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Abstract

Ballistocardiography is a non-invasive measurement of the mechanical movement of the body 

caused by cardiac ejection of blood. Recent studies have demonstrated that ballistocardiogram 

(BCG) signals can be measured using a modified home weighing scale, and used to track changes 

in myocardial contractility and cardiac output. With this approach, the BCG can potentially be 

used both for preventive screening and for chronic disease management applications. However, 

for achieving high signal quality, subjects are required to stand still on the scale in an upright 

position for the measurement; the effects of intentional (for user comfort) or unintentional (due to 

user error) modifications in the position or posture of the subject during the measurement have not 

been investigated in the existing literature. In this study, we quantified the effects of different 

standing and seated postures on the measured BCG signals, and on the most salient BCG-derived 

features compared to reference standard measurements (e.g., impedance cardiography). We 

determined that the standing upright posture led to the least distorted signals as hypothesized, and 

that the correlation between BCG-derived timing interval features (R-J interval) and the pre-

ejection period, PEP (measured using ICG), decreased significantly with impaired posture or 

sitting position. We further implemented two novel approaches to improve the PEP estimates from 

other standing and sitting postures, using system identification and improved J-wave detection 

methods. These approaches can improve the usability of standing BCG measurements in 
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unsupervised settings (i.e. the home), by improving the robustness to non-ideal posture, as well as 

enabling high quality seated BCG measurements.

Index Terms

Ballistocardiogram; home monitoring; sensor informatics

I. Introduction

Home monitoring of cardiovascular health has gained a great deal of attention in the past 

decade. According to a report from the American Heart Association (AHA), almost 25% of 

all deaths in America are caused by heart disorders each year. The prevalance of heart 

disease is expected to rise in the coming years and 40.5% of Americans are projected to 

suffer from cardiovascular disorders by 2030 [1]; this would further increase the already-

skyrocketing costs of healthcare, and lead to a shortage in the number of healthcare 

providers per patient. There is thus a compelling need to disseminate the diagnostics and 

screening technologies from the centralized clinic to the homes of patients for increasing the 

accessibility and decreasing the overall cost of care.

Two archetypal examples of clinical problems requiring improved continuous monitoring 

capability are heart failure (HF) and hypertension. HF is a disorder where the heart cannot 

supply sufficient blood to meet the demand of the tissues and organs [2], [3] —accordingly, 

monitoring HF patients at home would require the ability to measure cardiac output and 

myocardial contractility. Hypertension is defined as elevated blood pressure above 140 

mmHg (systolic) and/or 90 mmHg (diastolic) [4], and would thus require the measurement 

of pressures. For such diseases and conditions related to the mechanical health of the heart 

and vasculature, there are few—if any—commercially available solutions for patients that 

are accurate and also convenient for serial measurements at home [5].

In the research domain, one measurement modality that has gained some interest recently for 

such applications is ballistocardiography: the measurement of the reactionary forces of the 

body to cardiac ejection of blood into the vasculature [6], [7]. The ballistocardiogram (BCG) 

signal has been measured using instrumented chairs [8]–[10], weighing scales [11]–[13], 

beds [14]–[16], and force plates [17], [18], all of which can potentially be integrated into 

patients’ homes. Additionally, researchers have demonstrated that the BCG signals contain 

clinically-relevant information regarding cardiac output (based on the rms power of the 

BCG [12]) and myocardial contractility (based on the R-J interval, the time delay between 

the electrocardiogram, ECG, R-wave and the BCG maximum peak, the J-wave [19], [20]).

In particular, our team has focused on the weighing scale form factor, which offers many 

potential benefits including (1) the fact that other sensors can be integrated into the same 

scale for multi-modal patient monitoring, (2) weighing scales are already prevalent in 

millions of households in the US, and (3) the sensors already inside of most electronic 

weighing scales are sufficiently sensitive for BCG measurement, thus reducing the potential 

barrier to translation into the commercial domain. Unfortunately, one disadvantage for the 

scale platform is that the subjects must stand still in an upright posture for the 
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measurements. In addition to a subject accidentally slouching for a measurement, it is 

possible that some subjects will have reduced physical strength, and thus the measurements 

must be taken in a seated position instead. Studies have noted that the BCG signal can be 

affected by posture, using various measurement hardware such as fiber optic sensors [21], 

[22]. However, these postural effects have not been studied in depth.

