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Automated adaptive inference of
phenomenological dynamical models

Bryan C. Daniels' & llya Nemenman?-3

Dynamics of complex systems is often driven by large and intricate networks of microscopic
interactions, whose sheer size obfuscates understanding. With limited experimental data,
many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk
overfitting and making faulty predictions. At the other extreme, simple ad hoc models often
miss defining features of the underlying systems. Here we develop an approach that instead
constructs phenomenological, coarse-grained models of network dynamics that automatically
adapt their complexity to the available data. Such adaptive models produce accurate
predictions even when microscopic details are unknown. The approach is computationally
tractable, even for a relatively large number of dynamical variables. Using simulated data, it
correctly infers the phase space structure for planetary motion, avoids overfitting in a
biological signalling system and produces accurate predictions for yeast glycolysis with tens
of data points and over half of the interacting species unobserved.
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ne can view the physics enterprise as reverse-engineering

of Nature—using data to infer predictive mathematical

models of physical systems, and then finding similarities
among such models of distinct systems to identify physical laws.
In the era of Big Data, these models are becoming Big
Models, which are often as complicated as the data themselves,
reflecting the humorous maxim that ‘the best material model
of a cat is another, or preferably the same, cat'l. This is
especially evident in modern biophysics and systems biology?,
which are the primary focus of this article. Continued success of
such approaches that systematize all known details in a
combinatorially large mathematical model is uncertain. Indeed,
generalizing and generating insight from complex models is
difficult. Further, specification of myriads of microscopic
mechanistic parameters in such models demands vast data sets
and computational resources, and is hard even for very large
data sets due to widely varying sensitivities of predictions to
the parameters®. Finally, the very structures of these models are
often unknown because they depend on many yet-unobserved
players on the microscopic level. Identification of these structural
characteristics is labour intensive and does not scale up easily.
Thus, it is unlikely that mathematical models based solely on a
detailed microscopic representation will be able to account
accurately for the observed dynamics of many complex systems.
More importantly, even if they could, the resulting models would
be too unwieldy to bring about understanding of the modelled
systems. Model reduction may alleviate some of these problems,
but it still suffers from the difficulty of needing an exact, detailed
model as an intermediate step?~’.

Because of these difficulties, the need to predict responses of
complex systems to dynamical perturbations has led to a
resurgence of research into automated inference of dynamical
systems from time series data, which had been attempted since
the early days of the field of nonlinear dynamics®°. Approaches
have been developed using linear dynamic models'’, Bayesian
Networks (Supplementary Note 8), recurrent neural networks'!,
evolved regulatory networks!? and symbolic regression'>!4, The
latter two produce models that are more mechanistically accurate
and interpretable. However, because of the focus on microscopic
accuracy, these approaches require searching through an
extremely large space of all possible microscopic dynamics. In
general, this leads to very long search times!>14, especially if some
underlying variables are unobserved, and dynamics are coupled
and cannot be inferred one variable at a time.

To move forward, we note that microscopic and macroscopic
complexity are not necessarily related!>!®. Thus, complex living
systems may realize rather simple dynamics, at least in typical
experimental setups. For example, activation of a combinatorially
complex receptor can be specified with only a handful of effective
parameters, including the dynamic range, cooperativity and
time delay!’"!%, and the purpose of microscopic structural
complexity can be in making the simple macroscopic functional
output robust in the face of perturbations!®?. Similarly, in
engineering®!, effective models are often sufficient for forward
(but not reverse) engineering of complex systems, as illustrated by
the ubiquity of the purely phenomenological Kalman filter. These
considerations suggest that macroscopic prediction does not
necessarily require microscopic accuracy even in systems
biology??, and that a complementary approach is needed, one
in which we seek phenomenological, coarse-grained models of
cellular processes that are simple and inferable, and nonetheless
predictive and useful in limited domains®>%4,

