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Introduction

Obstructive sleep apnea (OSA) is a disorder characterized 
by intermittent reduction of breathing due to complete or 
partial occlusion of the upper airway during sleep (1). The 
prevalence of OSA has been rising over the last several 
decades in part due to the obesity pandemic. It is estimated 
that 13% of men and 6% of women have moderate 
to severe OSA defined as an apnea-hypopnea index  
(AHI) ≥15/hour (2).

First developed in the early 1980’s (3), continuous 
positive airway pressure (CPAP) has become established 
as the treatment of choice for OSA (4). CPAP consists 
of a mask through which airflow is delivered by a blower 
(Figure 1). This servo-controlled fixed pressure is designed 
to overcome the tissue forces tending to collapse the upper 
airway thereby stenting the airway open. Because of this 
concept, CPAP is commonly referred to as a ‘pneumatic 
splint’ (Figure 2) (3).

CPAP as a treatment of OSA symptoms

A large literature exists demonstrating the efficacy of 
CPAP in treating OSA symptoms. Snoring, a very common 
presenting complaint, represents turbulent airflow caused by 
upper airway narrowing (6). Snoring can be bothersome to 
the bed partner adversely impacting their sleep quality and 
can lead to a loss of intimacy when it causes the patient and 
partner to sleep apart. In addition, vibration of the carotid 
arteries due to snoring may theoretically increase stroke 
risk independent of airway obstruction or hypoxemia (7). 
By preventing airway collapse/vibration, CPAP eliminates 
snoring (8). As a result, CPAP has been shown to improve 
sleep quality in the bed partner (9). Similarly, evidence 
suggests CPAP can reduce other nocturnal symptoms 
such as gasping or choking, nocturnal awakenings, and  
nocturia (10).

Another cardinal symptom of OSA is excessive daytime 
sleepiness (11,12). Randomized controlled trials have 
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consistently demonstrated that CPAP improves sleepiness 
as assessed both objectively and subjectively (13). Compared 
to sham CPAP, one large meta-analysis found CPAP 
reduces sleepiness on the Epworth Sleepiness Scale (ESS) 
by an average of 4 points (13). Studies suggest that even in 
mild OSA associated with sleepiness, CPAP can improve 
symptoms (14). A major consequence of excessive daytime 
sleepiness is motor vehicle collisions. Observational studies 
suggest that CPAP therapy improves performance on 
driving simulator tasks (15), and CPAP therapy is associated 
with a decline in motor vehicle accident rate (16).

Another symptom commonly attributed to OSA is 
depressed mood. Results of clinical trials assessing the 
impact of CPAP on mood have been mixed with both 
positive and negative results. A limitation of the literature 
has been the lack of studies focusing on OSA patients 
with depressed mood at baseline (13). OSA may also 
affect cognitive function; however, the Apnea Positive 
Pressure Long-term Efficacy Study (APPLES), the largest 
randomized trial in OSA done to date, did not demonstrate 
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Figure 1 Representative photo of CPAP in place on a mannequin. 
(A) CPAP blower unit which creates pressure gradient; (B) CPAP 
tubing which transmits pressure to the mask; (C) CPAP mask 
which is applied firmly to the patient and provides positive pressure 
to the upper airway. CPAP, continuous positive airway pressure.

Figure 2 Effect of positive airway pressure on cross sectional upper airway anatomy. (Schwab et al., AJRCCM, 1996; reprinted with 
permission of the American Thoracic Society. Copyright© 2014 American Thoracic Society) (5).
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any sustained improvements in cognitive function despite 
detailed testing in multiple domains. Criticisms of this trial 
were the large number of dropouts and that the enrolled 
population had normal cognitive function at baseline (17).  
Whether CPAP improves function or prevents decline 
in those with cognitive impairment at baseline is unclear, 
although a small randomized trial in patients with 
Alzheimer’s dementia suggested potential benefits (18,19).

Furthermore, CPAP has consistently been shown to 
produce improvements in OSA-specific quality of life 
measures (20,21). However, when assessed using global 
quality of life measures such as the 36-Item Short Form 
Health Survey (SF-36), a meta-analysis of eight studies 
suggests the impact of CPAP on global quality of life is 
relatively small, with the greatest benefit in the domains of 
physical function, general health, and vitality (13).

CPAP to improve long term outcomes

In addition to symptoms, OSA is associated with a host 
of cardiovascular risk factors and adverse outcomes 
including hypertension, stroke, and heart failure, leading 
many clinicians to recommend treatment of OSA even 
in asymptomatic patients. Among the OSA treatments 
available, CPAP has the strongest evidence for a beneficial 
cardiovascular effect (22-30).