The objective of this paper is to (1) investigate the changes in the BCG signal and derived 

parameters under different postures and positions, and (2) demonstrate novel methods based 

on our recent work [23], [24] to improve the system performance for these other postures. 

We hypothesize a framework for understanding BCG measurement, and the effects of 

subject posture/position, as summarized in Fig. 1. Specifically, we focus on improving the 

estimation of R-J intervals from the ECG and BCG, as a surrogate measure of contractility 

[19], [20], and evaluate our results based on standard measurements of the pre-ejection 

period (PEP) from the impedance cardiogram (ICG) signals [25]–[27].

These novel methods can improve the usability of the BCG scale in unsupervised settings 

(i.e. the home), by improving robustness to non-ideal posture, as well as enabling high 

quality seated BCG measurements which would expand the available patient population.

II. Methods

A. Protocol

Data were collected from each subject in five different postures/positions, Pi, as illustrated 

in Fig. 2. Three standing and two seated postures were investigated. The first posture 

involved standing in an upright posture as delineated in previous studies [13], [19], [28], 

[29]. Two more standing postures were considered in which subjects were asked to stand in 

a slouched posture. The angle θS made by tangent to the thoracic spine (more specifically 

the tangent to the T2 – T4 vertebrae) with the perpendicular was measured in both positions. 

The last phase of the project involved two sitting positions and, in this case, both positions 

were specified by the angle θK made by the knee joint. Each subject was asked to keep his or 

her back in an upright position for the two seated postures. Thus the five postures considered 

in the study are specified below:

• Posture 1 (P1): Upright standing position θS ≈ 0°.

• Posture 2 (P2): Slightly slouched standing position θS = 20 ~ 40°.

• Posture 3 (P3): Heavily slouched standing position where θS = 40° ~ 60°

• Posture 4 (P4): Seated position where knee angle θK ≈ 90°

• Posture 5 (P5): Seated position where knee angle is θK = 60° ~ 80°

The standing upright posture provides the best coupling of vertical (head-to-foot) cardiac 

forces to the scale as shown in previous studies [7], [11]–[13]. Postures P2 and P3 were 

considered since they would simply represent the user accidentally taking measurements 

without standing completely upright or due to back problems. P4 represented the upright 

sitting condition and was considered since some patients are not able to stand still on the 

scale. Such seated BCG measurements have been considered in the literature [11], [30], but 
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this important comparison of signal quality and feature accuracy has not been conducted to 

date. Finally, the reason for including P5 in this study was to explore the increase in pressure 

wave reflections at the femoral bifurbication and how these reflections affect the BCG.

Data were collected from 13 subjects (12 male and one female, 26 ± 4 years, 75 ± 10 kg, 

177 ± 7.7 cm height) under a protocol approved by the Georgia Institute of Technology 

Institutional Review Board (IRB). In postures P1 – P3, the subjects were asked to stand on 

the BCG weighing scale; in postures P4 and P5, the BCG scale was placed on a flat solid 

stool and subjects were asked to sit on the platform. The ECG and ICG data were 

simultaneously captured along with the BCG data. In P1 and P4, each subject was asked to 

breathe normally in a resting state for 30 seconds, perform a Valsalva maneuver for 15 

seconds, and then remain still on the scale for 30 - 40 seconds [29], [31], [32]. In P2, P3 and 

P5, each subject was asked to breathe normally in a resting state for 30 - 40 seconds and no 

Valsalva maneuver was performed. The values of θS for slouched standing positions in the 

measured data for 13 subjects were θS = 35° ± 3° for P2 and θS = 52° ± 4.5° for P3. 

Similarly, for P5 the knee angle θK = 70° ± 3°.

B. Hardware Design

The ECG and ICG signals were measured using the BN-EL50 and BN-NICO wireless 

measurement modules (BIOPAC Systems, Inc., Goleta, CA), then transmitted wirelessly to 

the data acquisition system (MP150WSW, BIOPAC Systems, Inc., Goleta, CA) for 

subsequent digitization at 1 kHz. The BCG was measured using a custom analog amplifier 

as described in previous work [24].

