4. Simulation studies demonstrating validity of 

the proposed approach are included in Section 5, with methods applied to two large-scale 

cancer agreement studies in Section 6. Section 7 presents a comparison to a logistic 

generalized linear mixed model while we conclude with a brief discussion in Section 8.

2. A Measure of Agreement in the Population-Based Setting

The primary goal of a population-based agreement study is to draw inference regarding 

levels of agreement between typical experts and patients in a specified setting such as a 

diagnostic or screening test. When experts and patients are randomly sampled from their 

respective populations, a well-defined measure of agreement describes how well one 

expert's classification of a subject agrees with what other experts would have reported (inter-

rater reliability), after appropriately correcting for chance agreement [30]. For a single test 

result, agreement between two experts is defined where both experts classify the subject into 

the same category using an ordinal classification scale. In this setting, a natural measure of 

observed agreement, p0, is the proportion of time two experts j and j′ (j ≠ j′) assign the ith 

subject to the same category (1). Since the two experts are randomly selected, classifications 

made by the jth and j′th experts on a subject are interchangeable, and thus any pair of ratings 

has a distribution that is invariant under permutations of the experts [25]. The raw observed 

agreement rate is the proportion of the total number of pairs of ratings which place subjects 

into the same category.

Chance agreement is the proportion of time experts agree in their classifications simply due 

to coincidence. The true measure of agreement expected by chance, pc is the probability that 

an identical categorical rating is given to two randomly selected subjects i and i′ (i ≠ i′) by 

two randomly selected experts j and j′ (j ≠ j′) based upon an ordinal classification scale with 

C categories (1):

(1)

These quantities of observed and chance agreement hold in general in the population-based 

setting and do not rely on any particular statistical model. An important link between p0 and 

pc and their minimum values in this setting is shown in Theorem One (proof in Appendix 1, 

Supplementary Materials):
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Theorem 1

In the population-based setting, if the number of experts N in the population is not small, p0 

≥ pC ≥ 1/ C.

The lower bound 1/C is likely to be achieved when the disease status of subjects’ test results 

is not easily recognizable from the screening or diagnostic test, such that experts essentially 

randomly classify subject test results into one of the C categories (equivalent to the roll of a 

C-sided die).

3. Proposed Model of Agreement for Ordered Classifications

The class of ordinal generalized linear mixed models (GLMMs) [31-33] provides a natural 

and appealing framework for modeling agreement in large-scale studies between experts in 

the population-based setting since any number (at least three) of experts and subjects can be 

included without increasing the complexity of the model, in contrast to many other 

approaches, and each expert may rate some or all of the subjects [34]. Factors such as rater 

training or experience can be incorporated into the model to assess their impact on 

agreement between experts [16,35]. When experts and subjects included in the study are 

randomly sampled from their populations, results can be generalized to future users (both 

experts and subjects) of the diagnostic test under study.

We assume that subject i's true disease status as assigned by expert j is an unobserved 

continuous latent variable Wij linked to the observed ordered classifications through a series 

of strictly monotonically increasing thresholds α0,...,αc dividing the real line into C+1 

intervals, with α0 = −∞ and αc = +∞ [32,33,36]. The latent variable Wij depends on 

unobserved subject and expert random effects and can be modeled using a linear random 

effects regression model. In its simplest form Wij = β0 + ui + vj + εij where errors εij are 

assumed N(0, σ2), β0 is the intercept, and ui and vj are random effects for the ith subject and 

jth expert respectively, assumed to come from N(0, σu
2) and N(0, σv

2) distributions. The 

observed categorical classification Yij = c occurs if and only if αc–1 ≤ Wij < αc, c=1,....,C. 