OSA has been well established as an independent risk 
factor for hypertension (31,32). Randomized trials show 
a small but consistent effect of CPAP therapy in lowering 
blood pressure. Based on a large meta-analysis, CPAP 
lowers systolic blood pressure (SBP) by 2.5 mmHg and 
diastolic blood pressure (DBP) by 1.8 mmHg (33). Of 
note, increased CPAP adherence predicts greater blood 
pressure reductions. In one trial, SBP and DBP fell  
by <1.5 mmHg in those using CPAP ≤5.65 hours per 
night, but fell by 3.7 and 5.6 mmHg respectively in 
those with >5.65 hours of usage (22). Some studies have 
found minimal to no effectiveness of CPAP therapy 
on blood pressure and other vascular measures in non-
sleepy adults (22,34-36). However, a meta-analysis 
using individual patient data from these four studies 
demonstrated improvement in DBP (−1.4 mmHg)  
in those using therapy for >4 hours/night. These data 
would suggest that the lack of effect may be secondary to 
non-adherence, but biological variations in susceptibility to 
OSA consequences may also be important (37). It has also 
been postulated that the blood pressure response to CPAP 
may be greatest in those with resistant hypertension as a 

small trial reported 6.5±3.3 and 4.5±1.9 mmHg drops in 
daytime SBP and DBP respectively (38). However, a larger 
trial found the 24-hour mean arterial pressure reduction 
was only 3.1 mmHg, similar to the magnitude in other 
hypertension studies (39).

In addition to hypertension, OSA is also independently 
associated with other components of the metabolic 
syndrome such as impaired glucose tolerance (40) and 
dyslipidemia (41,42). In clinical trials, CPAP has not been 
shown to improve fasting glucose in normoglycemic 
patients but has improved measures of insulin resistance 
on challenge testing (43-45). In a trial of patients with 
impaired glucose tolerance at baseline and moderate to 
severe OSA, CPAP did not improve glucose tolerance 
overall but there was evidence of improvements in post-
hoc exploratory analyses among those with severe OSA at 
baseline (46). Finally, a small trial among patients with type 
2 diabetes showed no improvement in glucose control with 
CPAP therapy (47). Regarding lipid levels, trials have been 
consistently negative in demonstrating an improvement 
in fasting lipid levels with CPAP (43,48,49). However, a 
small trial suggested 24-hour levels of triglycerides improve 
with CPAP therapy due to improvements in post-prandial 
levels (50). Several trials have assessed the impact of CPAP 
on visceral fat. Overall, these studies have not shown an 
impact of CPAP on visceral fat mass (45,51,52). However, 
there does appear to be an effect of CPAP on weight such 
that CPAP therapy is associated with a small but consistent 
increase in weight (53-55). Some have suggested this 
finding is due to reduced work of breathing at night though 
others have argued this observation represents an increase 
in muscle mass due to improvements in growth hormone 
function (56). Another possibility is that CPAP restores 
normal social activities which often involve caloric intake 
(e.g., dinner with spouse, beers with friends) leading to 
weight gain.

Data from the Sleep Heart  Health Study have 
demonstrated between OSA and incident cardiovascular 
disease including stroke, coronary artery disease, and 
heart failure (25,29). The relationship of CPAP to stroke 
prevention remains unclear, but among stroke survivors 
with OSA, CPAP improves neurologic and motor 
recovery after stroke, delays appearance of cardiovascular 
events, and may prevent cardiovascular events (57,58). 
In observational studies, CPAP users experience a lower 
incidence of fatal and non-fatal coronary events compared 
to non-users (23,27). A large randomized trial conducted 
by the Spanish Sleep and Breathing Network did not 
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demonstrate a reduction in the combined endpoint of 
incident hypertension and cardiovascular events in people 
with asymptomatic OSA, although this trial may have been 
underpowered (22). Several larger randomized trials are 
currently underway to address more definitively the impact 
of CPAP on cardiovascular event risk. These include the 
Sleep Apnea Cardiovascular Endpoints (SAVE) study, 
the Randomized Intervention with CPAP Treatment in 
Coronary Artery Disease and Sleep Apnea (RICCADSA) 
trial, and the Continuous Positive Airway Pressure in 
Patients with Acute Coronary Syndrome and Obstructive 
Sleep Apnea (ISAACC) trial (59,60).

