Table 1. Experimental and computational model-derived variables.
Dependent variables | DATA | ABSOLUTE | RELATIVE |
---|---|---|---|
Learning test: correct choice rate | |||
Reward partial (% correct) | 0.73±0.03 | 0.75±0.02 | 0.74±0.02 |
Punishment partial (% correct) | 0.74±0.03 | 0.70±0.02 | 0.72±0.02 |
Reward complete (% correct) | 0.83±0.02 | 0.83±0.02 | 0.84±0.02 |
Punishment complete (% correct) | 0.86±0.02 | 0.81±0.02* | 0.84±0.02 |
Post-learning test: choice rate | |||
G75 partial (% choices) | 0.78±0.04 | 0.86±0.01 | 0.85±0.01 |
G25 partial (% choices) | 0.51±0.06 | 0.58±0.01 | 0.54±0.01 |
L25 partial (% choices) | 0.45±0.04 | 0.37±0.01 | 0.45±0.01 |
L75 partial (% choices) | 0.25±0.03 | 0.17±0.01 | 0.16±0.01 |
G75 complete (% choices) | 0.83±0.03 | 0.91±0.01 | 0.83±0.02 |
G25 complete (% choices) | 0.40±0.04 | 0.66±0.01* | 0.38±0.03 |
L25 complete (% choices) | 0.61±0.03 | 0.37±0.01* | 0.62±0.03 |
L75 complete (% choices) | 0.17±0.03 | 0.08±0.01 | 0.16±0.02 |
ABSOLUTE, absolute value learning model; DATA, experimental data; RELATIVE, relative value learning model (best-fitting model).
The table summarizes for both tasks their experimental and model-derived dependent variables. Data are expressed as mean±s.e.m.
*P<0.05, t-test, comparing the model-derived values with the actual data after correcting for multiple comparisons (N=28).