The absolute location β0 and scale σ of the latent variable are not identifiable; to overcome 

this identifiability issue, wlog set β0 = 0 and σ=1 [32]. Our set-up assumes that each of J 

experts (j=1,..., J) independently classifies each of I subjects’ test results (i=1,..., I) 

according to an ordered classification scale with C categories, c=1,...,C, yielding 

classifications Yij = c. The probability Pr(Yij = c) can be estimated using an ordinal 

generalized linear mixed model with a crossed random effects structure, appropriately 

accounting for dependency between classifications caused by the fact that the same sample 

of subjects is being classified by each expert. The ordinal GLMM with a probit link 

calculates the cumulative probability of a subject's test result being classified into category c 

or lower:

(2)

such that , with Wij distributed 

as N(0,1) and Φ the cumulative distribution function (cdf) of the standard normal 

distribution. While a choice of link functions are available for the ordinal GLMM, the probit 
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link function is a natural and appealing choice due to the continuous latent disease status 

assumption underlying the model [36], and for ease of mathematics. In Section Seven we 

demonstrate that similar results are obtained using a logit link function, another common 

choice of link function for ordered GLMMs.

Natural heterogeneity amongst subjects’ test results is reflected in the subject random effect 

variance σ2
u. Subjects with clearly defined disease will have a higher positive random effect 

term ui and be classified more often by experts into a higher disease category with stronger 

agreement between experts; more modest values of ui are observed in test results with less 

clearly defined disease status. The experts’ random effect variance σ2
v is higher for a more 

heterogeneous group of experts; an expert who liberally (sparingly) assigns high disease 

categories has a higher positive (negative) value of vj; experts who are not overly liberal or 

conservative in their ratings will have more modest values of vj. The proposed model also 

allows for possible interactions between expert and subject random effect terms, as can be 

seen from an alternative derivation of the model (Appendix 2, Supplementary Materials).

Parameters of the ordered GLMM (2), , αo = −∞ and αC = +∞ 

provide valuable information about the agreement process under study, and are incorporated 

into the summary measure of agreement described in Section Four. Estimation of the 

parameter vector θ requires the marginal likelihood function of the corresponding ordinal 

GLMM, L(θ; y). Given the random effects ui and vj, and defining dijc = 1 if yij = c and 0 

otherwise, the ordered classification of the ith subject by the jth expert yij is a multinomial 

variable with probability mass function:

The marginal likelihood function is:

This likelihood does not have a closed form due to the high-dimensionality of the crossed 

random effects structure, also restricting use of adaptive quadrature as a fitting procedure 

which becomes computationally infeasible as the number of random effects increases 

[36-38]. However, multivariate Laplacian maximum likelihood approximation [39] is an 

efficient and valid approach for estimating the parameter vector θ, and is implemented in the 

R package ordinal used here for estimation purposes.

The covariance matrix Σ of the parameter estimates  is obtained as the inverse of the 

negative of the Hessian matrix H, where  is the second-order derivative of the 

log-likelihood function l(θ; u, v, y) evaluated at the approximate maximum likelihood 
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estimates of θ and is generated during the algorithmic multivariate Laplacian model-fitting 

process. The standard errors of  are obtained by taking the square-roots of the diagonals of 

H at convergence as . In Section Five we demonstrate using 

simulation studies that this approach leads to unbiased estimators of the parameters of the 

ordered GLMM. In the next section, a summary measure of agreement is derived based 

upon this GLMM model.

4. Proposed Summary Measure of Agreement

4.1. A Model-Based Measure of Agreement

We propose a population-based summary measure of agreement κm based upon the ordinal 

GLMM model of agreement in Section Three. The proposed measure κm provides an overall 

assessment of chance-corrected agreement between many experts classifying the same 

sample of subjects’ test results using an ordered categorical scale. It is a linear 

transformation of observed (exact) agreement p0 (4), corrected for chance agreement pc (4) 

and scaled to lie between 0 and 1 to allow for easy interpretation in a manner similar to 

Cohen's kappa [40] and Scott's pi [41]:

(3)

where  and z is a N(0,1) variable. Within the summation expression in 

(3) for category c = 1 the second term in brackets is set to 0, and the first term in brackets for 

category c = C is set to 1. A value of κm close to 0 is interpreted as little or no agreement, a 

value around 0.5 suggests a moderate amount of agreement, and a value of 1 as perfect 

agreement between the multiple experts, after correcting for chance agreement [40]. The 

forms of observed agreement p0 (proof in Appendix 3, Supplementary Materials) and chance 

agreement pc are:

