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Abstract

Endometriosis is a chronic, inflammatory disease characterized by the growth of endometrial 

tissue in aberrant locations outside the uterus. Neo-angiogenesis or establishment of new blood 

supply is one of the fundamental requirements of endometriotic lesion survival in the peritoneal 

cavity. IL-17A is emerging as a potent angiogenic and pro-inflammatory cytokine involved in the 

pathophysiology of several chronic inflammatory diseases such as rheumatoid arthritis and 

psoriasis. However, sparse information is available in the context of endometriosis. In this study, 

we demonstrate the potential importance of IL-17A in the pathogenesis and pathophysiology of 

endometriosis. The data show a differential expression of IL-17A in human ectopic endometriotic 

lesions and matched eutopic endometrium from women with endometriosis. Importantly, surgical 

removal of lesions resulted in significantly reduced plasma IL-17A concentrations. 

Immunohistochemistry revealed localization of IL-17A primarily in the stroma of matched ectopic 

and eutopic tissue samples. In vitro stimulation of endometrial epithelial carcinoma cells, Ishikawa 

cells and human umbilical vein endothelial cells with IL-17A revealed significant increase in 

angiogenic (VEGF, IL-8), pro-inflammatory (IL-6, IL-1β) and chemotactic cytokines (G-CSF, 

CXCL12, CXCL1, CX3CL1). Furthermore, IL-17A promoted tubulogenesis of HUVECs plated 

on matrigel in a dose-dependent manner. Thus we provide the first evidence that endometriotic 

lesions produce IL-17A and that the removal of the lesion via laparoscopic surgery leads to the 

significant reduction in the systemic levels of IL-17A. Taken together, our data shows a likely 

important role of IL-17A in promoting angiogenesis and pro-inflammatory environment in the 

peritoneal cavity for the establishment and maintenance of endometriosis lesions.
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Introduction

Endometriosis, one of the most prevalent causes of hysterectomy, infertility and chronic 

pelvic pain (1), is characterized by the growth of endometrial tissue at ectopic sites, 

including the peritoneal cavity. Among multiple factors involved in the complex 

pathophysiology of this disease (2), both a pro-inflammatory peritoneal environment and 

active neo-angiogenesis at the site of lesion development are thought to be integral to 

endometriotic lesion establishment and persistence. This notion is supported with the 

effectiveness of anti-inflammatory and anti-angiogenic drugs in minimizing pain and lesion 

size in mice and humans (3–5). Theorized to originate from menstrual material normally 

shed into the peritoneal cavity through the patent fallopian tube (6), the endometrial 

fragments, only in some women, initiate inflammatory response associated with tissue 

damage (7). This leads to the recruitment and activation of neutrophils and macrophages (8), 

which secrete and increase the concentrations of chemotactic and angiogenic cytokines such 

as CCL11 (9) and VEGF (10) in the peritoneal fluid. Indeed, the immune system of women 

who develop endometriosis is postulated to be abnormal, and the atypical activation of 

macrophages and subsequent recruitment of neutrophils (8), dendritic cells (11), T helper 

(12) and natural killer (NK) cells are suggested to play a crucial role in the pathogenesis of 

endometriosis (13, 14).

Interleukin (IL)-17A, a cytokine that was once believed to be primarily produced by T 

helper 17 (Th17) cells, is the most studied cytokine among the family of IL-17 cytokines. 

Since its discovery as a pro-inflammatory mediator (15), IL-17A has been recognized in its 

critical role in the promotion of disease progression and pathogenesis of autoimmune 

diseases (16). Furthermore, expression of IL-17A is associated with the pathogenesis of a 

variety of tumors, where it has been documented to exhibit both tumorigenic and anti-tumor 

effects depending on the tumor microenvironment (17). IL-17A mediates its action by 

binding to a heterodimeric complex of receptor composed of IL-17RA and IL-17RC for 

downstream cell signaling (18). Early in its discovery, majority of its production was 

thought to originate from Th17 cells; however further investigations have documented the 

expression of IL-17A from innate immune cells such as γδT (19–21), NK (22), neutrophils 

(16, 23) as well as mast cells (24), adding complexity to our understanding of the pleiotropic 

functions of this cytokine.