In short term trials, CPAP has been shown to improve 
left ventricular ejection fraction in patients with OSA and 
systolic heart failure (61,62). In patients with OSA and heart 
failure with preserved ejection fraction, CPAP use improves 
diastolic function (63). In addition, observational studies 
suggest CPAP use in OSA and heart failure is associated 
with a lower risk of death and hospitalization (64,65). In 
terms of pulmonary hypertension, a small randomized 
crossover trial found CPAP led to a 4.9 mmHg reduction in 
pulmonary artery systolic pressure (66). A number of studies 
have also evaluated the role of CPAP in the prevention of 

atrial fibrillation. Observational studies have demonstrated 
that patients with treated OSA have approximately half 
the rate of recurrent atrial fibrillation following ablation 
compared to those with untreated OSA (67-69). However, 
because these results may be due to fundamental differences 
predicting adherence (“healthy user effect”), randomized 
studies in this population are needed.

Observational studies suggest that people with OSA also 
may have higher rates of incident cancer and cancer-related 
mortality (70,71). Clinical outcome data suggest individuals 
who use CPAP may have lower mortality compared to those 
who are untreated (72,73).

Interventions to improve adherence

Although CPAP is established as a highly efficacious 
treatment for OSA, its effectiveness has been limited by 
poor adherence. Users often experience nasal discomfort, 
congestion, mask leak and claustrophobia which lead to 
variable levels of long term compliance ranging from 46% 
to 85%, depending on how compliance is defined (74).  
Although adherence has been arbitrarily defined as usage 
for >4 hours/night more than 70% of nights for the 
purposes of insurance reimbursement in the United States, 
there does not appear to be a clear threshold above which 
adverse effects of OSA reverse (75). In contrast, there is a 
fairly linear dose response relationship such that the greater 
the CPAP usage, the greater the improvement in sleepiness, 
quality of life, or blood pressure outcomes (22,27). As 
a result, there has been much research on methods to 
optimize CPAP adherence.

Device manufacturers have developed advances in 
PAP technology as one means to improve acceptance 
and adherence. Advanced PAP features include auto-
titrating PAP (APAP), bi-level PAP (BPAP), and expiratory 
pressure relief (EPR). A goal for all of these interventions 
has been to lower the pressure delivered to the airway 
due to the concern that higher pressures lead to reduced 
patient adherence (Figure 3). However, most observational 
data have not identified PAP level as a predictor of  
adherence (76,77).

Bi-level positive airway pressure (BPAP)

BPAP was the first device developed to try to lower mean 
airway pressures.

Instead of applying a fixed pressure throughout 
the respiratory cycle, BPAP applies a lower expiratory 

Figure 3 Representative airflow tracing with pressure time 
tracings of CPAP, CPAP with expiratory pressure relief (EPR), and 
bi-level positive airway pressure (BPAP). EPR decreases applied 
pressure level during exhalation in a flow-dependent manner. 
BPAP provides a fixed inspiratory pressure and a fixed expiratory 
pressure. CPAP, continuous positive airway pressure.
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positive airway pressure (EPAP) during exhalation and a 
higher inspiratory positive airway pressure (IPAP) during 
inhalation (78,79). By maintaining IPAP above Pcrit, the 
EPAP may be reduced without airway collapse. This 
approach can lower mean airway pressure particularly 
during exhalation when the patient has to breathe out 
against the delivered pressure. In the only large comparative 
trial evaluating BPAP with CPAP in PAP-naïve OSA (n=83), 
nightly usage between the two groups was similar as were 
the range and number of complaints. In fact, BPAP users 
with a large (greater than 6 cmH2O) IPAP-EPAP difference 
had significantly lower compliance than CPAP users (80). 
Nevertheless, BPAP may be helpful in the subset of patients 
who complain of pressure intolerance. In addition, because 
BPAP machines can generate pressures above the maximal 
CPAP level of 20 cmH2O, BPAP can be useful in the most 
severe OSA patients. Finally, use of a high IPAP to EPAP 
difference can be used to increase the tidal volume and so 
provide ventilatory support in people with hypoventilation 
syndromes (80). Retrospective data from a population of US 
Military Veterans indicate that BPAP is used more often in 
individuals with high BMI, CHF, COPD, hypercapnia, and 
severe hypoxia (81).

Auto-titrating devices

Instead of operating at a set pressure, APAP monitors a 
patient’s respiratory activity in order to provide the lowest level 
of PAP necessary to eliminate respiratory disturbances (82). 
Algorithms are designed to increase pressure when events 
are noted and to decrease pressure slowly if events have 
not occurred for a period of time. Because the minimum 
PAP level necessary to eliminate airway obstruction varies 
over the night by position, sleep stage, and other factors, 
APAP has the capacity to provide the lowest pressure 
necessary at each time and therefore lower the overall mean 
pressure across the night (83). Compared to CPAP, APAP 
demonstrates a small but statistically significant superiority 
in adherence (+11 minutes) as well as in reduction of 
sleepiness (−0.5 points in ESS) (84,85). In contrast, evidence 
suggests that fixed CPAP level may be superior to APAP 
in blood pressure reduction and other cardiometabolic 
outcomes (85). For now, we regard fixed CPAP as the 
treatment of choice based on available data.