(4)

with standardized thresholds . As shown in Theorem 1, the minimum 

value that chance agreement can take in this population-based setting is pc = 1/C and is 

obtained when the standardized thresholds ( ) take the values 

. These values divide the real line into C 

segments, each having equal probability under the standard normal curve, minimizing 

differences within the squared brackets in the right-hand side expression in (4). The values 

are then incorporated in the expression for κm to appropriately minimize the effects of 

chance agreement on the statistic; consequently the value of κm is not influenced by 

prevalence of the disease, which here is indicated by the percent of observations falling into 

each of the C categories.
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For any particular dataset, the estimate  is obtained from (3) using estimated random 

effects variances  and  from the fitted ordinal GLMM in (2). Estimates p̂0 and p̂c of 

observed and chance agreement respectively can be obtained from (4) using the estimated 

parameters from the fitted ordinal GLMM in (2). We describe κm in (3) as a function of 

parameter ρ (0 ≤ ρ ≤ 1), which itself is a natural measure of the variability amongst subjects’ 

test results,  relative to the overall variability present between classifications in a similar 

manner to the ICC (2) for multiple experts [16]. Values of ρ close to 0 suggest that 

variability between experts is greater relative to variability between the test results, while 

values of ρ closer to 1 suggest variability between test results is the dominating factor.

The variance of  is derived using the multivariate delta method based upon parameters in 

the GLMM model with crossed random effects, where expert and subject random effects are 

assumed independent, with  and . The variance 

of  as a function of  and  is . Since κm is a function 

of ρ, the delta method can be further applied leading to:

Functions in R to calculate the proposed measure  and variance  for a dataset are 

available upon request from the first author {or in supplementary materials**}.

4.2. Cohen's Kappa with Model-Based Parameters

Many of the existing summary measures of agreement for multiple raters classifying 

subjects according to an ordinal scale are either extensions of Cohen's kappa [1-5] or take 

the form of Cohen's kappa κ = (p0 – pc)/(1– pc) obtaining terms p0 and pc using a model-

based technique [16]. For comparison with our proposed summary measure of agreement, it 

is informative for us to also calculate a model-based kappa formulated as a Cohen's kappa-

like statistic using our ordinal GLMM quantities of observed and chance agreement p0 and 

pc. This measure will be referred to as κGLMM and can be estimated using the estimated 

parameters p̂0 and p̂c from the ordinal GLMM in (2):

4.3. Other Existing Summary Measures for Agreement

Existing measures that can be used to assess agreement between multiple raters in the 

ordinal classification setting include Fleiss’ kappa κF [3], Light's and Conger's kappa κLC 

[4,5] and Mielke et al's kappa κMB [42]. All of these measures are derivations or extensions 
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of Cohen's kappa. These existing measures will be compared with the proposed measure κm 

in the following simulation studies and examples.

5. Simulation Studies

Performance of the ordinal GLMM (2) and proposed summary agreement measure (3) was 

investigated via extensive simulation studies. Sets of one thousand datasets were randomly 

generated based upon an ordinal GLMM with a crossed random effect structure with C=5 

categories with a set of true parameter values , αo = −∞ and αC = 

+∞. For each dataset I subject random effects ui and J expert random effects vj were 

randomly generated from  and  respectively. The rmultinom function in 

R was used to randomly generate n = I*J (I ratings per expert) observations Yij based upon 

multivariate normal probabilities 

. The clmm function in the R 

package ordinal [43] was used to fit the GLMM model for each dataset to obtain parameter 

estimates, and the proposed summary measures and their variances estimated. Four sets of 

simulations were conducted to investigate effects of varying rater and subject variances, 

numbers of subjects and experts included, and extreme or moderate disease prevalence 

(based upon probabilities of being classified in high or low disease categories). A fifth set of 

simulations was conducted to explore the robustness of the proposed approach and measure 

κm to the assumption of normally distributed random effects. In this fifth set of simulations, 

one thousand datasets were generated with non-normal subject random effects ui, i = 1,....,I 

randomly sampled from a scaled and centered chi-squared distribution [44] with five 

degrees of freedom  which has a mean of 0 and the same variance, 10, 

as in two of the other sets of simulations; the expert random effects vj, j=1,...,J were 

randomly sampled from a Uniform( ) distribution yielding a mean of 0 and 

variance of 1, the same mean and variance as for all other sets of simulations. Conditional 

on the random effects ui and vj, the classifications Yij were assumed independent and 

generated according to probabilities based upon a multivariate normal distribution [44] in a 

similar manner to the first four sets of simulations. Simulation results, including the 

estimated means of the parameters and their standard errors (based upon the averages of the 

one thousand estimates) for the five simulation studies are presented in Table 1. Observed 

standard errors (calculated by taking the square-root of the variance of one thousand 

parameter estimates) are also presented.

