Skip to main content
. 2015 Aug 25;6:8096. doi: 10.1038/ncomms9096

Table 1. Experimental and computational model-derived variables.

Dependent variables DATA ABSOLUTE RELATIVE
Learning test: correct choice rate
 Reward partial (% correct) 0.73±0.03 0.75±0.02 0.74±0.02
 Punishment partial (% correct) 0.74±0.03 0.70±0.02 0.72±0.02
 Reward complete (% correct) 0.83±0.02 0.83±0.02 0.84±0.02
 Punishment complete (% correct) 0.86±0.02 0.81±0.02* 0.84±0.02
       
Post-learning test: choice rate
 G75 partial (% choices) 0.78±0.04 0.86±0.01 0.85±0.01
 G25 partial (% choices) 0.51±0.06 0.58±0.01 0.54±0.01
 L25 partial (% choices) 0.45±0.04 0.37±0.01 0.45±0.01
 L75 partial (% choices) 0.25±0.03 0.17±0.01 0.16±0.01
 G75 complete (% choices) 0.83±0.03 0.91±0.01 0.83±0.02
 G25 complete (% choices) 0.40±0.04 0.66±0.01* 0.38±0.03
 L25 complete (% choices) 0.61±0.03 0.37±0.01* 0.62±0.03
 L75 complete (% choices) 0.17±0.03 0.08±0.01 0.16±0.02

ABSOLUTE, absolute value learning model; DATA, experimental data; RELATIVE, relative value learning model (best-fitting model).

The table summarizes for both tasks their experimental and model-derived dependent variables. Data are expressed as mean±s.e.m.

*P<0.05, t-test, comparing the model-derived values with the actual data after correcting for multiple comparisons (N=28).