Here we propose an adaptive approach for inference of
dynamics from time series data that does not attempt to find the
single best microscopically ‘correct’ model, but rather a
phenomenological, effective model that is ‘as simple as possible,
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but not simpler’ than needed to account for the experimental
data. De-emphasizing microscopic accuracy means that we do
not have to search through all possible microscopic dynamics,
and we can focus on a much smaller hierarchy of models.
By choosing a hierarchy that is nested and complete, we gain
theoretical guarantees of statistical consistency, meaning the
approach is able to adaptively fit any smooth dynamics with
enough data, yet is able to avoid problems with overfitting that
can happen without restrictions on the search space®.
While similar complexity control methods are well established
in statistical inference?® and in choosin% a systems biology
model for data from a finite set of models®’~2%, we believe that
they have not been used yet in the context of inferring complex,
nonlinear dynamics from an infinite, complete set of all
possible dynamics. Importantly, this adaptive approach requires
testing a number of models that scales only polynomially with
the number of dynamical variables. Further, it uses computational
resources that asymptotically scale linearly with the number
of observations. This allows us to construct models with
much smaller computational effort and fewer experimental
measurements, even when many dynamical variables are
unobserved. While our main goal is effective dynamical
modelling in systems biology, our approach works for
general physical dynamical systems. In fact, we call it Sir Isaac
due to its success in discovering the law of universal gravity from
simulated data.

Results
Model classes for dynamical inference. We seek a phenomen-
ological model of dynamics in the form:

dx dy
E_Fx(X7YaI)7a_Fy(X7Y7I)7 (1)

where x are observed variables, y are hidden variables and I are
inputs or other parameters to the dynamics. We neglect intrinsic
stochasticity in the dynamics (either deterministic chaotic or
random thermal) and focus on systems for which repeated
observations with nearly the same initial conditions produce
nearly the same time series, save for measurement noise. The goal
is then to find a phenomenological model of the force fields F,, F,
(ref. 8). The same dynamics may produce different classes of
trajectories x(¢) dependent on initial conditions (for example,
ellipses and hyperbolas in gravitational motion). Dynamical
inference rather than more familiar statistical modelling of
trajectories is needed to represent these multiple functional forms
within a single dynamical system.

Since our primary focus is on complex cellular processes, we
construct two classes of nested and complete model hierarchies,
both well matched to properties of biochemistry that underlies
cellular network dynamics. We build the first with S-systems®®
and the second with continuous time sigmoidal networks>!. The
S-systems use production and degradation terms for each
dynamical variable formed by products of powers of all
involved variables (chemical species concentrations); this is a
natural generalization of biochemical mass—action laws.
Specifically, an S-system consists of J dynamical variables x; and
K inputs I = x; ; y, with each dynamical variable governed by an
ordinary differential equation (ref. 30)

dx;

o = G, ~ H(x), @

where production G and degradation H terms have the form:

J+K J+K

G(x); = o H xfij’ H(x); = p; H x]h" (3)
j=1 j=1
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Second, the sigmoidal class represents interactions using linear
combinations of saturating functions of species concentrations,
similar to saturation in biochemical reaction rates:

dx;

J K
dt = — x,'/'[',‘ =+ 21: Wl]f(x] =+ 0]) =+ kzl: ‘/,‘}(Ik7 (4)
J: —
where the sigmoidal function &(y)=1/(1+¢”). Importantly,
both classes are complete and are able to represent any
smooth, nonlinear dynamics with a sufficient number of
(hidden) dynamical variables’®*>33, They can also each
efficiently represent the types of sharp nonlinearities typically
found in biophysical systems (Supplementary Note 1).

To perform adaptive fitting within a model class, a specific
ordered hierarchy of models is chosen a priori that
simultaneously ~varies both the degree of nonlinearity
(the number of factors in equation 3 or terms in equation 4)
and the number of hidden variables (additional x; Supplementary
Fig. 1 and Supplementary Note 1). Within this restricted
model space, Bayesian inference is then used to select a single
best model (see Methods section).

The law of gravity. Before applying the approach to complex
dynamics where the true model may not be expressible simply
within the chosen search hierarchy, we test it on a simpler system
with a known exact solution. We choose the iconic law of gravity,
inferred by Newton based on empirical observations of
trajectories of planets, the Moon and, apocryphally, a falling
apple. Crucially, the inverse-squared distance law of Newtonian
gravity can be represented exactly within the S-systems
power-law hierarchy for elliptical and hyperbolic trajectories,
which do not go to zero radius in finite time. It requires a hidden
variable, the velocity, to completely specify the dynamics of the
distance of an object from the sun (Supplementary Note 2).

