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Cooperation and free riding are among the most frequently observed behaviors in human social decision-making. In social interactions, the effects of
strategic decision processes have been consistently reported in iterative cooperation decisions. However, the neural activity immediately after new
information is presented, the time at which strategy learning potentially starts has not yet been investigated with high temporal resolution. Here, we
implemented an iterative, binary public goods game that simulates cooperation/free riding behavior. We applied the multi-feature pattern analysis
method by using a support vector machine and the unique combinatorial performance measure, and identified neural features from the single-trial,
event-related spectral perturbation at the result-presentation of the current round that predict participants� decisions to cooperate or free ride in the
subsequent round. We found that neural oscillations in centroparietal and temporal regions showed the highest predictive power through 10-fold cross-
validation; these predicted the participants� next decisions, which were independent of the neural responses during their own preceding choices. We
suggest that the spatial distribution and time–frequency information of the selected features represent covert motivations to free ride or cooperate in
the next round and are separately processed in parallel with information regarding the preceding results.

INTRODUCTION

Cooperation and free riding are among the most frequently observed

behaviors in human social decision-making (Isaac et al., 1984;

Andreoni, 1988; Ledyard, 1995; Fehr and Gachter, 2000; Camerer,

2003; Fehr and Fischbacher, 2003; Gächter et al., 2010). Economic and

psychological studies span various aspects of cooperation, including the

mechanisms of evolution/cascades of cooperation (Nowak, 2006; Santos

et al., 2008; Fowler and Christakis, 2010; Perc and Szolnoki, 2010) and

the effects of voluntary participation (Hauert et al., 2002, 2007), costly

punishments/rewards (O’Gorman et al., 2009; Ule et al., 2009; Boyd et al.,

2010; Janssen et al., 2010; Sasaki et al., 2012), and institutional designs

(Palfrey and Rosenthal, 1991; Krajbich et al., 2009). Despite a large body

of evidence for cross-societal differences (Wu et al., 2009; Gächter et al.,

2010), it has been consistently observed that strategic decision processes

play a key role in repetitive decisions of cooperation or free riding

(Andreoni, 1988, 1995; Camerer, 2003; Chung et al., 2011a,b; Suzuki

et al., 2011). In other words, the outcomes of current decisions influence

subsequent decisions via a decision mechanism instantiating a multi-

round strategic algorithm. Recent neuroimaging studies have provided

a great deal of information on the brain regions related to cooperation

and defection (Rilling et al., 2002; Frith and Singer, 2008; Rilling et al.,

2008; Baumgartner et al., 2011). These regions are mainly responsible for

social learning processes (King-Casas et al., 2005; Behrens et al., 2008;

Hampton et al., 2008; Ho et al., 2008; Zhu et al., 2012). However, the

neural activity immediately after new information is presented, the time

at which updating (or strategy learning) presumably starts has not yet

been investigated with high temporal resolution.

Electroencephalograms (EEGs) are one of the most commonly used

non-invasive neurophysiological methods in decision-making studies

(Camerer, 2007; Mulert et al., 2008; De Vico Fallani et al., 2010;

Polezzi et al., 2010). Compared with functional magnetic resonance

imaging (fMRI), EEG recordings can capture rich temporal dynamics

during cognitive processes with high temporal resolution. Here, we uti-

lized the EEG to investigate covert motivations underlying free riding

and cooperation. In this study, we hypothesized that result presentation

in an iterative decision sequence would not only induce cognitive or

affective responses but also initiate strategy updates. The multivariate

pattern analysis (MVPA) method with a support vector machine (SVM,

a linear classifier) was used to identify neurophysiological markers of

free riding and cooperation that reflected strategic decisions from the

result presentation of the preceding decision round. There are several

benefits of adopting these often-used methods in EEG-based brain–com-

puter interface (BCI) studies (Wang et al., 2004; Norman et al., 2006;

Lotte et al., 2007; Schulz et al., 2012). First, MVPA methods enhance the

sensitivity to a particular mental state by using a pattern classification

approach to multi-dimensional data (Norman et al., 2006). This method

can assist interpretation of time–frequency spectral signals during com-

plex decision-making as cooccurring patterns. Taking advantage of this,

we sought neural features from single-trial event-related spectral per-

turbation (ERSP) patterns (see Makeig et al., 2004 for review), which

reflect both rich temporal information and neural synchronization/de-

synchronization during decisions. Through the feature selection method,

we were able to extract the sets of features (multi-feature combinations)

that represented the neural signals most relevant to the decision to free

ride or cooperate in the next round. Second, SVM determines which

dimension of information vector is more valuable. Thus, projecting

high-dimensional data to binary behavioral decision requires fewer a

priori assumptions. We used the simplest linear kernel SVM to preserve

the original relationships between variables (Schulz et al., 2012), particu-

larly when we combine two features for prediction [see unique combin-

atory performance (UCP) described in Materials and Methods section].