Another use of APAP has been to determine CPAP level 
requirements in the home rather than a sleep laboratory. 
Typically, the patient is provided an APAP device for 5-7 
nights and the device is then interrogated to identify the 

90th or 95th percentile pressure required which is inferred to 
be their fixed CPAP requirement. Such a protocol has been 
demonstrated to identify CPAP requirements effectively. A 
diagnostic protocol combining home sleep testing followed 
by APAP titration has been shown to reduce costs of 
OSA diagnosis and treatment substantially, lower time to 
treatment, and improve CPAP adherence as compared to 
the traditional strategy of in-laboratory polysomnography 
and CPAP titration (86).

It is important to note that each APAP manufacturer has 
their own proprietary algorithm for determining pressure 
changes and the optimal algorithm is unclear. Auto-titrating 
algorithms have also been developed for BPAP and a 
small study suggests auto-titrating BPAP may be helpful 
as a rescue therapy for occasional patients failing CPAP, 
although in aggregate the trial was negative (87).

Expiratory pressure relief (EPR)

Another strategy to improve compliance has been the 
use of EPR. Similar to BPAP, machines programmed to 
perform pressure relief provide less airway pressure during 
early exhalation compared to standard PAP at the same 
set pressure. Unlike BPAP, EPR varies with each breath 
according to the expiratory flow rate—a higher expiratory 
flow rate from the patient yields a greater EPR resulting 
in a greater pressure drop in early exhalation as opposed 
to late exhalation. An initial non-randomized evaluation 
found an impressive improvement in CPAP adherence  
(~1.5 hours/night) with EPR (88). However, five randomized 
trials have been subsequently performed and a meta-analysis 
of these trials did not identify an improvement in adherence 
with EPR (89). As with APAP, the EPR algorithm varies by 
manufacturer and several manufacturers provide advances 
beyond pressure relief in expiration alone including the 
addition of inspiratory pressure relief in late inspiration 
for patients on BPAP. A small trial comparing APAP alone, 
APAP with EPR, and APAP with both inspiratory and 
EPR found the highest level of adherence among those 
randomized to APAP with EPR (90).

Adaptive servo-ventilation (ASV) 

A further advancement in PAP technology has been the 
development of ASV as a mode of therapy. In ASV, BPAP 
is delivered but the level of ventilatory support (IPAP-
EPAP) provided varies over time. The goal of ASV is to 
eliminate obstructive events with the EPAP and to hold 
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ventilation at a fixed level by providing ventilatory support 
in inverse proportion to the patient’s own ventilation. As 
a result, periodic breathing (in the timeframe over which 
the ASV algorithm’s assessment of ventilation is being 
made) will be dampened out (91). ASV has shown high 
efficacy in resolving Cheyne-Stokes breathing associated 
with congestive heart failure alone or associated with  
OSA (92,93). However, a preliminary analysis of the 
Treatment of Predominant Central Sleep Apnoea by 
Adaptive Servo Ventilation in Patients with Heart Failure 
(SERVE-HF) phase III randomized trial, found an increased 
risk of cardiovascular mortality in those randomized to  
ASV (94,95). A more complete analysis of the results is 
pending to understand the cause of this unexpected finding. 
In the meantime, another randomized trial of ASV, the 
Effect of Adaptive Servo Ventilation (ASV) on Survival and 
Hospital Admissions in Heart Failure (ADVENT-HF), 
which includes those with OSA and those with milder levels 
of heart failure is ongoing (96). Some have advocated the 
use of ASV in the treatment of CPAP-emergent central 
apneas as well; however, a randomized trial of CPAP vs. 
ASV in CPAP-emergent central apneas found no benefit of 
ASV in terms of PAP adherence or symptoms. Thus, there 
is currently no strong rationale for the use of ASV in this 
setting (97).

CPAP modifications—humidification and mask choice

Early studies reported nasal dryness was noted in 44-
65% of patients treated with nasal CPAP suggesting 
humidification may improve tolerance (98,99). Three 
randomized controlled trials have been performed 
evaluating the effect of adding heated humidification to 
the CPAP circuit. The first trial demonstrated a small 
improvement in adherence (100), but two larger subsequent 
trials found no benefit. Sleepiness has not been significantly 
affected by humidification (100-102). Nevertheless, given 
the possibility that heated humidification may improve 
compliance and satisfaction, it is now standard on all PAP 
machines available today, and can typically be turned off 
based on patient preference.