The pro-inflammatory nature of IL-17A was recognized in a seminal experiment conducted 

by Fossiez et al. (15) where rheumatoid synovial fibroblasts produced IL-6, IL-8, G-CSF 

and PGE2 in response to human recombinant IL-17A treatment. This effect was promptly 

abolished with the addition of anti-IL-17A monoclonal antibody. Since then, IL-17A has 

been extensively linked to the pathogenesis of chronic inflammatory diseases including 

rheumatoid arthritis and psoriasis (25). In addition, IL-17A promotes vascular remodeling of 

the airways in the mouse model of asthma via the recruitment of endothelial progenitor cells 
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to the allergen exposed airway (26). Furthermore, it confers tumor resistance to anti-VEGF 

therapy via induction and secretion of angiogenic and inflammatory factors such as Bv8 and 

IL-6 from tumor stromal cells (27). Recently, IL-17A was demonstrated to be involved in 

the promotion of ovarian cancer growth in mice via up-regulation of pro-angiogenic and 

inflammatory mediators from small peritoneal macrophages (21). Despite much 

advancement made in understanding the role of IL-17A in other disease pathogenesis, little 

is known regarding its role in endometriosis. So far, IL-17A has been documented to induce 

the production of IL-8 and COX-2 from endometriotic stromal cells, in addition to 

promoting proliferation of the cells (28). Furthermore, IL-17A concentration in the 

peritoneal fluid of women with endometriosis correlated with endometriosis disease severity 

and infertility of the patients (29). These reports clearly point towards the potential 

involvement of IL-17A in the pathogenesis of endometriosis that warrants further 

investigation.

Endometriosis is a chronic disease characterized by the elevation of pro-inflammatory 

cytokines in the peritoneal fluid. Concentrations of cytokines such as TNF-α, IL-6 and IL-8 

are increased in the peritoneal fluid and are augmented in production from activated 

peritoneal macrophages, which primarily contribute to the inflammatory milieu associated 

with pathogenesis of the disease. Furthermore, secretory factors from immune cells mediate 

vascularization of endometriotic lesions through both neo-angiogenesis stimulated by VEGF 

(30) and de novo vasculogenesis at the site of implantation through recruitment of bone-

marrow derived endothelial progenitor cells (EPCs) (31, 32). Emerging evidences from 

cancer and autoimmune literature suggest that IL-17A contributes to the neo-angiogenesis 

and perpetuates inflammatory responses (25, 33), but there are few reports investigating the 

role of IL-17A in the pathogenesis of endometriosis. Here we show that endometriotic 

lesions are capable of producing variable amounts of IL-17A, depending on the disease 

severity, and that systemic concentrations of IL-17A drop significantly in endometriosis 

patients after surgical removal of endometriotic lesions. In addition, we document the effects 

of recombinant IL-17A on the induction of pro-angiogenic, chemotactic, and growth 

promoting cytokines from EECCs, Ishikawa cells and HUVECs.

Materials and Methods

Ethics approval for human samples

Human eutopic endometrial, ectopic endometriotic tissue samples and plasma samples from 

endometriosis patients and normal eutopic endometrium and plasma samples from women 

without known pathologies were collected and stored after informed consent using approved 

protocols by the Institutional Review Committees at Greenville Health System, Greenville, 

SC, USA, University of North Carolina, Chapel Hill, NC, USA, and Ottawa General 

Hospital, Ottawa, ON, Canada. Normal endometrial tissue and ectopic endometriotic tissue 

sections embedded in paraffin were obtained from the Kingston General Hospital, Kingston, 

ON, Canada with informed consent from the patients. Ethics approval for this study was 

provided by the Health Sciences Research Ethics Board, Queen’s University, Kingston, ON, 

Canada.

Ahn et al. Page 3

J Immunol. Author manuscript; available in PMC 2016 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Human endometrium, endometriosis and plasma samples

Human eutopic endometrium, ectopic lesion tissue samples and plasma samples were 

obtained from Greenville Health Systems, Greenville, SC, USA after informed consent from 

patients between ages of 21 and 39 with confirmed endometriosis at the time of laparoscopic 

surgery. Patients received no hormonal therapy for minimal of 3 months prior to 

laparoscopic surgery, and for the duration of participation in the study. Patient 

characteristics including age, BMI, parity, and stage of endometriosis are provided in Table 

1. Eutopic endometrium samples from patients were obtained by Pipelle sampling and 

ectopic lesions were obtained during laparoscopic surgery by excision. Patients were 

consented for additional blood draws at the 2 week post-op visit and at 3 months. Upon 

collection, samples were snap-frozen in liquid nitrogen and stored in −80°C. All plasma 

samples obtained from the patients and healthy women were separated from peripheral 

blood and stored in −80°C.

Multiplex cytokine assay

To assess the concentration of IL-17A in human samples, a Bioplex Pro human cytokine 27-

plex assay (M50-0KCAF0Y, Bio-Rad Laboratories, Mississauga, Canada) was conducted on 

eutopic endometrial and ectopic endometriotic tissue plasma and peritoneal fluid samples 

from women with endometriosis as per kit instructions. Approximately 20 mg of 

endometriotic tissue samples or normal endometrial samples were placed in 1.5 mL 

microcentrifuge tubes containing protease inhibitor (1ul/0.01g of tissue, Sigma-Aldrich, St. 