Third, we were able to perform post hoc confirmation on the neural data
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through conventional statistics. The prediction accuracies obtained from

the selected set of features validate the explanatory power of the corre-

lated neural patterns on behavioral decisions.

This study searched for neural predictors of free riding and cooper-

ation using EEG recordings. To test our hypothesis on strategy updates

at the result presentation period, we used an iterative, binary, public

goods game (PGG) that simulates simple social interactions. Three

different conditions (one standard condition and two additional con-

ditions with modulated incentives) were used to induce two main

motivations (fear and greed) to free ride and independently examine

their effects on cooperative behaviors (Dawes et al., 1986; Chung et al.,

2011a). We analyzed EEGs that were time-locked to the result presen-

tation of each round to search for neural predictors of subsequent free

riding or cooperation decisions.

MATERIALS AND METHODS

Ethics statement

The experimental protocol and consent forms were reviewed and

approved by the local institutional review board (IRB) at KAIST

(KH2008-01).

Subjects

Web advertisements were used to recruit 65 healthy male subjects (age:

19–27; mean¼ 22.40� 1.97) from a local university (Choongnam

National University, Daejeon, South Korea). All participants were

right-handed and had no history of neurological or psychiatric

disorders. Written informed consent was obtained from all partici-

pants after describing the experimental procedure. Participants were

recruited in groups of five, and two participants from each group were

randomly selected for EEG recordings during the task (N¼ 26, mean

age¼ 22.27� 1.78). The other participants were prepared with the

same procedure, but their EEGs were not recorded (sham recording).

The participants were not informed whether they were in a real or

sham EEG recording. All participants assigned to a group were

seated face-to-face to enable group decision-making (with social inter-

action). However, no conversation between the participants was

allowed during the game.

Experimental procedures: PGG

We used the binary PGG reported by Chung et al. (2011a,b) (for fur-

ther information, see Materials and Methods therein). The participants

were allocated a sum of money and required to choose whether to

cooperate (give all money to the public good) or free ride (keep all

money as their private good) on each round. Five participants were

assigned to each group. The groups were given cards marked with

either ‘5000’ or ‘0’. The participants received 10% of the card’s value

in Korean currency ($0.50 or 500 Korean won per 5000-card) as

a reward, providing a real financial incentive to the game. Each

game consisted of 10 rounds, and before each round, each participant

was given $5 worth of cards: one 5000-card and one 0-card. Each

player had to choose whether to cooperate or free ride; i.e. they had

to choose to submit a 5000-card or 0-card to the experimenter. Based

on group members’ cooperation, a success or failure result was decided

for the group; success occurred if three or more of the five players

cooperated, otherwise failure occurred. Previous studies showed that

the same free-riding choices could occur from different underlying

cognitive motivations based on the payoff structure (Dawes et al.,

1986; Chung et al., 2011a). To identify neural predictors under these

varying motivations, we implemented three conditions that have

different rules of distributing the bonus for successful trials. Specific

amounts of money were distributed among the players based on a

predefined payoff matrix with three conditions: (i) a bonus was equally

distributed regardless of each individual’s decision if the group

succeeded [condition-standard (CondS); there was no payback if the

group failed], (ii) a bonus was equally distributed regardless of each

individual’s decision and paid back if the group failed [condition-

no-fear (CondNF); the participants were assured that they would not

lose their money in this condition], and (iii) a bonus was distributed

to match each individual’s decision (higher amounts went to cooper-

ators) but not paid back if the group failed [condition-no-greed

(CondNG); all group members were provided with a fair share

of the money in this condition (Chung et al., 2011a,b)]. Figure 1a

depicts the payoff matrices for each condition based on the

rules described above. The participants simultaneously and anonym-

ously turned in their cards after a countdown from 5 to 0 was dis-

played on a monitor (5 s). After each round, the monitor displayed a

fixation screen, a result whether the group had received a bonus,

another fixation screen, and then the number of cooperators (each

screen lasted for 5 s). To simulate a realistic environment, the bonus

was distributed each round in the form of cards if the group succeeded

in earning the bonus.

The order of the three conditions was counterbalanced, and instruc-

tions for each condition were provided just before the condition

started. After the instructions, all players were provided with a four-

question questionnaire specific for each condition to verify their

understanding of the rules of the game. All decisions made by the

players (including sham-recorded participants) and the group results

for each round were recorded for further analysis.

