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Abstract

Purpose of review—Cushing syndrome caused by cortisol-producing adrenal adenomas is a 

rare condition, associated with high morbidity due to weight gain, diabetes mellitus, osteoporosis, 

hypertension, muscle weakness, mood disturbance, etc. The first gene to be identified as causative 

of Cushing syndrome was PRKAR1A. We present an update on protein kinase A (PKA) defects 

and Cushing syndrome.

Recent findings—The cyclic AMP-dependent PKA catalytic subunit alpha (PRKACA) hotspot 

point mutation (c.617A>C [p.Leu206Arg]), leading to an increase of basal protein kinase A (PKA) 

activity, and formation of cortisol-producing adenoma has been frequently shown to cause the 

most common form of Adrenocorticotropic hormone-independent Cushing syndrome.

Summary—Somatic PRKACA mutations have been found in up to 50% of patients with adrenal 

adenomas. Germline PRKACA amplification was also seen in bilateral adrenal hyperplasias. 

PRKACA activation was associated with higher cortisol levels, smaller tumor size and overt 

Cushing syndrome. This breakthrough is expected to improve our understanding of how PKA 

defects lead to Cushing syndrome and may spearhead the development of new, molecularly 

designed therapies.
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Introduction

Adrenal tumors are found increasingly more commonly due to the number of imaging 

studies obtained in the general population [1]. A small fraction of these tumors are 

producing hormones. Endogenous overproduction of cortisol by the adrenal adenomas may 

cause Cushing syndrome, associated with significant morbidity [2]. Adrenal Cushing 

syndrome is often missed, given that some of the patients have a subclinical or even cyclical 
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Cushing syndrome. Overt Cushing syndrome is diagnosed in patients with significant 

metabolic abnormalities, such as weight gain, diabetes mellitus, hypertension, osteoporosis, 

etc.

Genetic mutations, causing cortisol-producing tumors have been suspected for years, but 

only few genetic defects had been discovered until recently. Patients with McCune-Albright 

syndrome have somatic mutations in Guanine Nucleotide Binding Protein, Alpha 

Stimulating (GNAS)1 in their adrenal glands causing cortisol overproduction due to a 

unique form of bilateral adrenocortical hyperplasia (BAH) or single adenomas. Cushing 

syndrome caused by primary pigmented nodular adrenocortical disease (PPNAD) is due to 

mutations in cyclic AMP (cAMP)-dependent protein kinase (PKA) type 1 alpha regulatory 

subunit (PRKAR1A) [3]. Recently, mutations in the armadillo repeat containing 5 (ARMC5), 

a tumor-suppressor gene, were found to be the cause of primary macronodular adrenal 

hyperplasia (PMAH), formerly known as Adrenocorticotropic hormone-independent 

macronodular adrenal hyperplasia (AIMAH) [4-8]. Finally, phosphodiestarases (PDE) 

PDE8B and PDE11A may also play an important role in the formation of cortisol-producing 

adenomas [9-11] or even cancer [12].

Cyclic AMP signaling pathway

The cAMP/protein kinase A (PKA) pathway is crucial for the function of the adrenal gland 

[13, 14] (Figure 1). Corticotropin (ACTH) binds to its G protein-coupled transmembrane 

receptor (MC2R), leading to the synthesis of cAMP by adenylate cyclase [15]. cAMP, acting 

as a secondary messenger, targets tetramer PKA. The latter is a cAMP-dependent serine-

kinase, consisting of two regulatory (with PRKAR1A being the main one) and two inactive 

catalytic subunits. cAMP binds to the regulatory subunits, dissolves the tetramer, thus 

enabling catalytic subunits to phosphorylate a number of targets, and activate transcription 

of the genes.

The role of the cAMP pathway in adrenal tumors associated with Cushing syndrome has 

been repeatedly shown. For example, inactivating mutations in PRKAR1A in patients with 

PPNAD lead to inactivation of R1α, which allows Cα to be uninhibited [16], resulting in 

PKA activation.