Figure 1 displays the result of adaptive inference using the
S-systems class. Given data about the distance of an object from
the sun over time, the algorithm discovers a model that
reproduces the underlying dynamics, including the necessary
hidden variable and the bifurcation points. Since the trajectories
include hyperbolas and ellipses, this example displays the
advantage of inferring a single set of dynamical equations of
motion, rather than statistical fits to trajectories themselves,
which would be different in the two cases. This adaptive
dynamical inference is comparable to other recent methods!?,
and it successfully treats a hidden dynamical variable.
Supplementary Fig. 4 additionally shows inference of the law of
gravity using the sigmoidal model class. While accurate, the fits
are worse than those using S-systems, illustrating the importance
of understanding basic features of the studied system when
conducting automated model inference.

Empowered by the success of the adaptive inference approach
in this case, we chose to name it Sir Isaac. The software
implementation can be found under this name on GitHub.

Multisite phosphorylation model. When inferring models for
more general systems, we do not expect the true dynamics to
be perfectly representable by any specific model class: even the
simplest biological phenomena may involve combinatorially
many interacting components. Yet for simple macroscopic
behaviour, we expect to be able to use a simple approximate
model that can produce useful predictions. To demonstrate
this, we envision a single immune receptor with n modification
sites, which can exist in 2" microscopic states*!, yet has
simple macroscopic behaviour for many underlying parameter
combinations. Here we test a model receptor that can be
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Figure 1 | Dynamical inference of the law of gravity. A particle is released
with velocity vy perpendicular to the line connecting it to the sun, with
varying initial distance ro from the sun. (@) With only N=150 examples
(each consisting of just a single noisy observation of r at a random time t
after the release; Supplementary Note 2), we infer a single dynamical model
in the S-systems class that reproduces the data. With no supervision,
adaptive dynamical inference produces bifurcations that lead to qualitatively
different behaviour: in this case, a single model produces both oscillations
(elliptical orbits) and monotonic growth (hyperbolic trajectories). Inferred
trajectories are shown with solid coloured lines, and the corresponding true
trajectories are shown with dashed lines. (b) Similar to the true model (left),
the inferred model (right) contains a single hidden variable X, and works
using a similar phase space structure. Specifically, the location of nullclines
(green lines) and a single fixed point (green circle) as a function of ry are
recovered well by the fit. Note that the hidden variable is defined up to a
power (Supplementary Note 2), and we choose to plot X3 here.

phosphorylated at each of n =5 sites arranged in a linear chain.
The rates of phosphorylation and dephosphorylation at each site
are affected by the phosphorylation states of its nearest
neighbouring sites. With Michaelis-Menten kinetics and
independence of kinetic rates for different states, this produces
a complicated model with 32 coupled Ordinary Differential
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Equations (ODEs) specified by 52 parameters, which we assume
are unknown to the experimenter.

We imagine an experimental setup in which we can control
one of these parameters, for example, by changing concentrations
of various kinases. We are interested in effects of such changes on
the time evolution of the total phosphorylation of all five sites.
Here we arbitrarily treat as input I the maximum rate of
cooperative phosphorylation of site 2 due to site 3 being occupied,
V. This is inspired, for example, by being able to measure
or control concentrations of the SRC-family kinases (input),
which mediate immune signalling conditional on the previous
steps in the receptor activation sequence being completed!”. We
then ‘measure’ the resulting time course of total phosphorylation
starting from the unphosphorylated state. Experimental
measurements are corrupted with noise at the scale of 10% of
their values (see Supplementary Note 3 for details).

A straightforward approach to modelling this system is to fit
the 52 parameters of the known model to the data. A second
approach is to rely on intuition to manually develop a functional
parameterization that captures the most salient features of the
time course data. In this case, we can write a simple 5-parameter
model (Supplementary Note 3) that captures exponential
saturation in time with an asymptotic value that depends
sigmoidally on the input V. A third approach, advocated here,
is to use automated model selection to create a model with
complexity that matches the amount and precision of the
available data.