EEG data acquisition and analysis

EEGs were recorded using two Neuroscan EEG-recording

systems (Compumedics Neuroscan, USA) with 64-channel Quick-

caps (Ag/AgCl Quick-cap, Compumedics Neuroscan, USA).

Standard electrode sites based on the international 10–20 system

were used. We used an electrode on the vertex of the head as a refer-

ence, and an extra electrode between Fz, FPz, F1 and F2 was used as a

ground. The impedances of all electrodes were lower than 5 k �. EEGs

were digitized at a sampling frequency of 1000 Hz and amplified with a

64-channel SynAmps2 amplifier (Compumedics Neuroscan, USA). We

recorded EEGs from two individual participants at the same time using

two separate amplifiers and computers. These two recording systems

were synchronized through a customized button box. Simultaneous

recording of the EEG during the game, which is also known as EEG

hyperscanning, was done for possible inter-brain synchronization ana-

lyses in future (Chung et al., 2008; Yun et al., 2008, 2012). However, we

did not describe this in detail here, because the EEG hyperscanning

analyses are out of the scope of this study.

EEG data analysis was conducted using EEGLAB software

(http://sccn.ucsd.edu/eeglab) (Delorme and Makeig, 2004). In the pre-

processing of the EEG, we applied a 0.1–100 Hz band-pass filter, a

55–65 Hz notch filter to remove 60 Hz AC noise, and baseline removal

(correction) to remove gradual drift (i.e. to detrend the data). We used

independent component analysis to detect and remove eye movement

artifacts. Time–frequency, feature extraction, prediction, and valid-

ation analyses were conducted consecutively. EEGs were recorded

during the entire PGG task, but we defined a time-of-interest

(epoch) in this study from 200 ms before the result presentation to

1 s after the onset of each round of the PGG to extract neural pre-

dictors (of free riding and cooperating). For the time–frequency ana-

lysis, the ERSP was calculated for the defined time-of-interest, based on

wavelet transformation [default wavelet cycle setting of [3, 0.5] was

used (Delorme and Makeig, 2004)]. Spectral activity before the onset

( 200 to 0 ms) was used as baseline activity. The pad ratio was set to 16,

and the alpha level was set to 0.001 based on the bootstrap method
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(2000 resamplings). From the wavelet cycle settings and the sampling

rate, the lowest frequency limit was determined as 11.72 Hz. ERSPs

between 12 and 50 Hz (including beta and gamma frequency ranges)

were used for further analyses (see Supplementary text for event-

related potential analysis).

The ERSPs during the presentation of the results were analyzed to

investigate whether they reflected the presented results, and/or encoded

each player’s intention to free ride or cooperate in the subsequent round

(i.e. whether they were neural predictors). We used sets of two consecu-

tive rounds to examine the most immediate neural response to future

action relationship (see Decision independency between trials section in

Supplementary text). Thus, each participant contributed nine behavioral

events to the neural predictor analysis (26 participants� 9 rounds¼ 234

rounds). The decision subsequent to the 10th round (the last round)

could not be predicted and was excluded from the neural predictor

analysis. Significant ERSPs for subsequent cooperation and free riding

were calculated from pooled corresponding rounds. This step assisted us

to investigate neural features that did not only predict within subject’s

decisions but also predict others’ (prediction algorithms are described in

the following paragraphs).

Differences in ERSPs were calculated between all instances of subse-

quent free riding and cooperation and used as a feature pool. We first

measured ERSPs that significantly corresponded with subsequent free

riding and cooperation (P < 0.001 as described above) and subtracted

ERSPs for cooperation from free riding; thus, a positive ERSP indicated

a significant activation associated with free riding, and a negative ERSP

indicated a significant activation associated with cooperation. By using

the feature pool, we were able to control out possible artifacts (e.g.

individual eye movements or muscle activities) and reduce the dimen-

sions of the data for the prediction step (Norman et al., 2006; Lotte et al.,

2007). For feature extraction, we visually inspected the signals and

excluded the electrodes that showed extreme spectral powers that

spanned the entire frequency range (12–50 Hz), as those signals might

result from electric noise or electromyogram (Onton and Makeig, 2009).

The time (X-axis; timemax) and frequency (Y-axis; frequencymax) of the

maximum absolute ERSP value within every discrete, non-zero ERSP

cluster (Figure 2a) were measured, and the cluster size along the X- and

Y-axes was calculated. Each cluster size was defined as the area of a

rectangle with a width and height equal to twice the distance between

timemax (or frequencymax) and timeborder (or frequencyborder), the edge

of the neighboring non-zero ERSP point along the X-axis (or Y-axis).