The simulation studies demonstrate that the ordinal package in R yielded essentially 

unbiased parameter GLMM estimates of the threshold parameters ( ) and variance 

components ( ) in both large and small sample sizes, and large ( ) and small 

( ) random effects variances. In simulation set #2, the scenario with a large subject 

random effects variance ( ) and smaller total sample size (n = I*J = 500), the observed 

variability of the one thousand estimates of  is slightly larger than expected, but this issue 

was not observed at the larger sample size of n = 5000. The proposed measure  and its 

variance were estimated essentially in an unbiased manner in all simulation settings. In the 
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fifth set of simulations with non-normal random effects (simulation set #5), the ordinal 

GLMM thresholds  were estimated with more bias than in the sets of simulations 

with normally distributed random effects, although variance parameters were estimated on 

average with little or no bias. The proposed measure κm which is not reliant upon the 

estimated threshold values and its variance was estimated with essentially no bias. These 

results suggest that the proposed approach may be fairly robust to the normal random effects 

assumption and confirm results in earlier studies examining the impact of non-normal 

random effects in GLMMs [44,45], though further work is required to confirm these 

findings.

The behavior of the new measure of agreement κm was explored for a range of different 

settings including varying disease prevalence and ρ for an ordinal classification scale with 

five categories (C=5), with results presented in Figure 1. Comparisons were made with 

existing measures of agreement (Section 4.2) and a Cohen's kappa based upon GLMM 

parameters of agreement (Section 4.3). Figure 1 presents plots of the measures of agreement 

for increasing ρ and varying prevalence (extreme low or high, moderate, equal in each 

category as presented in Table 2). Fleiss’ kappa, Light and Conger's kappa and Cohen's 

kappa based upon GLMM parameters all yielded virtually identical average values so only 

Fleiss’ kappa κF is presented on the plots. True parameter values were used in the plots with 

the exception of κF, which was averaged over sets of 1000 simulated datasets. All 

agreement measures increased in value as ρ increased, and at a steeper rate as ρ approached 

1. Thus, experts agree more often when there is a wider spread of test results (larger ) 

relative to the variability between experts. All agreement measures took very similar values 

when disease prevalence (as indicated by the percent of observations in each category) was 

distributed evenly over the five categories. However, as disease prevalence became more 

extreme (either high or low), the proposed new measure of agreement κm remained 

unaffected, while the Cohen's kappa-based agreement measures (κGLMM, κF, and κLC), 

which are prone to prevalence effects, all increased in value.

6. Examples: Two Cancer Agreement Studies

6.1. Prostate Cancer Agreement Study

Allsbrook et al [46] conducted a study of agreement between 10 urologic pathologists each 

independently interpreting the severity of prostate cancer of 46 patients’ biopsies using a 

condensed version of the Gleason Grading scale [7]. The scale had four categories defined 

as: category i) Gleason scores 2-4 (mild disease); category ii) Gleason scores 5-6; category 

iii) Gleason score 7; category iv) Gleason scores 8-9 (severe disease). Table 3(a) displays a 

subset of the ordinal classifications of the 46 patients’ test results by each of the 10 

urologists. Tables 3(b) and (c) present the observed classifications of selected pairs of 

urologists. An ordinal GLMM (2) was then fitted to the full dataset incorporating the 

dependency between the classifications of the experts via the crossed random effects 

structure using the ordinal package in R, taking less than 1 minute of computational time. 