Given that as many as 50% of patients have at least one 
complaint regarding their mask interface (103), improving 
mask fit has been another target for increasing CPAP 
adherence. There are a wide range of mask types available 
today including nasal masks, oronasal masks, nasal pillow 
masks, hybrid oral masks with nasal pillows, and oral only 
masks (Figure 4). One small randomized trial found CPAP 
use was 1 hour per night greater with a nasal mask versus an 
oronasal mask (104). However, a subsequent meta-analysis 
found no consistent difference between mask types (105).  
Nevertheless, a large observational study found oronasal mask 

Figure 4 Representative masks. (A) Nasal pillows mask; (B) nasal mask; (C) oronasal mask.
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use was an independent predictor of non-adherence (76).  
Of note, the oronasal mask was typically prescribed 
as rescue therapy so these results may be confounded. 
Neverthe less ,  da ta  demonstra t ing  that  pressure 
requirements may be higher with an oronasal mask suggest 
a nasal mask may be preferred as first choice (106,107). 
However, given the wide range of facial structures and 
nasal pathology, it is important to tailor mask choice to 
patient preferences.

Adjuvant hypnotic use

Because CPAP use may initially produce discomfort from 
the mask as well as anxiety, treatment of acute insomnia with 
short term use of a hypnotic drug has been advocated by 
some to reduce sleep latency and improve sleep continuity 
during the initiation of PAP therapy. A controlled clinical 
trial randomized OSA patients to 14 days of eszopiclone or 
placebo upon initiation of CPAP therapy. After 6 months, 
adherence was significantly better in the eszopiclone group 
by approximately 1 hour/night (108). In contrast, a similarly 
conducted trial using zolpidem found no benefit of hypnotic 
use (109). Another trial evaluating the effect of one night 
of zaleplon vs. placebo prior to a split night diagnostic 
polysomnogram/CPAP titration also found no difference in 
CPAP adherence 1 month later (110).

Education

Because reduced understanding of disease and treatment 
has been associated with lower levels of adherence in many 
chronic diseases, educational interventions to improve 
patient understanding of OSA and the benefits of CPAP 
have been developed. Several trials have been conducted 
to test the effect of intensive education regarding OSA and 
CPAP on patient compliance. Interventions that have been 
assessed include intensive education by practitioners and 
homecare providers (111) as well as use of standardized 
audiovisual presentations and demonstrations (112,113). To 
date, none of the educational interventions has consistently 
improved CPAP compliance. Many of these trials have 
been criticized in that the level of education provided 
to the control arm exceeds what is typically provided in 
routine care. As a result, most experts still recommend 
a basic level of education to all patients initiating CPAP  
therapy (114,115).

Motivational interviewing and cognitive behavioral 
therapy (CBT)

Psychosocial interventions with motivational interviewing and 
CBT have shown promise in augmenting CPAP compliance. 
Motivational interviewing is a type of psychosocial intervention 
in which a therapist elicits and targets an individual’s behavior 
by assessing the subject’s readiness to change, perceived 
importance of the change, and confidence in their ability 
to change. This motivational style has proven useful in 
smoking cessation (116) and the management of other 
chronic diseases (117). A three-arm randomized controlled 
trial comparing standard care, education, and motivational 
interviewing in CPAP naïve individuals demonstrated a trend 
towards increased adherence with the use of two 45-minute 
motivational interviewing sessions compared to standard  
care (118). A subsequent larger trial, however, did not 
identify a benefit at 12 months (119). Another trial using an 
intervention which involved three 30-minute motivational 
interviewing sessions over the first month of therapy 
demonstrated approximately 1.5 hours/night improvement in 
CPAP use at 3 months; however, no differences remained at  
1 year (120). More recently, a Chinese trial randomized 
patients to either standard care or a pathway of interventions 
including educational and motivational visits and phone calls 
over 3 months tailored to their readiness to accept CPAP. 
The intervention group had greater CPAP adherence at 
1 and 3 months (121). A less intensive strategy involving 
just one 20-minute interview and a 10-minute follow-up 
call using motivational interviewing was also successful in 
improving CPAP usage (122).

CBT, a psychosocial intervention aimed at correcting 
irrational and incorrect beliefs in order to alter behavior, has 
also been used to augment CPAP adherence. A randomized 
controlled trial evaluated the impact of two 1-hour group 
sessions (ten participants per group) compared to standard 
care and found those randomized to CBT used CPAP  
2.9 hours longer than controls (123). These results indicate 
that behavioral therapy can have a large impact on CPAP 
adherence. However, subsequent research using a lower dose 
of CBT has not demonstrated a significant benefit, calling 
the feasibility of CBT as routine care into question (124).