Louis, MO, USA) with Tissue Extraction Reagent I (100ul/0.01g of tissue, Invitrogen Corp., 

CA, USA). The tissue was homogenized using a rotor-stator homogenizer on ice for 1 

minute and then centrifuged at 18,000 rpm for 15 min at 4°C. The supernatant was collected, 

and protein concentration measured using Pierce BCA Protein Assay Kit as per kit protocol 

(Pierce Biotechnology, IL, USA). The samples were normalized and stored at −80°C until 

later assessment. Plasma samples from healthy subjects were also included as control for the 

plasma samples from endometriosis patients. Briefly, the 96-well cell culture plate was 

coated with assay buffer and magnetic beads, followed by two wash steps using the wash 

buffer. Samples, blanks, and diluted standards were transferred onto the 96-well plate. The 

plate was then incubated in the dark at room temperature on shaker for 30 minutes. After 

three washes using the wash buffer, detection antibody was added to the plate for 30 minutes 

followed by a wash step. The plate was incubated with Streptavidin-Phycoerythrine for 

additional 10 minutes. Finally, the plate was washed before analysis using Bioplex 2000 

Suspension Array System (Bio-Rad Laboratories, Mississauga, ON, Canada).

IL-17A Immunohistochemistry on matched eutopic endometrium and ectopic lesions

Immunohistochemistry was performed on paraffin embedded sections of matched eutopic 

endometrium and ectopic lesion samples obtained from patients. The slides with tissue 

sections cut at 5µm were deparaffinized in Cytrisolv (Fisher Scientific, Ottawa, ON, 

Canada) and subsequent re-hydration in decreasing gradients of ethanol. Heat-induced 

antigen retrieval was conducted using sodium citrate buffer (0.01M, pH 6.0) heated to 95°C 

in a water bath. Endogenous peroxide activity was blocked using 3% H2O2, followed by 

incubation with 1% BSA to block non-specific binding. Sections were incubated with anti-
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human IL-17A rabbit polyclonal antibody (1:250 in 1% BSA/PBS, ab79056, Abcam, Inc, 

Cambridge, MA, USA) or isotype antibody as a negative control. After overnight incubation 

in a humidified chamber at 4°C, sections were incubated with biotinylated secondary 

polyclonal goat anti-rabbit IgG antibody (1:500, Dako, Glostrup, Denmark), stained with 

DAB chromogen (Dako, Glostrup, Denmark) then counter stained with Harris hematoxylin 

(Fisher Scientific, Ottawa, ON, Canada). The sections were dehydrated in increasing 

gradients of ethanol and Citrisolv, coversliped with Permount mounting media (Fisher 

Scientific, Ottawa, ON, Canada), then viewed under the microscope.

Cell culture

Endometrial epithelial carcinoma cells (EECCs, CRL-1671, ATCC, VA, USA) and 

HUVECs (200-05f, Cell applications Inc., San Diego, CA, USA), and Ishikawa Cells 

(99040201-1VL, Sigma-Aldrich, St. Louis, MO, USA) were incubated in a standard cell 

incubator at 37°C with 5% CO2. EECCs and Ishikawa cells were maintained in DMEM 

supplemented with 10% FBS and 1% penicillin and streptomycin (Sigma-Aldrich, St. Louis, 

MO, USA). HUVECs were maintained in All-in-one ready to use Endothelial Cell Growth 

Medium (211–500, Cell Applications, Inc., San Diego, CA, USA). All cell lines were grown 

in T75 cell culture flasks (Corning Inc., NY, USA) up to 70–80% confluence prior to 

experimental use.

WST-1 proliferation assay

EECCs and HUVECs were harvested with Trypsin-EDTA and seeded onto a 96-well tissue 

culture plate (Sarstedt, Inc. Newton, NC, USA) at 1.25×104 cells/well, followed by 

recombinant IL-17A stimulation at different concentrations (1, 5, 25,50, 100 ng/ml, R&D 

Systems, MN, USA) in triplicates. PBS was used as a control. Post 24 hour incubation, 

WST-1 cell proliferation reagent (Roche Diagnostics, Laval, QC, Canada) was added to 

each well for additional 2 hours at 37°C. Using spectrophotometer, absorbance at 450nm 

and 690 nm were measured. Optical density was calculated by subtracting absorbance at 

690nm from 450nm.

Propidium Iodide Cell Cycle analysis

EECCs were plated onto a 6-well plate (Sarstedt, Inc. Newton, NC, USA) at 5×105 cells/

well and were incubated with different concentrations of IL-17A in triplicates (25, 50, 

100ng/ml, R&D systems, MN, USA) and PBS control for 24 hours at 37°C with 5% CO2. 

Post treatment, cells harvested from the plate, pelleted and were fixed in 70% ethanol at 4°C 

overnight. Post fixation and centrifugation to pellet the cells, 1ml of propidium iodide 

(0.04mg/ml, BioShop Canada Inc. Burlington, ON, Canada) and RNase A (0.625mg/ml, 

Sigma-Aldrich, MO, USA) were added to each condition and incubated for 3 hours at 4°C in 

the dark. Beckman Coulter Cytomics FC500 (Beckman Coulter Inc., Mississauga, ON, 

Canada) was used to conduct single-color analysis.