The PRKAR1A gene, Carney complex, and PPNAD

Carney complex is a multiple endocrine neoplasia syndrome, inherited in an autosomal 

dominant pattern [17, 18]. Patients have PPNAD, as well as other endocrine neoplasms, 

such as pituitary adenoma and/or hyperplasia, thyroid and gonadal tumors. It is also 

associated with many non-endocrine lesions, such as spotty skin pigmentation (also known 

as “lentiginosis”), myxomas and schwannomas [17, 19]. PPNAD, which causes an often 

indolent form of adrenal Cushing syndrome, is the most common endocrine manifestation of 

Carney complex. Most of the affected patients present as children or young adults. Patients 

have a rather unique “paradoxical” rise of cortisol after the high-dose dexamethasone part of 

the Liddle's test [18, 20].
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There are two genetic loci (17q22-24 and 2p16), which are associated with this complex. 

Mutations in the PRKAR1A gene were first recognized in families with linkage to the 

17q22-24 locus [21]. Approximately two thirds of the patients affected by Carney complex 

have PRKAR1A mutations, while no gene has been identified at the 2p16 locus to-date [22]. 

PRKAR1A is likely to be a tumor suppressor gene, since the allelic loss of the wild-type 

allele is often seen in patients with Carney complex [3, 21]. To date more than 126 

PRKAR1A mutations have been described. A publicly available database is available online, 

and continuously updated by our team (http://prkar1a.nichd.nih.gov/hmdb/mutations.html). 

Most of these mutations encompass small deletions and single base substitutions, or open 

reading frame rearrangements, with a few large deletions reported [23]. Importantly, an 

association between Carney complex and adrenal cancer, was recently described in patients 

with PRKAR1A mutations [24, 25]. Other cancerous associations, such as hepatocellular 

carcinoma [26] and pancreatic malignancies have been reported [27].

PRKACA defects and Cushing syndrome

Recently, Beuschlein et al. identified somatic activating mutations of the main catalytic 

subunit of PKA, PRKACA, in unilateral cortisol-producing adrenal tumors, causing overt 

Cushing syndrome [28]; this discovery was confirmed by others [29-34]. These groups 

performed whole exome DNA sequencing of the available tumors and leukocyte DNA, and 

identified a recurring hotspot point PRKACA mutation (c.617A>C, also known as c.

617T>G), resulting in arginine substitution of amino acid 206 (Leu206Arg).

Beuschlein at al. studied 139 patients with adrenal adenomas, adrenocortical carcinomas and 

ACTH-independent primary adrenal hyperplasias [28]. These patients were screened for 

PDE8B, PDE11A, PRKAR1A mutations and were found to be negative. The researchers 

identified mutations in PRKACA in 8 of the 10 originally screened unilateral cortisol-

producing adenomas, with a majority (7 patients) having the c.617A>C, p.Leu206Arg 

mutation, whereas one had the insertion located at c.595_596CAC, Leu199_Cys200insTrp. 

The p.Leu206Arg mutation is located in a highly conservative core of the interaction 

between the regulatory (RIIβ) and catalytic subunits of PKA. Importantly, these 

investigators described the clinical phenotype of these patients: 37 % of the studied cohort 

had overt Cushing syndrome due to a unilateral cortisol-producing adenoma with a 

PRKACA mutation. These patients had a higher index of disease severity, as shown by 

increased urinary free cortisol and late-night serum cortisol levels. These findings were 

correlated with expression levels of the steroidogenic enzymes that were higher in tissues 

with PRKACA mutations. Patients with germline copy number gain of the PRKACA locus on 

chromosome 19p had BAH.