We selected the edge point (either timemax > timeborder or timemax <

timeborder) that was closer to timemax (the same rule was used in the

frequency dimension). We defined the clusters of non-zero ERSPs wider

than 10 points in either the time or frequency dimension as features. The

average ERSP value within the rectangular cluster was also measured and

reflected the average response smoothed in the time and frequency di-

mensions. Each feature was defined in a five-dimensional space that

included time, frequency, and spatial information; i.e. the maximum

and average ERSP values for each fixed time, frequency, and electrode

identity (location) were defined (Figure 2b). In conventional studies

employing MVPA on fMRI data, the blood oxygenation level dependent

signal change of a voxel is assumed to represent the value of a feature

(LaConte et al., 2005; Norman et al., 2006). We defined each feature

with five components of information as described above to best preserve

time–frequency and spatial information. When we tested the prediction

performance with a combination of two features (feature1 at electrode1,

timemax
1 and frequencymax

1: [ERSPmax
1, ERSPavg

1] and feature2 at elec-

trode2, timemax
2 and frequencymax

2: [ERSPmax
2, ERSPavg

2]), the infor-

mation of the two features was concatenated (predictor: [ERSPmax
1,

ERSPavg
1, ERSPmax

2, ERSPavg
2]; electrode, timemax and frequencymax

are fixed information, which does not need to be included) and used

as a predictor of the subsequent behavior (Figure 2b).

SVM, a supervised learning method for classification, was used to

determine whether the defined features were suitable for classifying

free riding and cooperation. We used the linear support vector

Fig. 1 Payoff matrices and behavioral decision performances in each condition. (a) Payoffs for free riders and cooperators are equal for failed cases of the CondNF, showing that possible loss is controlled.
Payoffs are identical in successful cases, regardless of cooperation in CondNG, showing that greedy motivation is controlled. (b) Mean free riding rate differs between conditions. The participants exhibited
significantly higher free riding rates in CondS than CondNF and CondNG. They showed the lowest free riding rate in CondNG. (c) In particular, free riding rate increased gradually over repeated trials in
CondS, and decreased in CondNG. In CondNF, the participants showed free riding behavior that oscillated around the average. (d) Behavioral stay ratio following the success/failure result was also calculated to
investigate participants’ strategy. In each condition, all four cases (cooperator�success, cooperator�failure, free-rider�success, and free-rider�failure) were individually tested to determine whether the
responses were biased away from a 50% chance of changing strategy (horizontal blue line). (d-1) In CondS, cooperators in the preceding round significantly shifted following failure, whereas cooperators shifted
their choices randomly after success. In contrast, free riders always stayed regardless of the success/failure result. (d-2) In CondNF, both cooperators and free riders in the preceding round showed random
shifts, regardless of the result. (d-3) In CondNG, cooperators in the preceding round significantly stayed only if the result was success. *P < 0.05; **P < 0.01; ***P < 0.001; mP < 0.05; mmP < 0.01;
mmmP < 0.001.
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classification from MATLAB R2010b (MathWorks, Natick, MA) to

calculate prediction accuracy. Prediction performances were measured

for all single features (Accuracyi; i¼ 1, 2, . . . , n where n is the total

number of features) and all sets of two separate features (Accuracyij;

i¼ 1, 2, . . . , n, and j¼ 1, 2, . . . , n; when i¼ j, redundant information

from the same feature was used). The free ride or cooperative decision

was predicted using the EEGs within 1 s following the presentation

of the results of the previous round. Rounds in which the group

succeeded (success group) and rounds in which the group failed

(failure group) were categorized into separate groups to test the pre-

dictive accuracy regardless of the preceding result. We used a 10-fold

cross-validation analysis to verify the predictive accuracy obtained

from each group of features. In other words, the group data were

divided into 10 components, and one of the components was excluded

from the training set. The excluded portion of the dataset was used as a

testing set that enabled us to test the robustness of the prediction

model and avoid over-fitting. This validation test was repeated 10

times (10-fold). To preserve equal ratio of cooperation and free

riding decisions between training and test set, we randomly assigned

subgroup number from 1 to 10, separately to the cooperation and free

riding trials, then merged for further analyses. Because we investigated

neurobehavioral relationship between two consecutive rounds

(run base data set), the validation step confirmed both inter- and

intra-individual decision predictions.