Flow cytometric analysis for IL-17RA

After removal of the growth media from the flask, EECCs and HUVECs were harvested 

using Trypsin-EDTA, pelleted and washed with cell staining buffer (1% BSA, 0.1% sodium 
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azide in PBS). Approximately 1×105 cells were incubated with either mouse anti-human 

IL-17RA antibody conjugated with PE (1:50, FAB177P, R&D systems, MN, USA) or 

Mouse IgG1 isotype control conjugated with PE (1:100, IC002P, R&D systems, MN, USA) 

for 30 minutes in room temperature. Cells were fixed with ice cold 2% Paraformaldehyde in 

PBS for 15 minutes and were kept at 4°C prior to conducting flow cytometric analysis 

(Beckman Coulter Cytomics FC500, Beckman Coulter Inc., Mississauga, ON, Canada).

Cell culture supernatant cytokine analysis from EECCs, Ishikawa cells, and HUVECs 
treated with IL-17A

EECCs and Ishikawa cells were seeded at 5×105 cells/well onto 6 well plate in triplicate 

(Sarstedt, Inc. Newton, NC, USA) and stimulated with different concentrations of IL-17A 

(10, 25, 50, and 100ng/ml, R&D Systems, MN, USA) and PBS as control. HUVECs were 

seeded at 1×105 cells/well onto 6 well plate in triplicate (Sarstedt, Inc. Newton, NC, USA) 

and were incubated with different concentrations of IL-17A (5 and 50 ng/ml, R&D Systems, 

MN, USA) and PBS as control. The cells were incubated for 24 hours in a standard cell 

culture incubator at 37°C with 5% CO2. The conditioned media was collected and were 

analyzed using Human multiplex cytokine analysis (Eve Technologies Corporation, Calgary, 

AL, Canada).

Endothelial cell tubulogenesis assay

Tubulogenesis assay was conducted as per kit protocol (CBA-200, Cell applications Inc., 

San Diego, CA, USA). HUVECs grown to 70–80% confluence in T75 cell culture flask 

(Corning Inc., Corning, NY, USA) were trypsinized, pelleted and seeded onto matrigel 

coated ibidi µ-angiogenesis slide (Ibidi USA Inc., WI, USA) at a density of 5×103 cells/well 

with a complete medium containing different concentrations of IL-17A (1, 5, 50 ng/ml, 

R&D Systems, MN, USA) in triplicate. VEGF (50ng/ml, R&D Systems, MN, USA) and 

PBS was used as a positive and negative control respectively.

Statistical analysis

All statistical analysis was performed using GraphPad Prism 6.0. Ordinary one-way 

ANOVA with Tukey post-hoc test was used to analyze the results of WST-1 proliferation 

assay, supernatant cytokine analysis and tubulogenesis assay. Unpaired t-test was used to 

analyze the results of human tissue and plasma data and flow cytometric data. Data are 

represented as mean ± SD, unless otherwise stated in the figure. Values of p≤0.05 were 

considered statistically significant.

Results

IL-17A concentration in matched tissue sample and plasma sample from women with 
endometriosis is variable compared to healthy controls

In the present study, we evaluated the concentration of IL-17A in tissues and plasma 

samples from patients with or without endometriosis (Fig. 1A–C). Patients were further 

stratified into Stage I, II, III or IV of endometriosis as per the guidelines from American 

Society for Reproductive Medicine. We further grouped Stage I and II patient into Early and 

Stage III and IV into Advanced disease categories. Although statistically non-significant, we 
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observed a trend of increasing IL-17A concentration in the ectopic lesions compared to the 

matched eutopic endometrium obtained from same patients (Fig. 1A). In the plasma 

samples, IL-17A concentration was significantly increased in women with endometriosis 

compared to healthy controls (Fig. 1B). When the matched ectopic lesions and eutopic 

endometrium were stratified by disease severity, we observed persistent increase in IL-17A 

in ectopic lesion samples compared to eutopic endometrium across severity (Fig. 1C). Note 

that the concentration of IL-17A from normal endometrial tissues of disease-free women 

was less than 10pg/mL (n=4, 3.13±1.92 pg/mL, data not shown) and the concentration of 

IL-17A in the peritoneal fluid was negligible (n=24, data not shown).

The plasma concentration of IL-17A diminishes after laparoscopic lesion removal

The systemic concentration of IL-17A in women with endometriosis significantly declined 

after surgical removal of lesions, with mean IL-17A plasma concentrations of 395.1±93.20 

pg/ml pre-surgery and 228.6±78.33 pg/ml, 2 weeks after surgery (Fig. 2).