In Fig. 2, we compare these three approaches as the amount
of available data is varied, and Fig. 3a shows samples of fits
done by different procedures. With limited and noisy data, fitting
the parameters of the full known model risks overfitting, and in
the regime we test, it is the worst performer on out-of-sample
predictions. The simple model performs best when fitting
to <100 data points, but for larger amounts of data it saturates
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Figure 2 | Multisite phosphorylation model selection as a function of the
number of measurements N. The sizes of errors made by three models
(filled symbols; left axis) decrease as the amount of data increases. Adaptive
sigmoidal models (orange squares) outperform a maximum (max.) likelihood
fit to the full 52-parameter model (green circles) in this range of N (although
we expect that it will eventually outperform all other models as N— c0). A
simple 5-parameter model (blue triangles) that is custom-made to match
salient features of the true behaviour is the best performer for a moderate
amount of data, but is outperformed by adaptive models when given more
data. The mean over 10 sets of input data are shown, with shaded regions
indicating the s.d. of the mean. The full and simple models each use a fixed
number of parameters (open symbols; right axis), while the sigmoidal model
adapts to use more parameters when given more data.
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in performance, as it cannot fit more subtle effects in the data.
In contrast, an adaptive model remains simple with limited data
and then grows to accommodate more subtle behaviours once
enough data are available, eventually outperforming the
simple model. Even when given up to 400 data points, the
adaptive model remains relatively simple, avoiding using as many
degrees of freedom as the full model (Supplementary Fig. 5).
Crucially, this performance stays robust when various
assumptions of the adaptive inference approach are violated
(such as the model of the measurement noise, cf. Supplementary
Fig. 2A,B). And it barely depends on details of the approach such
as the ordering with which parameters are added into the model
(cf. Supplementary Fig. 2C).

The multisite phosphorylation example also demonstrates that
dynamical phenomenological models found by Sir Isaac are more
than fits to the existing data, but rather they uncover the true
nature of the system in a precise sense: they can be used to predict
responses to some classes of inputs that are qualitatively different
from those used in the inference. For example, as seen in Fig. 3b,
an adaptive sigmoidal model inferred using temporally constant
signals produces a reasonable extrapolated prediction for
response to a time-varying signal. At the same time, overfitting
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Figure 3 | Time series responses to out-of-sample inputs in inferred
models of multisite phosphorylation. Plotted is the predicted response
(right axis) to (a) constant and (b) time-varying input (left axis, blue lines).
Fit to N=300 constant input data points, the full-known model (green)
produces erratic behaviour typical of overfitting (especially evident in b),
while the adaptive sigmoidal model (orange) produces more stable out-of-
sample predictions with median behaviour that is closer to the true
dynamics. Plotted is the median behaviour over 100 samples from each
model’'s parameter posterior (Supplementary Note 3), with shaded regions
indicating 90% confidence intervals, which are in some cases smaller than
the width of the line.
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is evident when using the full, detailed model, even when one
averages responses over the posterior distribution of the inferred
model parameters.

Yeast glycolysis model. A more complicated test of the method
is to reproduce nonlinear oscillatory dynamics, such as that
describing yeast glycolysis, for which there has been recent
interest in automated inference'*?*, A recent model for the
system>>3¢, informed by detailed knowledge of metabolic
pathways, consists of coupled ODEs for seven species whose
concentrations oscillate with a period near 1min. The system
dynamic is simpler than its structure in the sense that some
complexity is used to stabilize oscillations to perturbations.
On the other hand, the oscillations are not smooth (Fig. 4) and
hence are hard to fit with simple methods. These aspects make
this model an ideal test case for Sir Isaac.

If we were given abundant time series data from all seven
species and were confident that there were no other important
hidden species, we may be in a position to infer a ‘true’ model
detailing interactions among them. If we are instead in the
common situation of having limited data on a limited number of
species, we may more modestly attempt to make predictions

about the inputs and outputs that we have measured. This is
conceptually harder since an unknown number of hidden
variables may need to be introduced to account for the dynamics
of the observed species. We demonstrate our approach by
constructing adaptive models using data for only three of the
seven coupled chemical species, as their initial conditions are
varied.