Peer and spousal support

In addition to support from clinicians, the effect of peer 
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support in improving CPAP adherence has also been 
studied. In a cohort of military veterans, “peer buddies” 
(fellow OSA patients with good CPAP compliance) met 
with newly diagnosed patients twice to provide support. 
This intervention led to improved compliance compared to 
control (125).

A major source of support for patients can also be their 
bed-partners. In observational studies, the presence of a bed-
partner is associated with greater CPAP adherence (126). 
The presence of a bed-partner can also have negative 
consequences. Concerns about sexuality and bed-partner 
disturbance can adversely affect CPAP use (127,128), and 
perception of spousal “pressure” to use CPAP is associated 
with worse adherence (129,130). Nevertheless, in severe 
OSA, perceived spousal support correlates with greater 
CPAP use (130), and a perceived collaborative relationship 
with one’s spouse also predicts better adherence (131). Thus 
far, no studies have evaluated the impact of interventions 
aimed at improving bed-partner support.

Telemedicine

With the advent of the digital age, the application of 
telecommunication devices to ease communication between 
patient and provider has been applied to a number of 
chronic diseases (132-135). Unsurprisingly, a number 
of studies have been performed to evaluate the effect of 
telemedicine interventions on CPAP adherence. Using data 
wirelessly transmitted by patient’s CPAP units, investigators 
in one study monitored compliance on a daily basis. If a 
patient was found to have excessive mask leak, high AHI, 
or low duration of use, a research assistant would call 
the patient and troubleshoot problems. After 3 months, 
the group assigned to the telemedicine intervention had  
1.88 hours/night greater CPAP use (136). A similarly 
designed randomized trial evaluated the effect of remote 
compliance surveillance by study staff in addition to a web-
based service in which the patient could observe their own 
usage data. Patients randomized to the telemedicine arm 
had greater adherence at 2 months (137). A limitation of 
both studies is the cost in time and effort for an individual 
to survey the compliance data regularly for a large sample 
of patients. A lower cost alternative has also been studied. 
In a veteran’s population, patients were randomized to 
either usual care or a series of weekly automated telephone 
calls in which patients were able to report side effects of 
CPAP use and obtain pre-recorded advice. In addition, 
these reports were relayed to providers. At 1 year, patients 

in the intervention group demonstrated significantly higher 
adherence rates. Of note, however, mean usage was poor in 
both groups (138).

Alternative and adjunctive therapies to PAP

Because CPAP cannot be tolerated by all patients, there is a 
role for other treatments either as alternative therapies or as 
adjunctive treatments to reduce PAP requirements.

Weight loss

Given that obesity is one of the strongest risk factors for 
OSA, weight loss clearly improves OSA severity (139,140). 
Randomized trials in mild OSA suggest weight loss programs 
can resolve OSA but even in more severe disease, weight loss 
reduces OSA severity and improves symptoms (141,142). 
Furthermore, exercise itself may improve OSA even in 
the absence of weight loss (143). Bariatric surgery has 
increasingly been advocated in the treatment of OSA. 
A recent trial comparing gastric banding with intensive 
medical weight loss as adjunctive treatments to CPAP, 
found at 2 years that the AHI had reduced by 31.6% in 
the surgical arm although this change was not significantly 
different from the medical arm. However, few patients in 
either arm were able to stop CPAP (144). Another trial 
assessing the impact of medical weight loss as adjunctive 
therapy to CPAP found weight loss tended to have a more 
beneficial impact on cardiovascular markers than CPAP and 
the greatest improvements were in those receiving both 
CPAP and weight loss (43). The importance of combining 
weight loss therapy with CPAP is further emphasized by 
emerging data demonstrating CPAP treatment leads to 
weight gain (17). 

Sleep position

Due to the effects of gravity on upper airway anatomy, 
OSA severity is often worse in the supine position, and a 
substantial number of patients only have airway collapse 
while supine (145,146). In these patients, positional 
therapies can improve sleep apnea as monotherapy although 
long term compliance—even when assistive devices are 
employed—is only about 25% (147). In theory, combining 
CPAP with positional therapy may allow for the use of 
lower CPAP levels. A post-hoc analysis found the greatest 
benefit of APAP vs. CPAP was in those patients with 
highly positional disease, where presumably the APAP 
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could use substantially lower pressures when patients were  
non-supine (148).