C. Preliminary Data Processing

1) ECG, BCG & ICG signal processing—The ECG signal was passed through a finite 

impulse response (FIR) band pass filter (cut-off frequencies 2.5 - 40 Hz, Kaiser window) 

and the BCG and ICG signals through FIR filters (Kaiser window, cutoff frequencies 0.8 - 

15 Hz for BCG and 0.8 - 35 Hz for ICG). The R-peaks, Rr (r was the peak index), in the 

ECG signal were automatically detected with a QRS complex detection algorithm and used 

as fiduciary points for segmenting the BCG data: signals in Rr +600 ms frames or 

“heartbeats” following each R-peak were extracted over the entire data period and aligned to 

form a collection or an ensemble. Let  be the matrix that represented this collection for 

the j-th subject in posture k and each row of  was denoted by  and represented the l-

th sample of the m-th frame/heartbeat of the BCG signal (  and , where 

k ∈ [1, 2, …, 5], j ∈ [1, 2, …, J], J = 13 subjects, d = 600 samples and M represented the 

number of heartbeats/BCG frames for a given subject j in posture k). For the ICG data, again 

the R-peaks Rr from the ECG were used as reference points and the ICG signals were 

extracted from Rr + 500 ms for each subject in each posture to form an ensemble 

. Let the average of all rows in each of the BCG and ICG 

data matrices be denoted by bold letters  and , respectively.
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2) Parameter Extraction—The R-J intervals and PEP were calculated for each subject in 

all postures. The BCG and ICG heartbeats/rows of matrices  and  in the resting state 

were partitioned into sub-ensembles of 5 second periods. All the rows from the BCG or ICG 

data matrix in each 5 second period were averaged to form sub-ensemble averaged 

waveforms. Since the 15 second post-Valsalva period was also included in the data for P1 

and P4 for all subjects, the heartbeats from the post-Valsalva 15 second period were also 

divided into sub-ensembles.

The J-peak in the BCG ensemble averaged waveform was detected as the global peak in the 

first 400 ms portion of the signal. Apart from the R-J interval, the R-K and the R-I intervals 

were also calculated. However, the R-J interval measurement was a more consistent feature 

in the BCG signal and the J-wave was larger in amplitude than either the I- or the K-wave. 

Thus the J-peak was more easily identifiable as it was less corrupted by noise and motion 

artifacts. Additionally, the R-J interval had been shown in previous papers [13], [19], [29] to 

be correlated to the pre-ejection period both for subjects at rest and with the use of 

physiological perturbations.

PEP is defined as the time elapsed from the Q-point in the ECG to the B-point on the ICG 

signal. However, it is not always easy to detect the Q-point in the ECG and the B-point in 

the ICG. In our analysis, we used the R-peak in the ECG as a reference and for finding the 

B-point of the ICG, the ensemble averaged signal was filtered twice with a Savitzky Golay 

differentiator filter (21 taps) [19]. The peak of the differentiated signal was then selected as 

the B-point and PEP was estimated as the R-B interval.

D. Time Domain Posture-Induced Differences

To capture possible posture-induced differences in the time domain, we calculated for each 

subject and posture the root mean square (RMS) difference between each normalized BCG 

frame and its corresponding average  over the entire BCG data matrix. We interpreted 

this difference as an “error”. The normalization was simply a scaling factor calculated for 

each frame that minimized this RMS error. Because of this normalization, the RMS error 

quantified shape distortion that could not be corrected by a scaling factor. For the m-th 

unnormalized BCG frame  for subject j in posture k and average , the amplitude 

scaling factor am was calculated for each individual beat [28] by the formula

(1)

where R was the cross-correlation operator. The RMS error  between individual beats 

weighted by am and the average for that posture was then calculated by
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(2)

where l indicated the sample index. The RMS errors thus calculated by (2) for postures P2, 

P3, P4 and P5 for each subject were then normalized by division from the corresponding 

error in posture P1 for that subject. Let  represented this normalized error for j-th subject 

in posture k and let εk represented the array of errors for all subjects in posture 

. The mean (μεk) and the standard deviation (σεk) of εk were 

calculated for all postures.