Shortly after the initial report, we described in detail the three pathologic phenotypes of 

BAH of the previously reported [28] five patients with germline PRKACA copy number 

gain. Three patients had a disease that looked like PPNAD plus extranodular cortical 

atrophy and mild intra- and extracapsular extension of adrenocortical cells, whereas others 

had cortical hyperplasia and capsular and extracapsular micronodular cortical hyperplasia 

[34].
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The described hotspot mutations [28] may interfere with the creation of a stable PKA 

molecule and render the mutant Cα subunits constitutively active [35]. Cao and 

collaborators performed whole exome sequencing of 49 tumors and RNA sequencing of 44 

tumors, including cortisol-producing adenomas, carcinomas and AIMAH [29]. They 

identified an even higher rate of somatic PRKACA mutations: 69.2% (27 out of 39). They 

published a hotspot c.617T>G, resulting in Leu205Arg substitution. It should be noted that 

this is the same mutation that was reported by Beuschlein et al. [28]: apparently, Cao et al. 

used a different amino acid numbering system, where initiating methionine is counted as 

residue zero (and not one), thus reporting Leu205Arg vs. Leu206Arg [36]. Interestingly, 

they found no statistical significant differences in serum cortisol, plasma ACTH, and urinary 

free cortisol levels, when compared to the patients without PRKACA mutations. The 

researchers performed functional studies (gain of function mutation in 293T cells), and 

found that overexpression of Leu205Arg mutants increases phosphorylation of PKA 

derivatives relative to the wild type [29]. In particular, the PRKACA Leu205Arg mutation 

induced phosphorylation of the cAMP response element binding protein (CREB), 

confirming the hypothesis that Leu205Arg mutation may enhance PKA activity [28].

In the same issue of the journal Science, Sato and colleagues independently reported finding 

the identical Leu206Arg hotspot mutation in PRKACA [32], as the cause of Cushing 

syndrome in patients with adrenal tumors. The researchers performed whole exome 

sequencing on eight adrenal tumors, and found 50% of them had the mentioned mutations. 

Moreover, they screened 57 follow-up cases and found that 24 of them had the PRKACA 

Leu206Arg somatic mutations. The affected patients had a smaller tumor size (p=0.00005) 

and higher levels of serum cortisol after 1 mg dexamethasone suppression test (p=0.0026) 

[32], reporting similar findings to others [31]. They also expressed wild-type PRKACA and 

the Leu206Arg in Human Embryonic Kidney 293 cells in which they showed that the 

Leu206Arg PRKACA mutant did not interact with the PKA regulatory subunits. The wild-

type and mock PRKACA-transduced cells demonstrated enhanced PKA activity and 

increased CREB phosphorylation, irrespective of forskolin treatment [32]. Sato et al also 

detected GNAS mutations in 16.9% of the studied cohort.

Goh et al., reported the results of exome sequencing of cortisol-producing tumors from 25 

patients (22 with adrenocortical adenoma and 3 with adrenocortical carcinoma) [31]. They 

found PRKACA heterozygous somatic mutations (c.617A>C [p.Leu206Arg]) in 6 patients. 

Similarly to the original study [28], they discovered a higher steroidogenic enzymatic 

activity in the adrenal tissue with PRKACA mutations, thus causing tumor development and 

endogenous Cushing syndrome. Patients with mutant adrenal adenomas were younger and 

had smaller tumors, associated with overt Cushing syndrome.

Di Dalmazi and colleagues investigated 149 frozen tumor samples from nine European 

medical centers, paired with leucocyte DNA and patients clinical and biochemical data, 

when available [30]. Similarly to the previous investigators, they found mutations of exon 7 

of PRKACA gene in 34% studied samples, associated with Cushing syndrome. In addition to 

previously described missense mutation c.617A>C (p.Leu206Arg) (18 out of 22 patients), 

they found two novel mutations in another 4 patients (c.600_601insGTG/

p.Cys200_Gly201insVal and c.639C>G+c.638_640insATTATCCTGAGG/p.Ser213Arg
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+p.Leu212_Lys214insIle-Ile-Leu-Arg). No germline PRKACA mutations were identified. 

The authors found higher levels of serum cortisol after dexamethasone testing, and smaller 

size of cortisol-producing adenomas.

Recently, Nakajima et al. screened tumors of 13 patients in Japan, and found recurrent 

somatic mutations of the PRKACA gene, p.L206R (c.617T>G) in 23% of patients with 

overt Cushing syndrome [33].