Immunolocalization of IL-17A in human eutopic endometrium and ectopic endometriotic 
lesions

In the extant literature, there are no reports of IL-17A immunolocalization in the eutopic 

endometrium or peritoneal endometriosis lesions. A single study showed localization of 

IL-17A positive cells in the stroma of an ovarian endometrioma lesion; however, expression 

in peritoneal lesions or matched eutopic endometrium was not examined (28). Here, we 

show the localization of IL-17A positive cells within the stroma and surrounding the 

vasculature in matched eutopic endometrium and ectopic lesion samples from women with 

endometriosis (Fig. 3A and B). Because of the heterogeneous nature of the ectopic lesions, 

we were unable to concretely conclude whether IL-17A staining was increased in ectopic 

lesions as compared to matched eutopic endometrium from same patients.

Interleukin-17 Receptor A is expressed in EECCs and HUVECs

IL-17RA, the primary receptor for IL-17A is reported to be ubiquitously expressed in 

different cell types in mouse (34) and in human (35). Before conducting functional assays 

with IL-17A, we first wanted to establish whether IL-17RA is present on EECCs and 

HUVECs to rationalize their responsiveness to IL-17A. Both EECCs and HUVECs were 

incubated with anti-IL-17RA antibody conjugated with PE at 4°C overnight. Flow 

cytometric analysis revealed that EECCs (Fig. 4A) and HUVECs (Fig. 4B) indeed express 

IL-17RA on the cell surface, which suggests their capacity to specifically respond to IL-17A 

stimulation.

IL-17A does not induce proliferation in EECCs or HUVECs

To investigate whether IL-17A exhibit mitotic effect on epithelial and endothelial cells, we 

incubated EECCs (Fig. 5A) and HUVECs (Fig. 5B) with different concentrations of 

recombinant IL-17A and PBS control. After 24 hours of incubation at 37°C, we did not 

observe any significant difference in proliferative capacity compared to the PBS treated 

wells on either cell line. Therefore, IL-17A does not directly induce mitosis on the EECCs 

or HUVECs in vitro. To determine whether recombinant IL-17A would induce apoptosis in 
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EECCs, we performed propidium iodide (PI) flow cytometric assay to determine DNA 

abundance in EECCs treated with IL-17A (25, 50, 100ng/ml) and PBS control. We did not 

observe any differences between IL-17A treated and PBS control groups (data not shown). 

This further strengthens the notion that IL-17A may not directly have proliferative or 

apoptotic effects of epithelial and endothelial cells.

IL-17A induces the production of chemokine and angiogenic cytokines from EECCs

IL-17A is known to induce a variety of cytokines from different tissue types with pleiotropic 

downstream effects. We wanted to investigate the cytokine profile of EECCs when induced 

with varying concentration of IL-17A. Stimulation of EECCs with IL-17A (10, 25, 50, 

100ng/ml) led to the significant increase in the production of angiogenic and chemotactic 

cytokines, namely VEGF, PDGF-AA, CXCL12 and G-CSF (Fig. 6A–D respectively). The 

cytokine profile suggests a potential involvement of IL-17A in mediating neo-angiogenesis 

and recruitment of lymphocytes and bone-marrow derived cells to the site of lesion 

development. In earlier studies, we (31) and others (32) showed that CXCL12 contributes to 

the recruitment of endothelial progenitor cells at the endometriotic lesions and aid neo-

angiogenesis.

IL-17A induces the production of pro-inflammatory cytokines and chemokines from 
HUVECs

Similar to EECCs, different concentrations of IL-17A (5 and 50ng/ml) induced the 

production of pro-inflammatory cytokines and chemokines from HUVECs, namely IL-1α, 

CXCL1, IL-6 and CX3CL1 (Fig. 7A–D, respectively) in a dose dependent fashion. These 

cytokines are well known for their potent pro-inflammatory actions. This data suggests the 

ability of IL-17A to regulate the expression of pro-inflammatory, angiogenic cytokines and 

chemokines in the peritoneal environment.

IL-17A induces the production of pro-inflammatory cytokines from Ishikawa cells

In the endometriosis literature, EECCs and Ishikawa cells have been widely used to 

understand molecular mechanisms involved in the pathogenesis of endometriosis. We 

wanted to establish how Ishikawa cells would respond to IL-17A stimulation. Here we 

report that stimulation of Ishikawa cells with different concentrations of IL-17A lead to 

increased expression of pro-inflammatory and chemotactic cytokines in a dose dependent 

manner, namely IL-1β, IL-8, IL-9, and CCL11. (Fig. 8A–D, respectively). It is well 

described in literature that IL-1β, IL-8, and CCL11 are increased in concentration in the 

peritoneal fluid of women with endometriosis and are thought to contribute to the 

pathogenesis of the disease.