Parameter estimates and summary measures are presented in Table 4. As an indicator of 

disease prevalence, the estimated probabilities of being classified into each of the four 

categories over the ten experts are: (from mild to severe cancer) 6%, 31%, 28% and 36% 
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respectively, thus there was a high probability of being categorized with a moderate to high 

degree of prostate cancer. Observed agreement (3) based upon the ordinal GLMM in (2) was 

estimated to be p̂0 = 0.669. The proposed new agreement measure  (se = 0.035) 

indicated a moderate level of chance-corrected agreement between the ten urologists. This 

was substantially lower in value than Fleiss’ kappa , Conger's and Light's kappa, 

, and Cohen's GLMM-based kappa estimated at  (described in 

Sections 4.2 and 4.3), which may be attributed to the effects of high disease prevalence that 

Cohen's kappa measures are prone to as observed in Figure 1, while the proposed kappa is 

unaffected by disease prevalence. Mielke et al's kappa [42,47] which is based upon the 

probability that every one of the ten urologists classify a subject's test result into exactly the 

same category is estimated as 0.196; this kappa reflects the low chance that such 

classifications would occur very often in practice, and less so as the number of experts 

increases.

The original analysis of agreement presented in Allsbrook et al's paper [46] compared 

Cohen's kappas (unweighted) for each pair of urologists, yielding 45 pairwise Cohen's 

kappas ranging between 0.31 – 0.79. This approach leads to complexities in interpretation 

with limited overall conclusions about the agreement between the ten urologists. In contrast, 

our proposed approach allows classifications of all ten urologists to be analyzed and 

interpreted in one unified approach. Characteristics of individual urologists can also be 

examined through their estimated random effect terms v̂j, j=1,..., J if required.

6.2. Cervical Cancer Agreement Study

An early study was conducted by Holmquist et al [11] to examine the variability in the 

classifications of cervical cancer from histological slides and to assess the level of overall 

agreement among pathologists. Seven pathologists evaluated and classified 118 slides 

according to a five-category ordinal scale: (1) negative; (2) atypical squamous hyperplasia; 

(3) carcinoma in situ; (4) squamous carcinoma with early stromal invasion; and (5) invasive 

carcinoma. A table of individual classifications made by each pathologist is presented in 

Landis and Koch [40]. The original analysis presented in Holmquist et al [11] focused on 

examining the number of slides between each pair of pathologists that were rated as higher 

by one pathologist in the pair. Table Five presents the results from fitting the proposed 

ordinal GLMM model and summary measures and existing summary measures. Based upon 

all seven pathologists’ classifications, the observed probabilities of being rated in categories 

1 (negative) to 5 (most severe cancer) were 27%, 17%, 52%, 3% and 1.7% respectively, 

indicating only a small proportion of slides indicated more severe disease. The variability in 

classifications between the patient slides ( ) is large relative to the variability 

observed amongst the pathologists ( ) yielding a moderately high value of ρ = 

0.717. The model-based kappa  (se = 0.032), indicating only a low level of 

chance-corrected agreement between the seven pathologists. Each of the Cohen's kappa-

based summary measures, Fleiss’ kappa, Conger's and Light's kappa and Cohen's GLMM-

based kappa yielded slightly higher estimated chance-corrected agreement ( , 

 and  respectively). This may be attributed, in a similar manner to 

the Gleason Grading example in Section 6.1, to prevalence effects, where severe disease 
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(categories 4 and 5) is very rarely observed for this sample of slides. Mielke et al's kappa 

[42,47] is very small at 0.127, demonstrating the unlikely scenario that all seven pathologists 

would assign an identical classification to any particular slide.

7. A Logistic Generalized Linear Mixed Model for Modeling Agreement

The generalized linear mixed model with a logistic link function is often a popular choice 

when modeling ordinal classifications. In this section we demonstrate that almost identical 

results are obtained for observed agreement p0 whether a probit or logit link function is 

employed in the ordinal GLMM framework for modeling agreement.