E. Frequency Domain Posture-Induced Differences

The power spectral density (PSD) was estimated using the Discrete Fourier Transform 

(DFT) of BCG average  in each of the standing postures (P1, P2 and P3). The PSD 

estimates were interpolated to increase the resolution by four times. Let  denoted the 

PSD estimate, where ‘k’ denoted the posture (k ∈ [2, 3]), j represented the subject number 

and f represented the frequency index. The mean and the standard deviation of PSD for f = 0 

→ 14 Hz were calculated for each of the standing posture for all the subjects.

F. Methods for Improved Estimation of BCG Parameters

1) System Identification—The BCG signal from the weighing scale was believed to 

originate from cardiac ejection of blood. Let HWS be the transfer function for the system that 

represented a transformation between these central cardiac forces and the corresponding 

BCG signal on the weighing scale in the upright standing position. Also let  be the 

analogous functions in the slouched standing postures. The aim was to design a linear 

transformation that mapped the slouched standing posture BCG ensemble average to the 

good-posture BCG ensemble average assuming that there was no morphological change in 

cardiac forces between these postures, but only in the transfer function mapping these 

central forces to the peripheral BCG measurement site. The transformation could not be 

exact and hence, formed an estimator of the good posture BCG waveform, when the 

observation was the slouched-standing posture BCG waveform. In symbols, given , the 

transformation  produced the optimal estimate  in the form . A similar 

system identification approach had been demonstrated in our prior work for investigating the 

relationship between the wearable BCG and the weighing scale BCG [23], [24].

For every subject, two transformation functions were obtained converting the BCG signals 

in postures P2 and P3 to posture P1. Let  denoted the transformation from any posture i 

to posture k for the j-th subject. Fig. 3 shows the block diagram for the design part of the 

transformation function  and the analysis part which used these transfer functions for 

analyzing the improvement in estimates of BCG derived parameters. These transformation 

functions were obtained by training on the first 20 seconds of the BCG data using 5×2-fold 
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cross-validation [33]. In order to obtain a transformation  from posture i to posture k, the 

following procedure was adopted:

• The heartbeats in the first 20 seconds of the BCG data matrices  and  were 

randomly partitioned into two folds in each iteration of 5×2-fold cross-validation. 

Let u1 and u2 be ensemble averages of two folds from  and v1 and v1 from .

• Let u1 and v1 be the input and output data vectors for the training phase and u2 and 

v2 for the validation phase in one iteration of 5×2-fold cross-validation. The 

transformation functions were obtained by training and validation on ensemble 

averages.

• The length of the FIR filter was determined using a sweep of filter lengths from 1 

to 600 samples and number of samples before the R-peak in ECG and the values of 

these two parameters corresponding to the minimum error from cross validation 

were found.

• The coefficients for the FIR filter impulse response were then determined by least-

squares regression.

In general, if an input signal x is transformed in a linear system by a transfer function A, then 

the output signal y is given by

(3)

The Covariance Method [34] was used in this project for estimating the FIR filter 

coefficients. In the Covariance Method the matrix for linear system’s function A was 

composed of samples from the input data. The variable x then took the form of 1-D FIR 

filter coefficients. For the data variables defined earlier, the output signal y was made up of 

samples v1[l] and matrix A was composed of samples of the input data vector u1[l] while x 

had the filter coefficients , where l indicated the sample index. For a filter of order t, 

the explicit forms of y, x and A are given by

(4)

(5)

(6)
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The least-squares solution x̂ to (3) that minimizes the l2-norm of error in (7) is given by the 

expression in (8).

(7)

(8)

In order to avoid overfitting and inaccurate components in the solution provided by (8) due 

to mild noise, Tikhonov regularization [35] was used to improve accuracy. This involved 

penalizing the residual error by a regularization term δ in (7). The least-squares solution 

with Tikhonov regularization is given by (9) and (10).