For each feature, we measured the UCP, which characterizes

the average additional prediction accuracy when the feature i

was combined with the other feature j in a prediction model

(Hampton and O’Doherty, 2007; Clithero et al., 2009; Carter et al.,

2012). The UCP of a feature i was defined as follows:

UCPi ¼
Xn

j¼1

ðAccuracyij � AccuracyjÞ=n ð1Þ

where n is the number of features in the corresponding case (the suc-

cess/failure group in each condition). We should note that the EEG

features were extracted from the result presentation phase of the pre-

vious round. Thus, the features not only predicted cooperation in

the next round but also reflected the participants’ own decision

in the previous round. To disentangle the features’ predictive powers

for the next round, we compared the next round UCP (i.e. the UCP in

predicting the next round) with the previous round UCP (i.e. the UCP

in predicting the previous round) (Figure 2c). The orthogonal distance

of each feature on a two-dimensional representation of the two UCP

measures was calculated to quantify each feature’s predictive accuracy

orthogonal to the recollection signal for previous decisions.

To report the neural features that have significant prediction power

on subsequent decision, rather than reflecting the brain response on

the previous round’s result, we used two criteria: (i) features should

have the next round UCP > the previous round UCP and (ii) the next

round UCP > 0.

RESULTS

We tested whether the participants’ free riding rates were significantly

affected by conditions and/or interaction from the preceding round,

Fig. 2 An example of an EEG feature used to predict the subsequent free ride or cooperation decision. (a) The cross hair within the feature indicates the time and frequency of the maximum ERSP. (b) As
depicted in the lower part of the figure, each feature vector was defined according to five types of information: electrode location, timemax, frequencymax, average ERSP amplitude, and max ERSP amplitude.
When we tested prediction performance with a combination of two features (feature1 at electrode1, timemax

1, and frequencymax
1: [ERSPmax

1, ERSPavg
1] and feature2 at electrode2, timemax

2, and frequencymax
2:

[ERSPmax
2, ERSPavg

2]), the information from the two features was concatenated in parallel (predictor: [ERSPmax
1, ERSPavg

1, ERSPmax
2, ERSPavg

2]).

Decodingmotivations of free riding using EEG SCAN (2015) 1213



which reflect motivations and strategies under free riding. As we

observed from previous studies (Chung et al., 2011a), participants

showed significant effect of condition and loss sensitivity (Figure

1b–d). On average, the standard condition (CondS) recruited the high-

est free riding, the condition without fear (CondNF) showed signifi-

cantly less, and the condition without greed (CondNG) showed

the least free riding rate (Figure 1b). In particular, free riding rate in

CondS increased and it decreased in CondNG over repeated trials,

whereas no statistical change was found in CondNF (Figure 1c).

Statistically significant stay rate differences (whether a participant

makes the same choice in the consecutive trial with the latest choice)

based on the group success results in CondS [�2(3)¼ 24.0, P < 0.001]

and CondNG [�2(3)¼ 23.1, P < 0.001] may account for the average

changes of participants’ decision over time (Figure 1d). These behav-

ioral differences between conditions show that the manipulated payoff

structure successfully induced differential cognitive motivations from

the participants (see Supplementary text, Figures S1, and S2

for details).

Neural predictors of subsequent free riding and cooperation

By contrasting ERSP patterns in successive free riding from cooper-

ation, we identified 302–578 features (Figure 2a; Figures S3–S5) that

are specifically correlated with future decision in the corresponding

condition and success/failure result of the previous round. Because free

riding trials were contrasted with cooperating trials, in these features,

positive activation represented a signal indicating free riding, and

negative activation represented a signal indicating cooperation. All

selected features were between 12 and 50 Hz in the frequency

domain and 0–860 ms in the time domain (Figure S6).

Using the prediction and validation analysis (10-fold; see Materials

and Methods section for details) based on the features from whole

brain analysis associated with the success/failure result presentation,

we measured the prediction accuracy of the features of the subsequent

round. The prediction accuracies were compared with a baseline

prediction rate that was defined based on participants’ behavioral de-

cisions following success or failure in the previous round (Table 1).

In CondS, a feature set from C2 and FC3 showed a maximum predic-

tion accuracy of 88.8% for the success group and FPz and PO4 showed

84.4% maximum prediction for the failure group. Compared with the

defined baseline prediction (68.3%), any feature combination includ-

ing C2, the selected feature, showed significantly higher prediction

accuracy for the success group [t(577)¼ 37.1, P¼ 6.3e-155]. For the

failure group, features including FPz showed significantly greater pre-

dictions than the baseline [78.2%; t(301)¼ 7.2, P¼ 4.9e-12]. In

CondNF, the CP4 and PO3 set showed 78.9% maximum prediction

accuracy for the success group, and CP3 and C3 showed 77.5% max-

imum prediction accuracy for the failure group. Feature combinations

including CP3 showed significantly higher mean prediction accuracies

than the baseline (58.8%) for the success group [t(409)¼ 35.6,

P¼ 2.0e-127]. For the failure group, sets including CP3 predicted

the next decision significantly higher than the baseline [62.5%;

t(338)¼ 18.7, P¼ 3.9e-54]. In CondNG, the feature set of M2 and

FC3 showed 88.5% maximum prediction for the success group.