IL-17A promotes tubulogenesis from HUVECs in a dose dependent fashion

The endothelial tube formation assay is a fast, quantifiable method for measuring in vitro 

angiogenesis and is a standard method used to investigate the effects of an angiogenic 

stimulant or inhibitor on endothelial cells. To investigate whether IL-17A can induce direct 

tubulogenesis, HUVECs seeded on a coat of matrigel were treated with different 

concentrations of IL-17A in complete endothelial cell growth medium for 16 hours at 37°C 
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prior to the analysis of tubulogenesis, unlike other methods where endothelial cells are 

serum starved prior to tubulogenesis assay (26). Our data showed that IL-17A induces 

tubulogenesis of HUVECs on matrigel in a dose dependent manner (Fig. 9A and B), 

suggesting that IL-17A is capable of inducing direct tubulogenesis of endothelial cells in 

vitro.

Discussion

Interleukin (IL)-17A has been implicated in several chronic, inflammatory and autoimmune 

disorders; however its association with the pathogenesis of endometriosis has not previously 

been well described. We provide the first evidence that endometriotic lesions produce 

IL-17A protein in variable amounts depending on the stage of the disease. Traditionally, 

IL-17A was thought to be produced only by Th17 cells; however, recent reports suggest that 

variety of cell types produce IL-17A including stromal cells, fibroblasts, and endothelial 

cells (34). Immunohistochemical analysis provides further evidence that IL-17A is 

expressed by the endometriotic lesions, but the complexity and heterogeneous nature of the 

endometriotic lesions precludes identification of the specific cell types. Strikingly, we 

demonstrated significant decline in plasma concentration of IL-17A after surgical removal 

of endometriotic lesions. These findings strongly suggest that IL-17A may be a contributory 

factor to the inflammatory peritoneal milieu associated with endometriosis. The association 

between the removal of the lesion and decrease in IL-17A further suggest the role of the 

ectopic lesion as a potential reservoir of IL-17A, or the removal of the lesion simply leads to 

the diminishment in the pro-inflammatory environment, where IL-17A is a component that 

mediates the pro-inflammatory status. It is likely that, with the removal of the lesion, the 

tissue resident Th17 cells, and other potential producers of IL-17A are also removed, 

thereby contributing to the significantly lowered concentration of IL-17A detected in the 

peripheral blood.

The source of IL-17A can be speculated by analyzing the data available on the peritoneal 

fluid of women with endometriosis. If the main source of IL-17A is from peritoneal fluid 

resident immune cells, the concentration of IL-17A in the peritoneal fluid will be elevated. 

Zhang et al. (29) documented elevated concentration of IL-17A in the peritoneal fluid in 

minimal or mild endometriosis as compared to severe disease, ranging between 5–6 pg/ml. 

This study did not find a significant difference in the peritoneal fluid concentration of 

IL-17A between women with endometriosis and without disease. On the contrary, we could 

not detect measurable levels of IL-17A in the peritoneal fluid from women with 

endometriosis (n=24, data not shown). Since we show that the removal of the lesion led to 

the significant decrease of IL-17A in the plasma, the effect of removal likely involves 

changes within the systemic immune system. It is possible that, unlike other 

proinflammatory cytokines, IL-17A is primarily produced by tissue resident immune cells, 

and as such may not be detectable in the peritoneal fluid. To clarify these findings, we need 

to establish whether IL-17A positive, tissue-resident immune cells in women with 

endometriosis are indeed the source of IL-17A in this disease.

Endometriosis is a disease mediated by inflammatory and angiogenic peritoneal 

environment. Using cell lines well established in the endometriosis literature, we document 
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the unique cytokine signatures induced by IL-17A in EECCs, Ishikawa cells and HUVECs. 

In particular, IL-17A induced production of chemotactic and angiogenic factors including 

G-CSF, VEGF, CXCL12, and IL-8 from EECCs and Ishikawa cells. In addition, IL-17A 

induced the production of chemotactic and pro-inflammatory cytokines such as CXCL1, 

CX3CL1 and IL-6 from HUVECs. Taken together, our data suggests that IL-17A may be 

involved in the orchestration of a paracrine network of cytokines between the adjacent cells 

that leads to the promotion of angiogenesis and inflammation in the peritoneal cavity. 

Specifically, our data suggests that IL-17A has the potential to enhance vascularization of 

the lesion through VEGF and IL-8 mediated pathways. Evidence for de novo vasculogenesis 

at endometriosis lesions has been previously suggested by a report of the recruitment of 

EPCs to the lesion site via a CXCL12 mediated pathway (36).