Mandibular advancement devices (MADs)

MADs have become firmly rooted as second line therapy in 
the treatment of OSA. Randomized trials have demonstrated 
the efficacy of MADs to reduce sleepiness and blood pressure 
in OSA (149,150). While CPAP improves the AHI to a 
greater extent than MAD therapy (149,151-153), patient 
satisfaction may be greater with MADs (154). A recent 
comparative effectiveness trial found no difference between 
CPAP and MAD in treating sleepiness due to greater 
improvement of OSA with CPAP but greater adherence 
with MAD (155). Of note, neither treatment improved 
blood pressure in this study. One small trial has assessed 
the impact of adding MAD to CPAP. In patients previously 
intolerant to CPAP, MAD reduced the applied pressure 
required, frequency of residual apneas, and residual 
sleepiness (156).

Surgery

The most commonly performed surgery to treat OSA is 
the uvulopalatopharyngoplasty (UPPP) which involves a 
tonsillectomy, excision of the uvula and posterior palate and 
trimming of the posterior pillars. This procedure lowers the 
AHI below 10/h in only 33% of patients (157). Furthermore, 
UPPP may compromise future CPAP use, as patients with 
UPPP are more likely to be non-compliant, have increased 
air leak, and lower pressure tolerance than matched  
controls (158). Maxillo-mandibular advancement (MMA) is 
a procedure which advances the anterior pharyngeal palate 
and enlarges the mandible. In uncontrolled studies, MMA 
is highly efficacious, resulting in a mean residual AHI of  
7.7/hour (159). However, given the morbidity of the surgery, 
MMA is infrequently utilized (160). Tracheostomy cures 
OSA by bypassing the upper airway completely but is also 
infrequently utilized due to the high associated morbidity 
including recurrent pneumonia, stomal complications, and 
psychological trauma (161).

Oral pressure therapy (OPT)

OPT is a novel treatment option which involves the 
application of negative pressure in the mouth to pull the 
tongue anteriorly. A small, unblinded trial demonstrated a 
statistically significant reduction in AHI and an improvement 

in subjective sleepiness with OPT. Compliance with the 
device, 6.0±1.4 hour, was higher than commonly seen with 
PAP (162). More definitive studies are needed to understand 
the role of OPT in OSA management.

Expiratory positive airway pressure (EPAP)

The application of EPAP at the nose through the use of one-
way valves has also been developed as an alternative to CPAP. 
The valves freely allow inspiration, but inhibit expiration 
until a sufficient amount of expiratory pressure is generated. 
An initial randomized trial demonstrated improvements in 
AHI and sleepiness with EPAP therapy (163). However, a 
subsequent larger trial in prior CPAP users found a high 
failure rate with EPAP, not significantly different from 
placebo (164).

Hypoglossal nerve stimulation (HGNS)

Given the role of the upper airway dilator muscles in 
maintaining airway patency (165), stimulation of the 
hypoglossal nerve to increase upper airway muscle tone has 
emerged as a potential therapy for OSA. HGNS involves 
surgical placement of a pacing electrode on the hypoglossal 
nerve along with a sensing electrode on an intercostal muscle 
to synchronize pacing to inspiration. Preliminary uncontrolled 
studies demonstrated that HGNS was feasible in improving 
OSA severity, sleepiness, and quality of life (166,167),  
but certain groups (those with concentric palatal collapse or 
morbid obesity) were less likely to respond. Several HGNS 
systems have been developed. One of these devices was 
found to be ineffective (168) but a second device produced 
significant improvements in AHI and sleepiness in a highly 
selected population (169).

Wake-promoting agents

Residual sleepiness is common even in CPAP compliant 
OSA patients. Among those using CPAP >6 hours/night, 
subjective sleepiness is noted in 22% and objective sleepiness 
in 52% (170). The wake-promoting agent, modafinil, when 
added to CPAP, improves both subjective and objective 
measures of sleepiness with a mean effect on ESS of 6-7 
points. Although there is concern that modafinil use may lead 
to reductions in CPAP adherence, this effect has not been 
consistently observed in clinical trials (171-174). Modafinil is 
also effective as adjunctive therapy when CPAP is stopped 
for short periods of time (e.g., when traveling), preventing 
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re-emergence of sleepiness (175). In general, armodafinil 
produces similar results as modafinil (176,177).