The logistic function  replaces the probit function 

Φ(·) in the logistic ordinal GLMM. Wlog we set β0to 0 for identifiability purposes, with 

variance of the logistic distribution π2/3, and the logistic ordinal GLMM in terms of 

cumulative logits is:

with the probability of the ith subject's test result being classified by expert j into category c 

as . It is helpful to define a 

random variable Q with a logistic distribution with mean 0 and variance π2 / 3, and density 

function . Observed agreement p0 is derived for the logistic ordinal 

GLMM as:

where . The cdf  takes the form [48]:

This expression is evaluated using the integrate function in R. Figure 2 demonstrates that 

almost identical values of observed agreement p0 are obtained under the ordinal GLMM 

framework irrespective of choice of probit or logit link function. It is also interesting to note 

that for both choices of link function, as disease prevalence becomes more extreme (high or 

low), model-based observed agreement increases; and as subjects’ test results become more 

distinguishable from each other relative to the variability between experts (increasing ρ), 
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observed agreement between experts also increases, though at a faster rate for prevalences 

that are more moderately spread over the C categories.

8. Discussion

In this paper we describe a comprehensive framework and propose a chance-corrected 

summary measure in a population-based setting to examine agreement between multiple 

experts classifying a sample of subjects’ test results according to an ordered categorical 

scale. The proposed approach flexibly can accommodate large numbers of experts and 

subject test results without increasing complexity as the number of experts increases, while 

allowing for missing data. The proposed methods are easily implemented using the freely 

available software package R. Initial findings suggest the approach is fairly robust to non-

normal random effects, though further work is needed in this area.

Limited alternative approaches exist to examine agreement in this large-scale setting with 

ordinal classifications, and many existing measures of agreement are prone to prevalence 

effects of the disease or condition under study. Due to a lack of available methods for 

studies involving ordinal classifications made by many experts, many agreement studies in 

the medical literature have instead elected to use approaches intended to assess agreement 

between just two experts at a time. For example, several pairwise Cohen's kappa statistics 

between all possible pairs of experts are often calculated, leading to complexities in 

interpretation and limited overall conclusions regarding the group of experts as a whole. Our 

approach allows agreement between all the experts to be assessed in one unified approach, 

lending power and efficiency to the study of agreement between the multiple experts when 

assumptions are met, and a simpler interpretation of results. If the experts and patients 

included in the study are randomly sampled from their respective populations, the results are 

generalizable to these populations of experts and patients, which is especially advantageous 

for widely used screening procedures. There is also the opportunity to examine the rating 

characteristics of individual experts through exploration of individual random effect 

components. In addition, our approach is not vulnerable to some of flaws observed when 

using Cohen's kappa, such as prevalence effects. Examining the effects of factors (such as 

rater training) that may play an influential role in the levels of agreement between experts, 

such as the levels of training and volume of tests read annually will be examined in a future 

paper.

In addition to measures of agreement, measures of association are also commonly used to 

compare the ordered categorical classifications of two or more experts. These measures 

incorporate valuable information regarding the extent of disagreement between experts, 

where disagreement arises when two experts assign a different classification to the same 

subject's test result. For example, stronger disagreement is implied when two experts’ 

classifications are three categories apart rather than one or two categories apart. A common 

measure of association is Cohen's weighted kappa [2,14,49] which employs a weighting 

scheme which assigns partial “credit” for classifications not in exact agreement, with larger 

weights (“credit”) assigned to pairs of classifications closer together. Extensions of Cohen's 

weighted kappa to more than two experts [50] has been described as problematic [42]. 

Gonin et al [51] describe a model-based approach using generalized estimating equations 
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that generates a weighted kappa coefficient, including a fixed term for each expert, thus 

best-suited to a smaller number of experts. Extending the proposed population-based 

approach described in this paper for multiple experts to incorporate information about 

disagreement using measures of association is a topic for future research.

Due to the categorical nature of ordinal classifications, non-parametric rank-invariant 

approaches are preferred by some researchers [52-55], where rank invariant methods are not 

influenced by a relabeling of the ordinal classification scale [52-56]. Svensson et al [52,53] 

describe a non-parametric rank-invariant approach for evaluating the various components of 

disagreement in paired rank-invariant data. These approaches are currently restricted to 

assessing association and agreement between pairs of experts, so are better suited to studies 

with a smaller number of experts. Liu and Agresti [36] note that for parametric approaches, 

when the latent variable model holds, for example, where disease status is considered an 

unobserved latent variable, the estimated effects are invariant to the number of categories of 

the classification scale and their cutpoints, and when the model fits well, different studies 

employing different scales for the classifications should lead to similar conclusions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure (i). 
Plots of agreement measures, proposed κm and κF versus ρ for varying prevalence (extreme 

low or high, moderate, equal in each category; the percent of observations falling into each 

of the Ci categories, i=1,...,5 in each prevalence case are presented in Table 2) with σ2v set 

to 1 and σ2u increasing in value.