IL-17A may also play a crucial role in the promotion of inflammation via the recruitment of 

immune cells by inducing the production of chemokines such as G-CSF, CCL11, CXCL1 

and CX3CL1 from the endometriotic lesion. For instance, IL-17A-induced CX3CL1 may 

play a critical role in the mobilization of pro-inflammatory monocytes and other immune 

cells into the lesion. CX3CL1 is both an adhesion molecule and chemotactic cytokine for T 

cells and monocytes that acts by adhering and immobilizing the cells to the endothelial cell 

surface (37, 38), and whose production by HUVECs can be induced by IFN-γ (39). Thus, 

IL-17A may not only initiate the process of inflammation in endometriosis, but also sustain 

it through the indirect mobilization of pro-inflammatory immune cells by inducing the 

production CX3CL1 from the endothelial cells of the lesion. Taken together, the data 

suggests a potential therapeutic effect of IL-17A blockade in endometriosis. Decoding the 

paracrine network established between different cell types in the lesion will enhance our 

understanding of the mechanisms employed by IL-17A in establishing the pro-inflammatory 

and pro-angiogenic environment in endometriosis.

Current research suggests inherent molecular differences in eutopic endometrium of women 

with endometriosis that allows the menstrual exudate to escape immunesurveillance and 

develop into ectopic foci in the pelvic cavity. In addition, the immune system of women 

with endometriosis behaves curiously in the presence of endometrial fragments. As such, the 

pathogenesis of endometriosis may be two-fold: women with endometriosis have 

endometrial cell dysfunction that stimulate aberrant innate and adaptive immune responses 

towards the endometrial fragments found in ectopic locations, allowing for the fragments to 

survive and implant to grow into endometriosis. These immune cells are not only producing 

increased amount of pro-inflammatory and growth promoting cytokines, but also exhibit 

diminished cytotoxicity/adaptive responses towards the fragments. Such immune cell 

activity is reflected in the inflammatory milieu known to be associated with the peritoneal 

environment of endometriosis. We hypothesize that the immune cells would be the major 

producer of IL-17A, which trigger other cells in the vicinity that express its receptor to make 

cytokine that are typically found in endometriosis environment.

In literature, IL-17A is shown to promote direct endothelial cell tubulogenesis in vitro (26, 

40). Here, we also show direct effect of IL-17A in promoting tubulogenesis of HUVECs. 

Typically other studies use serum starved media on matrigel to study the angiogenic effect 

of IL-17A. In this study, we opted to use complete growth media supplemented with growth 
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factors and FBS. The rational for using the complete endothelial cell growth media for our 

experiment is to achieve the similar angiogenic environment of peritoneal fluid that bathes 

endometriotic lesions in the peritoneal cavity. This allows us to elucidate if the presence of 

IL-17A, in addition to other growth factors, would elicit an additive effect in driving 

tubulogenesis. This method also allows our data to be translatable to in vivo situation as 

endometriotic lesions are exposed to growth promoting cytokines in the peritoneal fluid.

Overall, the limitation of the current study is inherent in endometriosis research in general. 

To conduct proper interpretation and comparison of data, the tissue samples between 

patients and controls must be matched in menstrual stage, disease stage, and age of the 

individual. In addition, the medical history of individuals and therapeutic regimens needs to 

be taken into account to consider the effect of estrogen and progesterone on the disease 

state. The analysis is further complicated by the complexity of endometriosis which comes 

in multiple stages and phenotypes. Furthermore, only old-world primate species, including 

humans, develop spontaneous endometriosis, increasing the complexity of using animal 

models. Finally, both the diagnosis and staging of endometriosis depends upon surgery, 

making it difficult to study and establish true control subjects. For all these reasons, 

understanding of the disease remains rudimentary and simple classifications lack biological 

uniformity. As such, wide variations between studies are observed, including cytokine 

concentrations in the peritoneal fluid. Despite these issues, this study showing the significant 

decrease in the plasma concentration of IL-17A post laparoscopic removal of the 

endometriotic lesion, coupled with the ability of IL-17A to induce a myriad of cytokines 

from stromal, epithelial and endothelial cells strongly suggests its potential contribution to 

endometriosis pathogenesis. Further research is required to identify the source and location 

of IL-17A in endometriosis to advance our understanding of the specific role(s) IL-17A may 

play in the pathogenesis of endometriosis.
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Figure 1. 
IL-17A expression in tissue and plasma samples. (A) Matched eutopic endometrium (n=14, 

23.0±3.84pg/ml) and ectopic lesions (n=14, 29.77±1.97pg/ml) (B) Plasma samples from 

women without (n=7, 72.90±18.94pg/ml) and with (n=17, 499.4±116.4pg/ml) 

endometriosis. IL-17A levels were significantly higher in women with endometriosis 

compared to healthy controls (*p<0.05). (C) IL-17A concentration in matched eutopic 

endometrium and ectopic lesions distributed by disease severity following ASRM staging 

criteria (early denotes Stages I-II, and advanced denotes Stages III-IV). All data are 

represented as mean ± SEM.
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Figure 2. 
IL-17A concentration in plasma of women (n=10) undergoing laparoscopy surgery for the 

removal of endometriosis. IL-17A concentration was measured from the patient prior to 

undergoing surgery and 2 weeks post-surgical visit to the clinic. The concentration of 