Depicted in Fig. 4 is the model selection procedure for this
case. After selecting an adaptive model fit to noisy data from
N single time points, each starting from initial conditions
sampled from specified ranges, we test the inferred model’s
ability to predict the time course resulting from out-of-sample
initial conditions, including those lying far away from the limit
cycle. With data from only N=40 measurements, the selected
model is able to predict behaviour with mean correlation of
over 0.6 for initial conditions chosen from ranges twice as large
as those used as training data (shown in Fig. 4) and 0.9 for
out-of-sample ranges equal to in-sample ranges (shown in
Supplementary Fig. 9). At this point, the model saturates at
~65 nominal and 35 effective parameters (Supplementary
Fig. 11). This is larger than in the true model and does not
necessarily reflect its topology. However, since discovering the
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Figure 4 | The model selection process using time course measurements of three metabolites in yeast glycolysis. (a) For each set of given initial
conditions (open circles), a noisy measurement of the three observable concentrations (filled circles) is made at a single random time. Hidden variables
(in grey) are not measured. In this example, we fit to N =40 in-sample conditions. (b) Models from an ordered class, with the illustrated connectivity, are
fit and tested sequentially until %, an approximation of the relative log-likelihood, decreases sufficiently from a maximum. (¢) The selected model (large
connectivity diagram) is used to make predictions about out-of-sample conditions. Here, we compare the output of the selected model (solid lines) with
that of the model that created the synthetic data (dashed lines). (d) Performance versus computational and experimental effort. The mean out-of-sample
correlation for three measured biochemical species from the range of initial conditions twice that used in training rises to over 0.6 using <5 x 108 model
evaluations and 40 in-sample measurements. In (ref. 14), inferring an exact match to the original seven-dimensional model used roughly 500 times as
many measurements of all seven species (with none hidden). The approach also used 200 times as many model evaluations (Supplementary Note 4).
Nonetheless, the accuracy of both approaches is comparable, and Sir Isaac additionally retains information about the phase of the oscillations. This
illustrates that the problem of adaptively finding an approximation to the dynamics is, in fact, much simpler than the problem of inferring the detailed

equations describing the dynamics.
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functional form of the true model (including hidden nodes)
would require a search through a much larger space of models,
complexity here should not be measured just by the number
of parameters. This is illustrated, in part, by the admirable
predictive performance of the phenomenological model for a
relatively small N.

We can compare this to the performance of a hand-
constructed ‘simple’ 9-parameter harmonic oscillator model
(an analogue of the simple model in the multisite phos-
phorylation case). The simple model, for which the numbers of
nominal and effective parameters are equal (Supplementary
Fig. 11), does not have the exploratory power to resolve the sharp
peaks and obtain good predictions (Supplementary Note 4 and
Supplementary Fig. 9). In another comparison, the true model
that generated the data has 16 parameters, which is fewer than the
result of Sir Isaac. However, the functional form of the dynamics
for this exact model should also be counted as inferred
parameters, making such comparisons harder. In fact, because
of this, previous work that inferred the exact equations of the
original seven-dimensional model (including also an unexpected
conservation law)!* had to use roughly 500 times as many
measurements of all 7 variables and 200 times as many model
evaluations. While Sir Isaac is somewhat aided by an appropriate
choice of sigmoidal basis functions, and has not been designed
to look for conservation laws, this example illustrates how
focusing on a simpler problem, namely, finding an approximate,
phenomenological model of the process, can decrease data
requirements by orders of magnitude. This example also
demonstrates that adaptive modelling can hint at the
complexity of the hidden dynamics beyond those measured:
the best performing sigmoidal model requires three hidden
variables, for a total of six chemical species, which is exactly
what one would expect for a seven-dimensional system with a
(hidden) conservation law!4. Crucially, the computational
complexity of Sir Isaac still scales linearly with the number of
observations, even when a large fraction of variables remains
hidden (Supplementary Note 7 and Supplementary Fig. 10). We
anticipate that using advanced approaches to identify and
conduct the most informative experiments and efficiently
search the model hierarchy using genetic algorithms, as in
(ref. 14), may improve performance further.