Compared with behavioral baseline (85%), any feature sets combined

with M2 were significantly better predictors for the success group

[t(378)¼ 9.4, P¼ 6.6e-19]. For the failure group, features from many

electrodes combined with Cz (Table 1) showed 100% prediction

accuracies (mean of all feature combination¼ 93.9%). However, we

have to note that CondNG only had 14 failed trials (followed by

4 cooperation and 10 free riding), which was insufficient number of

samples for cross validation. Thus, further results on the

CondNG-failure should be interpreted carefully.

Measured prediction accuracies were converted to an UCP that

summarizes each feature’s average predictions. To distinguish the fea-

tures that predicted the next round’s free riding behavior orthogonally

to the previous round, two different UCPs, the next round UCP and

previous round UCP, were plotted in two-dimensional space for each

condition and result (Figure 3). Both UCPs were measured using

ERSPs at the result presentation phase (result of nth round).

Individual data points located on the left-upper side of the diagonal

lines (the green dashed lines in Figure 3) depict the features that pre-

dict upcoming decisions (nþ 1th round decision) better than the

decisions of the previous round (nth round decision; CondS-success:

364 of 578 features, -failure: 25 of 302; CondNF-success: 166 of 401,

-failure: 66 of 339; CondNG-success: 150 of 379, -failure: 164 of 494).

UCPs from both CondS and CondNF, but not CondNG, showed sig-

nificant positive correlation showing that features highly sensitive to

the previous round result also predicts next round decision better

(CondS-success: r¼ 0.3, P¼ 6.8e-14, -failure: r¼ 0.2, P¼ 8.3e-04;

CondNF-success: r¼ 0.3, P¼ 2.6e-09, -failure: r¼ 0.1, P¼ 0.04;

CondNG-success: r¼ 0.03, P¼ 0.6, -failure: r¼ 0.07, P¼ 0.1).

These two-dimensional feature distributions show the dissociable pre-

diction power of the ERSPs’ time–frequency information for future

cooperative behavior in parallel with the reflection of one’s own deci-

sion in the previous round (the previous round UCP), such that the

features with the longest orthogonal distance are the optimal neural

predictors of free riding. Interestingly, UCPs following success is

spread wide along x-axis, whereas UCPs following failure is spread

wider along y-axis. Based on the definition of UCP [equation (1)],

narrow spread features show comparable predictive power (or neural

responses) between the features on the corresponding axis. Thus, this

indicates that the extracted features following failed trials have

comparable neural responses about the result, whereas features follow-

ing succeed trials have comparable neural predictive power on the

next trial.

Among the data selected above, only the features that had UCPs

greater than 0% for the next round had significant prediction accuracy

over all brain activity (average prediction accuracy with single feature).

The time–frequency components of the features (next round

UCP>previous round UCP and next round UCP > 0) were distributed

as shown in Figure 4a (CondS-success: 42/578 features, -failure: 9/302;

CondNF-success: 36/410, -failure: 29/339; CondNG-success: 61/379,

-failure: 84/494). Interestingly, this pattern shows that participants’

next decision following failure occurs slightly earlier (dark blue

block, 30–35 Hz, 0–100 ms) than that following succeed (red tone

blocks, 45–50, 35–40 Hz, 100–300 ms) (see Figure S7 for the pattern

of predictors common to all conditions). Figure 4b depicts the orthog-

onal distance (Figure 2c) between each feature and the diagonal line

(the green dashed line in Figure 3). Spatial patterns of neural

predictors varied depending on the corresponding condition and the

preceding results (Figure S7). Interestingly, two common patterns were

found regardless of condition or results; centroparietal and frontotem-

poral regions showed long orthogonal distances on average, which

indicate their high effective power on the prediction of next decision

(see Figure S7 for the average pattern). In particular, we found that

CondS and CondNF shared features in centroparietal region that pre-

dicting the next decision, whereas CondS and CondNG shared features

from temporal region (Figure 4b). This inter-condition common fea-

ture patterns were only found when groups succeed in the preceding

trial, but not following their failure. Together with figure 3, the missing

joint pattern between conditions following failure may indicate that

participants have more than one common strategy, in contrast to the

trials following success that recruit common factors (i.e. processes)

across individuals. These results show maps of the brain regions

along to their time–frequency activities that are related to high
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prediction accuracy for subsequent cooperation and/or free riding,

independent of the previous decision.