IL-17A diminishes significantly in the peripheral blood of women with endometriosis after 

lesion is removed (*p=0.0016).
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Figure 3. 
IL-17A positive cells are detected in the matched eutopic (A) and ectopic lesion (B) samples 

from women with endometriosis. Immunohistochemistry images are representative of 5 

matched tissue samples immunostained with anti-human IL-17A. 200× magnification with 

digitally magnified inlet; scale bar represents 100µm.
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Figure 4. 
IL-17RA is expressed on EECCs and HUVECs. EECCs (A) and HUVECs (B) were stained 

with either PE conjugated mouse anti-human IL-17RA or PE conjugated Mouse IgG isotype 

control in room temperature. On average 65.2±3.9% of EECCs stained for IL-17RA whereas 

58.1±14.6% cell surface staining was seen for HUVECs. Representative of three separate 

experiments. *p<0.05 compared to isotype.
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Figure 5. 
WST-1 proliferation assay indicate that IL-17A does not induce proliferation of EECCs and 

HUVECs in vitro. (A) EECCs were treated with different concentrations of IL-17A (1, 5, 

25, 50 and 100 ng/ml) or PBS control to assess the effect of IL-17A on proliferation. (B) 

HUVECs were treated with different concentrations of IL-17A (1, 5, 25, 50 and 100 ng/ml) 

or PBS control to assess the effect of IL-17A on proliferation. VEGF (10, 20, 50 ng/ml) was 

used as a positive control. Three separate WST-1 proliferation assay were conducted on both 

(A) and (B) as per standard protocol.
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Figure 6. 
IL-17A induces production of chemokine and angiogenic cytokines from EECCs. 

Endometrial epithelial carcinoma cells (EECCs) were plated onto a 96-well cell culture plate 

in triplicate at a density of 5×105cells/well and incubated with different concentrations of 

IL-17A (10, 25, 50, 100ng/mL) for 24 hours at 37°C with 5% CO2. The conditioned 

supernatants of EECCs were collected and screened for cytokine expression from which 

PDGF-AA, VEGF, CXCL12 and G-CSF showed statistical significance. *p < 0.05 

compared with PBS.
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Figure 7. 
IL-17A induces the production of pro-inflammatory cytokines and chemokines from 

HUVECs in a dose dependent manner. HUVECs were plated onto a 6-well plate in triplicate 

at a density of 1×105 cells/plate and were incubated with different concentrations of IL-17A 

(5 and 50 ng/ml) for 24 hours in a standard cell culture incubator at 37°C with 5% CO2. 

Conditioned supernatants were collected and screened for cytokine expression from which 

IL-1α, CXCL1, IL-6, CX3CL1, and G-CSF (A-E, respectively) showed statistical 

significance. *p<0.05 compared with PBS.
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Figure 8. 
IL-17A induces production of chemokine, angiogenic and pro-inflammatory cytokines from 

Ishikawa cells. Ishikawa cells were plated onto a 96-well cell culture plate in triplicate at a 

density of 5×105cells/well and incubated with different concentrations of IL-17A (5 and 50 

ng/mL) or PBS control for 24 hours at 37°C with 5% CO2. The conditioned supernatants of 

each treatment were collected and screened for cytokine expression from which IL-1β, IL-8, 

IL-9 and CCL11 showed statistical significance. *p < 0.05 compared with PBS.
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Figure 9. 
IL-17A promotes in vitro tubulogenesis in HUVECs. (A) HUVECs were plated on Matrigel 

at 5×103 cells/well using Ibidi µ-slide angiogenesis plate (Cat. #81506) in triplicate per 

treatment. VEGF (50ng/ml) and PBS were used as a positive and negative control, 

respectively. Scale bar represents 10µm. 150× magnification using a confocal microscope 

(Quorum Wave Effects Spinning Disc Confocal, Queen’s University Cancer Research 

Institute Imaging Facility) (B) Total length of branches in the field of image was measured 

using ImageJ Angiogenesis Analyzer Macro with HUVECs phase contrast setting. *p<0.05 

compared with PBS.
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Table 1

Endometriosis study patients and healthy control subject characteristics

Parameters Endometriosis Control

Number of patients participated in study n = 24a n = 10

Age (years) 26.7 ± 7.6 27.3 ± 5.5

BMI (kg/m2) 25.3 ± 6.1 22.5 ± 2.4

Parity 25%b 20%c

Stage of endometriosis

Stages I–II n = 16

Stages III–IV n = 8

a
patients on oral contraceptive therapy, progestins, gonadotrophin releasing hormone agonist/antagonist, aromatase inhibitors, or any other 

medications used towards the management of endometriosis during the study were excluded.

b
6 out of 24 endometriosis patients were parity 1 ; all other patients were nulliparous.

c
2 out of 10 control subjects were parity 1; all other control subjects were nulliparous.

± Standard deviation
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