Nelson and Edwards Page 16

Stat Med. Author manuscript; available in PMC 2016 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure(2). 
Model-based observed agreement p0 for probit and logistic ordinal GLMMs versus 

increasing ρ and varying prevalence of disease for an ordinal classification scale with five 

categories (C=5).
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Table (ii)

Varying levels of disease prevalence examined in simulation studies and figures based upon an ordinal 

classification scale with C=5 categories.

Percentage (%) of classifications in each category

Disease Prevalence Category 1 Category 2 Category 3 Category 4 Category 5

Very low 80% 10% 3.4% 3.3% 3.3%

Moderately low 50% 26% 16% 6% 2%

Equal 20% 20% 20% 20% 20%

Moderately High 2% 6% 16% 26% 50%

Very High 3.3% 3.3% 3.4% 10% 80%
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Table (iii b and c)

Tables showing pairwise agreement between some randomly selected pairs of urologists classifying 46 slides 

[46] according to an ordinal scale based upon the Gleason grading scores with C=4 categories.

Rater Three

Category 1 2 3 4 Total

Rater One

1 1 5 0 0 6

2 0 6 4 4 14

3 0 0 5 5 10

4 0 0 0 16 16

Total 1 11 9 25 46

Rater Six

Category 1 2 3 4 Total

Rater Two

1 0 0 0 0 0

2 2 13 0 0 15

3 0 2 10 6 18

4 0 0 3 10 13

Total 2 15 13 16 46
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Table (iv)

Results for the Gleason Grading Agreement Study [46] based upon an ordinal classification scale with C=4 

categories; I=46 patient biopsies; J=10 urologists.

Parameter Symbol Estimate S.E. Z-value

Ordinal GLMM:

Thresholds: (α0 = –∞, α4 = +∞)

    Between categories 1 and 2 α 1 −5.226 0.641 −8.154

    Between categories 2 and 3 α 2 −1.258 0.522 −2.411

    Between categories 3 and 4 α 3 1.549 0.521 2.971

Subject Random Effect variance σu
2 9.295 2.453

Rater Random Effect variance σv
2 0.358 0.200

Rho ρ 0.873 0.027

GLMM-based Observed Agreement p 0 0.669

Agreement Measures:

Model-based Kappa κ m 0.484 0.035

Fleiss’ kappa κ F 0.569 0.014

Light and Conger's kappa κ LC 0.570

Mielke's et al kappa 0.196

Cohen's GLMM-based kappa κ GLMM 0.526
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Table (v)

Results for the Holmquist et al's [11] Carcinoma in situ of the uterine cervix Agreement Study based upon an 

ordinal classification scale with C=5 categories; I=118 patient slides; J=7 pathologists.

Parameter Symbol Estimate S.E. Z-value

Ordinal GLMM:

Thresholds: (α0 = –∞, α5 = +∞)

    Between categories 1 and 2 α 1 −1.364 0.364 −3.747

    Between categories 2 and 3 α 2 0.370 0.361 1.024

    Between categories 3 and 4 α 3 2.856 0.376 7.605

    Between categories 4 and 5 α 4 4.214 0.407 10.347

Subject Random Effect variance σu
2 4.130 0.684

Rater Random Effect variance σv
2 0.627 0.348

Rho ρ 0.717 0.049

GLMM-based Observed Agreement p 0 0.485

Agreement Measures:

Model-based Kappa κ m 0.266 0.032

Fleiss’ kappa κ F 0.354 0.012

Light and Conger's kappa κ LC 0.361

Mielke's et al kappa 0.127

Cohen's GLMM-based kappa κ GLMM 0.296
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