(9)

(10)

The least-squares solution x̂, thus formed the FIR filter coefficients and the impulse 

response of the transformation function . Once these subject specific transformation 

functions were generated in the training phase, the remaining portion of the BCG data for 

each subject in P2 and P3, not processed in training phase, was filtered with . The R-J 

intervals were then estimated from 5 second filtered sub-ensembles and correlated with PEP.

2) Modified R-J Estimation using Polynomial Fitting—The J-wave amplitude and 

morphology for the seated BCG signals was significantly different from the standing 

measurements from the same subjects. Specifically, as found in previous studies, the seated 

BCG amplitudes overall were much lower than for the corresponding standing 

measurements from the same subjects. Accordingly, to improve the noise reduction 

performance of the ensemble averaging, we employed weighted averaging techniques as 

described in [36]. Additionally, we found that the J-wave could split into two smaller peaks, 

and thereby lead to peak detection errors. To mitigate this problem – which was only found 

in the seated BCG measurements for our dataset – we devised a simple algorithm for 

consistent J-wave peak detection based on low order polynomial fitting. The global peak p′ 

in the weighted ensemble averaged BCG waveform was detected as the highest peak 

between 150ms and 400ms portion of the waveform. The zero-crossings before and after p′ 

were determined and a polynomial of order 2 was fitted across the waveform between these 

zero-crossings containing p′. The highest peak in the fitted waveform was then detected as 

the J-peak and the R-J interval was estimated as the time period between the newly detected 

J-peak and the ECG R-peak.

3) Statistical Analysis—In order to analyze the improvement with the above two 

methods, a paired t-test was conducted on absolute values of residuals of PEP from the 
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regression line before and after the application of system identification or the polynomial 

fitting method. To remove the outliers in the linear model fitting the R-J interval to PEP 

from all subjects in the i-th posture, the data points for which either the PEP values or the R-

J intervals were beyond μPEP ± 2σPEP or μR–J ± 2σR–J were removed from the analysis. This 

was followed by the removal of the data points for which the squared Mahalanobis distance 

[37] was greater than . The reason for implementing this 2-step outlier detection was 

that Mahalanobis distance, which finds outliers in multivariate regression, depended on the 

joint mean of the multivariate data and was affected by one or two erroneous points 

occurring at the extremes. Since the paired t-test required equal number of data points, the 

union set of outliers were removed from the R-J intervals and PEP data points before and 

after the application of improvement methods.

III. Results & Discussion

A. Time & Frequency Domain Distortion Analysis

It was observed that the mean (μεk) and the standard deviation (σεk) of the normalized error 

εk exhibited an increasing trend across postures indicating more shape distortion in the 

measured BCG for slouched standing and seated postures. The slouched postures P2 and P3 

showed μεk of 0.85 and 1.1 with σεk of 0.25 and 0.5 respectively. The seated postures P4 

indicated more shape distortion than standing postures (με4 = 1.7 and σε4 = 1.1) while P5 

showed the most distortion (με5 = 2.5 and σε5 = 1.8). Fig. 4 shows the average PSDs and 

standard deviations for P1, P2 and P3 for all subjects. The plots indicated the appearance of 

an additional peak after the global peak in the power spectra of P2 and P3 beyond 6 Hz. The 

peak became more prominent in P3 indicating more distortion was present in BCG signal at 

higher frequencies for non-upright standing postures. These additional peaks indicated the 

appearance of other modes of vibration as the standing posture became more slouched. A 

similar effect had been observed in seated body vibrations in prior literature [38], [39].

B. PEP & R-J Interval Correlation

Correlation coefficients and linear regression were calculated between the R-J intervals and 

PEP for all subjects in each posture. Fig. 5 shows five correlation plots for all the standing 

and seated postures. The results corroborated the findings in [19] that standing upright 

posture (P1) gave the best correlation and best linear fit between PEP and the R-J intervals 

with a value of r2 = 0.72. The slightly slouched position P2 showed a correlation of 0.4 

while the heavily slouched position indicated a degraded performance. The seated position 

(P4) showed the second best results (r2 = 0.71) with modified R-J estimation. The method 

also provided good estimation for P5. The outliers, detected by the method explained earlier, 

were not shown in the correlation plots.