DISCUSSION

This study investigates whether covert intentions of free riding and

cooperation could be decoded from a short, single-trial EEG signal.

We applied multivariate analysis to extract prominent features (i.e.

neural markers) and used SVM to predict subsequent cooperation or

free riding decisions at the inter- and intra-individual levels. Because

the repeated binary PGG we implemented has a payoff matrix similar

to that of the Stag Hunt game (a coordination game [Camerer, 2003]),

free riding and cooperation decisions rely on adaptive learning, regard-

ing the cooperativeness of the group members. Thus, we hypothesized

that strategic decisions for each round are updated based on the result

of the preceding round. In this study, we found that the multi-feature

patterns from the ERSP signals measured within 1 s following the result

presentation predicted the participants’ subsequent free riding and

cooperative behaviors at greater than chance levels.

From when and where the neural predictors occurred, we can draw

three major interpretations on the neural processes during the

decision-making. First, the finding that these neural predictors are

observed within 1 s of result presentation suggests that covert deci-

sion-making processes begin immediately after receiving information.

Previous studies showed not only monetary reward learning but

also social interaction can be structured within learning paradigm

(King-Casas et al., 2005; Behrens et al., 2008; Zhu et al., 2012). In

other words, one should recalibrate the expectation on others in the

repeated social learning. Because this study used one of the repeated

social interaction games, it was expected to observe information

update regarding the group cooperation at every round.

Interestingly, the subsequent free riding or cooperative decision was

predicted not only from previous history of decisions but also from

initial 1 s of neural activities. This rapid (or automatic) covert decision

might have occurred due to simplicity of the implemented decision

strategies, such as win-stay lose-shift (Nowak and Sigmund, 1993).

However, based on the behavioral stay ratio, the participants’ decision

patterns were more sophisticated. Alternative explanation is that par-

ticipants might have weighted previous history (or prediction error)

as important component compared with other internal motivations.

Because the most influential information is collected, future choices

could be predicted with high accuracy. In this study, we observed

that subsequent cooperative decision starts immediately after result

presentation of the previous round. Decision model that embeds

evidence accumulator, decision module that makes choice when

enough evidence is accumulated (as in perceptual decision-making;

Ploran et al., 2007; Heekeren et al., 2008), and/or weighted learning

algorithm (e.g. reinforcement learning; Philiastides et al., 2010; Fischer

and Ullsperger, 2013) would assist better understanding on complex

human decision process with finer temporal resolution.

Second, spatial distribution of the features that met the selection

criteria gives us some insights on participants’ decision processes.

The CondS and CondNG shared features from bilateral temporal

region that are highly predicting the next free riding decision, whereas

CondS and CondNF shared neural predictors from centroparietal

region. Interestingly, temporoparietal junction has been shown in nu-

merous neuroimaging studies to play an important role in reading the

minds of others (TOM) (Saxe and Kanwisher, 2003; Apperly et al.,

2004; Samson et al., 2004; Carter et al., 2012). That the features around

this region had the longest orthogonal distances may support partici-

pants’ usage of TOM, which is consistent with one of our previous

studies on cognitive motivations in PGG (Chung et al., 2011a). Based

on the payoff structure (Figure 1a), cognitive motivation to free

ride, shared between CondS and CondNG can be defined as ‘fear

of losing money’. Whether a participant loses his/her money after co-

operation highly depends on the number of cooperators within the

group. In contrast, CondNF guarantees a minimal reward regardless of

participants’ action, which may rather link participants’ primary

process on their own decision. We suggest that early features

that predict participants’ next decision support common and

differential cognitive motivations between conditions, including the

use of TOM.

Finally, time–frequency characteristics of the selected features rela-

tive to the unselected features show dynamic thought processes. The

selected predictors of cooperation were not only distinguishable in the

spatial domain, but they were also discrete in the temporal and spectral

dimensions. According to the methods used for measuring prediction

performance, only some portion of the predictors met the criteria, even

though the other features were only separated by a few hundred milli-

seconds and/or were within the comparable frequency range.

Furthermore, selected neural predictors’ time–frequency pattern

showed distinctive differences depends on the group result that may

reflect differential functional processes (e.g. response speed, cognitive

complexity, strategy; Figure 4; Figure S7). EEG microstates at the sub-

second level have been broadly investigated by analyzing mental states

during meditation or sleep (Cantero et al., 2002; Lehmann et al., 2006).