The PRKACB gene and Carney complex

We recently found that genomic amplification of the PRKACB locus may lead to Carney 

Complex without any PRKAR1A mutations [37]. Forlino et al. described a single case of a 

19-year-old female patient presenting with acromegaly and lentigines, who also had 

myxomas, but no Cushing syndrome. This patient had somatic copy number gain of the 

chromosome 1p31.1 PRKACB locus, leading to an increase of the PKA catalytic subunit Cβ 

expression and higher PKA activity in the patient's cells. A mouse model, carrying a 

transgene for human PRKACB, had an increase in growth hormone secretion [37].

Conclusions

Somatic mutations in PRKACA may be a frequent cause of Cushing syndrome in patients 

with adrenal adenomas, while BAH may be caused by PRKAR1A or PRKACA defects. 

PRKACA mutations that lead to Cushing syndrome prevent the binding of the catalytic to the 

regulatory subunits, thus causing constitutive and cAMP-independent activation of PKA, 

and eventually, “autonomous” overproduction of cortisol. It is possible that larger tumors 

produce cortisol less efficiently, whereas smaller tumors may be more steroidogenic. This 

exciting discovery has been well covered in the scientific literature [36, 38-44], is expected 

to lead to a number of questions: Do PRKACA gene mutations cause tumors and cancers in 

other organs (breast, colon, liver, pituitary, etc.), since cAMP/PKA is instrumental in 

virtually every tissue in the human body? Does mutation in other PKA catalytic subunits 

(Cβ, Cγ, and PRKX) cause adrenal adenomas and/or hyperplasia? Moody and colleagues 

reported increased PRKACA expression in trastuzumab-resistant breast cancer, suggesting 

that the cAMP/PKA pathway may be stimulated in some breast cancers [45]. Fibrolamellar 

hepatocellular carcinoma was found to be due to a recurrent DnaJ homolog subfamily B 

member 1 (DNAJB1)-PRKACA chimeric transcript [46]. Parathyroid hormone receptor 

(PTHR1) and parathyroid related protein (PTHrP) may promote tumor invasion and 

proliferation in osteosarcoma, via enhanced PKA signaling [47]. Vitali et al. showed that 

cAMP surges DNA synthesis and cyclin D1 expression in somatotropinomas, and abolishes 

in prolactinomas and non-functioning pituitary tumors [48].

The new genetics of Cushing syndrome may assist clinicians to provide appropriate 

counseling and in their decision-making regarding medical and/or surgical intervention. 

These findings may also lead to the development of individualized pharmacological 

treatment(s) for Cushing syndrome and other disease associated with PKA defects.
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PRKACA protein kinase catalytic subunit alpha

PRKACB protein kinase catalytic subunit beta
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Key points

1. Somatic mutations of the main catalytic subunit of PKA, a serine-threonine 

kinase, PRKACA, may cause cortisol-producing adenomas and 

Adrenocorticotropic hormone-independent Cushing syndrome.

2. Germline duplications of the PRKACA may result in bilateral adrenal 

hyperplasia.

3. Patients with PRKACA defects may have smaller tumors and more severe forms 

of Cushing syndrome.

4. The cAMP/PKA pathway is a potential target for molecularly designed therapies 

of Cushing syndrome.
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Figure 1. 
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Protein Kinase A signaling and adrenal Cushing syndrome. A. ACTH binds to its 7-

transmembrane G-protein coupled receptor (GPCR), which activates Gsα protein and 

stimulates adenylate cyclase to generate cAMP (from ATP). PKA is a tetrameric enzyme, 

composed by 2 regulatory (R) and 2 catalytic (C) subunits, and is activated by an increase of 

the intracellular cAMP concentration: cAMP molecules bind to the R subunits which then 

set free the C subunits, resulting in phosphorylation of transcription factor cAMP response 

element binding protein (CREB) and other target molecules. Phosphodiesterases (PDEs), 

like PDE11A and PDE8B, bind cAMP and decrease its levels. B. Increased PKA activity in 

the setting of somatic PRKACA mutations in patients with cortisol-producing adenomas is 

due to the lack of the mutant PRKACA's binding to the R subunits, or due to excess C 

subunits caused by copy number gain of the gene coding for it.
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