C. Improvement in Estimation of BCG Parameters

Two methods have been discussed to assess the improvement in estimation of BCG 

parameters. The system identification approach was used for slouched standing postures P2 

and P3. The system identification method improved correlation between the R-J intervals 

and PEP for P2 from 0.5 to 0.74 and this increase was statistically significant (p < 0.05). 
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However, for P3, there was no statistically significant increase in correlation as r2 went from 

0.5 to 0.49 after system identification.

The polynomial fitting method was used for improved estimation of BCG parameters in the 

two seated postures. Since no training or testing was done in this method, all the beats of 

BCG and ICG data matrices in the seated postures were available for analysis. The method 

increased r2 for P4 from 0.5 to 0.71 (p < 0.05) but did not yield any statistically significant 

improvement for P5 (r2 changed from 0.43 to 0.49).

IV. Conclusion & Future Work

We have shown in several ways that posture has a significant impact on the BCG signal and 

on the R-J interval’s correlation with the PEP (a known clinically significant marker for 

heart failure). These ways include showing posture-induced differences in the BCG signals 

in both the time and frequency domains. The PSD of the BCG frames in slouched-standing 

postures indicates the existence of more than one mode of vibration of the body caused by 

ejection of blood. In future work, these changes in the PSD can be used to automatically 

differentiate changes in physiology from changes in user posture. We further demonstrated 

that when the posture is non-ideal, the estimation of the R-J intervals can be improved by 

system identification or polynomial fitting based approaches. An important limitation of this 

study that should be noted is the relatively small sample size of only 13 subjects. 

Nevertheless, the trends are observed in all subjects, and statistically significant differences 

are observed. Another limitation is the use of linear modeling for estimating the transfer 

function mapping one posture to another.

Because this paper found that postural changes affect the BCG signal morphology, future 

work can focus on training machine learning algorithms to automatically identify —from the 

measured distortion in the time or frequency domain for the BCG —that the user is standing 

in a non-ideal posture. This will require the collection of larger datasets, including serial 

measurements taken over the course of weeks or months. Furthermore, once a non-ideal 

posture is detected, the mapping function trained on the first day can be employed to correct 

for the non-ideal posture and preserve the signal quality of the measured BCG. This can 

potentially lead to improved long-term monitoring accuracy for BCG signals in 

unsupervised settings. Future work should also focus on employing non-linear modeling 

techniques, such as Hammerstein-Wiener models, for obtaining the transfer functions. The 

simple methods for improvement presented in this paper could readily be implemented in an 

inexpensive embedded systems platform in real-time on the scale itself, thus potentially 

accelerating the transition of the technology to patients’ homes.
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Fig. 1. 
Block diagram illustrating the transfer function relating central cardiac (hemodynamic) 

forces to ballistocardiogram (BCG) signals measured with a modified weighing scale. The 

posture can both affect the source (via changes in angle) and system.
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Fig. 2. 
(a) Block diagram of the set up. (b) Sample waveforms for ECG and BCG in different 

postures. The R-peak in ECG is used as a reference point for the extraction of BCG 

waveforms in every heartbeat.
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Fig. 3. 
Block diagram of the system identification. HWS represented the transformation between 

heart’s mechanical action and BCG signal obtained from the scale in upright posture and 

 in slouched standing postures. The system was trained on extracted heartbeats from 

postures Pi and Pk. In the analysis part, the individual beats were transformed using , 

obtained from design step, followed by ensemble averaging and parameter estimation.
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Fig. 4. 
Average power spectrum with standard deviations for all subjects. (a) Upright standing 

posture P1. (b) Slightly slouched standing posture P2. (c) Heavily slouched standing posture 

P3.
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Fig. 5. 
Correlation linear regression plots for standing and seated positions. The plots for the seated 

BCG postures P4 and P5 involve R-J intervals estimation using polynomial fitting 

method.’N’ is the total number of data points obtained from all subjects in a posture in the 

study and ‘n’ represents the number of data points used in the correlation and regression 

analysis after outlier removal. The outliers were not included in analysis.
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