In addition, several studies using various cognitive tasks have shown

Table 1 Selected features at success/failure presentation with prediction accuracies greater than baseline. We measured prediction
accuracies for all paired feature combinations. The features that showed higher average prediction, which is averaged through all
feature sets including each corresponding feature, than the baseline prediction accuracy (chance level) were listed

Condition Result Number of
cooperators/free
riders

Max. prediction
accuracy (%)

Electrodes combination
with maximum
prediction accuracy

CondS Success 19/41 (68.3%a) 88.8 C2þ FC3
Failure 38/136 (78.2%) 84.4 FPzþ PO4

CondNF Success 47/67 (58.8%) 78.9 CP4þ PO3
Failure 45/75 (62.5%) 77.5 CP3þ C3

CondNG Success 187/33 (85%) 88.5 M2þ FC3
Failure 4/10 (71.4%) 100.0 Czþ [AF4, C1, C2, C3, C4, C5, CP2, CP3, CP4, CP5, CPz, Cz,

F1, F2, F3, F4, F5, F6, F7, F8, FC1, FC2, FC3, FC4, FC5,
FC6, FCz, FP2, FT8, Fz, M1, O1, P2, P3, P4, P5, P6, P7,
P8, PO3, PO5, PO6, PO7, PO8, POz, Pz, T7, T8, TP8]b

aThe baseline prediction rate as calculated based on the number of cooperation/free riding behavioral decisions in each condition and result. The more
frequent strategy is presented as a proportion in the parentheses. bAny combination of the features from Cz and one of the other features reported
within the bracket has the same prediction performance.
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that rapid EEG and/or event-related potentials can distinguish differ-

ent chunks of processes (Khateb et al., 2000; Schnider et al., 2002). This

study showed that the prominent features that predict the next social

decision were separable at scales of 100 ms and 5 Hz in the temporal

and spectral dimensions, respectively. We suggest that the time–fre-

quency characteristics in this study reflect dynamically changing

mental states during complex social cognition.

This study has some limitations, and thus, the results should be

interpreted with caution. First, free riding is not a dominant incentive

in binary PGGs that have a threshold for a success or failure result

(mixed strategy). The repeated free riding and/or cooperation choices

in this study should depend more on coordinating with group mem-

bers (i.e. adaptive learning) compared with those of a linear PGG

(Houser and Kurzban, 2002; Bayer et al., 2010). Although the game

design falls within broad descriptions of PGG (Camerer, 2003), we

should take this limitation into account for generalized interpretation

of cooperation and free riding. Second, because the participants made

decisions for 10 repeated rounds in each condition, we had a limited

number of cases (samples) in certain conditions (e.g. in CondNG,

success was the dominant result; there were 220 and 14 cases of success

and failure, respectively). Thus, we should take this limitation into

account when interpreting the predictability of the feature combin-

ations. Third, reported neural predictors were restricted within

12–50 Hz frequency range that was determined by time–frequency ana-

lysis settings (wavelet). We have to note that the current results do not

rule out the existence of relevant low frequency EEG activations on

cooperation and free riding decisions (e.g. Babiloni et al., 2007; Cohen

et al., 2007). Finally, the spatial information of selected neural

features had low resolution due to the characteristics of the EEG

method. We used 64-channel EEG caps for the experiment and selected

the neural features from the electrode set. This study focused on the

time–frequency information that represented the motivations to co-

operate or free ride, but further source localization analysis might

provide additional spatial dissociation between cognitive and affective

motives.

To the best of our knowledge, this is the first EEG study to inves-

tigate neural predictors of free riding and/or cooperation behavior

using a PGG. We observed evidence of rapid initiation of decision-

making processes and monitored distinct neural features using SVMs

and feature selection criteria (UCP). The results suggest a method to

capture covert motivation in social decision-making within a group.

Furthermore, we would like to emphasize that further analyses on

selected feature patterns and their temporal dynamics would shed

light on the microstates of the rapid, complex decision-making pro-

cesses of both healthy populations and patients with neuropsycho-

logical impairments (Latchoumane et al., 2007, 2009, 2012).

Regarding practical uses, the short latency (less than 1 s) decoding of

underlying intentions with single-trial ERSPs could potentially be

applied to BCIs that assist paralyzed patients in expressing complicated

mental states (Birbaumer et al., 2008).

Fig. 3 Two-dimensional distribution of feature performances. To dissociate the features that only predicted decisions in the next round, the UCPs of the next round (nþ 1th round decision) were compared
with the UCPs of the previous round (inverse prediction; nth round decision). UCPs were measured using ERSPs at the result presentation phase (result of nth round). Features located to upper-left side of the
458 lines (green dashed line) showed better performance in predicting the next decision than in reflecting participants’ neural responses to their own decision from the previous round.
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