Discussion

The three examples demonstrate the power of the adaptive,
phenomenological dynamical modelling approach. Sir Isaac
models are inferred without an exponentially complex search
over model space, which would be impossible for systems with
many variables. These models are as simple or complex as
warranted by data and are guaranteed not to overfit even for
small data sets. Thus, they require orders of magnitude less data
and computational resources to achieve the same predictive
accuracy as methods that infer a pre-defined, large number of
mechanistic parameters in the true model description.

These advantages require that the inferred models are
phenomenological and are designed for efficiently predicting
system dynamics at a given scale, determined by the available
data. While Fig. 1 shows that Sir Isaac will infer the true model if
it is within the searched model hierarchy and enough data are
available, more generally the inferred dynamics may be quite
distinct from the true microscopic mechanisms, as shown by a
different number of chemical species in the true and the inferred
dynamics in Fig. 4. What is then the utility of the approach if it
says little about underlying mechanisms?

First, there is the obvious advantage of being able to predict
responses of systems to yet-unseen experimental conditions,
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including those qualitatively different from the ones used for
inference. This is trivially useful in the context of engineering and
control, where predictive, usable models are often necessarily
far removed from microscopic precisi0n21. Second, some general
mechanisms, such as the necessity of feedback loops or hidden
variables, are easily uncovered even in phenomenological models.
However, more importantly, we draw the following analogy.
When in the seventeenth century Robert Hooke studied the
force-extension relations for springs, a linear model for a specific
spring did not tell much about the force generation. However,
the observation that all springs exhibit such linear relations
for small extensions allowed him to combine the models into a
law—Hooke’s law—the first of many phenomenological physical
laws that followed. It instantly became clear that experimentally
measuring just one parameter, the Hookean stiffness, provided an
exceptionally precise description of the spring’s behaviour. And
yet the mechanistic understanding of how this Hooke’s constant
is related to atomic interactions within materials is only now
starting to emerge. Similarly, by studying related phenomena
across complex living systems (for example, chemotactic
behaviour in Escherichia coli*’ and Caenorhabditis elegans>®, or
behavioural bet hedging, which can be done by a single-cell*® or a
behaving rodent?’), we hope to build enough models of specific
systems, so that general physical laws describing how nature
implements them become apparent.

If successful, our search for phenomenological, emergent
dynamics should allay some of the most important scepticism
regarding the utility of automated dynamical systems inference
in science?!, namely, that such methods typically start with
known variables of interest and known underlying physical
laws, and hence cannot do transformative science and find
new laws of nature. Indeed, we demonstrated that, for truly
successful predictions, the model class used for automated
phenomenological inference must match basic properties of
the studied dynamics (contrast, for example, Fig. 1 with
Supplementary Fig. 4, and see Supplementary Fig. 6). Thus,
fundamental properties of the underlying mechanisms, such as
the power-law structure of the law of gravity or the saturation of
biochemical kinetic rates, can be inferred from data even
if unknown a priori. Finally, we can contrast our approach with
a standard procedure for producing coarse-grained descriptions
of physical systems: starting from mechanistically accurate
dynamics, and then mapping them onto one of a small set of
universality classes??2. This procedure is possible due to
symmetries of physical interactions that are not typically
present in living systems. Without such symmetries, the power
of universality is diminished, and different microscopic models
may result in similarly different macroscopic ones. Then
specifying the microscopic model to coarse grain it later
becomes an example of solving a harder problem to solve a
simpler one*?. Thus, for living systems, the direct inference of
phenomenological dynamics, such as done by Sir Isaac, may be
the optimal way to proceed.

Methods

Data and software availability. All simulated data used in this paper, as well as
data analysis and plotting scripts, are available at http://dx.doi.org/10.6084/
m9.figshare.1491421. Additional instructions on how to work with the data can be
found in the archive. The Python-based software implementation of Sir Isaac is
available from https://github.com/EmoryUniversityTheoreticalBiophysics/SirIsaac.

Classes of phenomenological models used by Sir Isaac. To create a model in the
form of Eq. (1), we would like to gradually increase the complexity of F until we
find the best tradeoff between good fit and sufficient robustness, essentially
extending traditional Bayesian model selection techniques to the realm of an
infinite set of possible dynamical models. Ideally, this process should progress
similarly to a Taylor series approximation to a function, adding terms one at a time
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