Individualized treatment of disease

The traditional model of OSA pathophysiology is that of 
compromised upper airway anatomy leading to repetitive 
collapse during sleep (178,179). However, our understanding 
of the pathophysiology of OSA has broadened in recent years 
to include traits beyond compromised anatomy (180,181). 
At least three further physiological factors interact to 
play a role in OSA including (I) inadequate upper airway 
dilator muscle responsiveness (180,182); (II) an abnormal 
respiratory arousal threshold (183,184); and (III) a 
hypersensitive ventilatory control system (elevated loop 
gain) (185). The increasing recognition of the importance of 
these traits has led to the idea of an individualized approach 
to therapy, where the specific underlying mechanisms in 
each patient are addressed via novel focused therapies.

The upper airway dilator muscles play an important 
role in maintaining airway patency during both sleep 
and wakefulness (186). The largest of these muscles is 
the genioglossus, which is innervated by the hypoglossal  
nerve (187-190). Contraction of this muscle appears to be 
both necessary and sufficient to prevent pharyngeal collapse 
in patients with OSA (165). However, responsiveness of the 
genioglossus to respiratory stimuli such as negative pressure 
and hypercapnia during sleep is variable, and overall there 
is decreased descending neural stimulation to the dilator 
muscles at sleep onset (191). Ultimately some individuals 
demonstrate a robust response leading to maintenance of 
airway patency, and others an insufficient response (192-194).

Interest ingly,  awake OSA patients have higher 
electromyographic signals in the genioglossus compared 
to healthy controls, suggesting a compensatory response 
to airway vulnerability (195). The loss of this heightened 
neuromuscular stimulation at sleep onset is theorized to 
contribute to airway collapse in susceptible individuals (196). 
A particular subgroup of OSA patients has insufficient 
genioglossus responsiveness, perhaps suggesting an 
important role of this trait in apnea pathogenesis as 
well as providing a potential therapeutic target (197). 
Current understanding of the pathways leading to 
genioglossal activation is limited making targeted 
pharmacologic intervention difficult, though studies of 
tricyclic antidepressants (196,198), ampakines (199), 
and cholinesterase inhibitors (200) are ongoing. Other 
pharmacologic interventions are focused on increasing the 

arousal threshold (discussed below), which may allow for 
successive dilator muscle recruitment and subsequent airway 
opening prior to arousal. Finally, electrical stimulation of 
the hypoglossal nerve or the dilator muscles directly, as 
previously discussed, may be a viable intervention in some 
cases (201-204).

Another physiological trait of interest in OSA is the 
arousal threshold. When a stimulus increases to a level of 
intensity that it causes awakening from sleep, the arousal 
threshold has been reached. An individual with a low 
arousal threshold is awoken easily, and an individual with a 
high arousal threshold is relatively resistant to awakening. 
In regard to OSA, the major stimulus to arousal includes 
intrathoracic pressure which is a function of respiratory 
efforts during hypoxemia and hypercapnia (205). Arousal is 
believed to be an important defense mechanism to protect 
against severe hypoxemia, and an arousal threshold that is too 
high could contribute to tissue hypoxia during apnea (206). 
Conversely a low arousal threshold in the setting of OSA 
leads to repetitive awakenings prior to sufficient recruitment 
of airway dilator muscles (207,208). Each such awakening 
is associated with an acute ventilatory escalation due in 
part to hypercapnia and a concurrent drop in CO2 setpoint 
(209,210). Recurrent surges in ventilation can in turn 
contribute to respiratory instability and further episodes 
of apnea and hypopnea, most dramatically in patients with 
elevated loop gain (described below) (208,211).

Although patients with OSA on average have a 
somewhat higher arousal threshold in comparison to 
controls, a low arousal threshold likely plays a role in 
disease pathophysiology in roughly one third of affected 
patients (183,197,207). For these patients an increase 
in arousal threshold, for example via pharmacologic 
intervention, may allow for recruitment of airway dilator 
muscles and avoidance of respiratory instability (208).  
Concerns  re la ted  to  such  therap ies  inc lude  the 
possibility of blunting arousal in response to severe 
hypoxia as well as suppressing upper airway dilator 
muscle activity, thereby worsening apnea (212). The 
hypnotic trazodone, has been shown to increase arousal 
threshold to CO2 in patients with OSA and a low 
arousal threshold, without impairing pharyngeal muscle 
activity or increasing airway collapsibility (206,212,213). 
Other non-myorelaxant sedatives such as triazolam and 
eszopiclone have demonstrated a similar effect on arousal  
threshold (214,215).

The respiratory control system is a loop made up of the 
lungs, circulating blood, chemoreceptors, and descending 
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neurologic signals that manage ventilatory drive. The 
sensitivity of this system to changes in respiratory stimuli 
can be conceptualized using the engineering notion of 
loop gain, which represents the stability of a negative 
feedback loop (216). In relation to respiratory control, 
loop gain is defined as the ratio of a ventilatory response 
over the perturbation in ventilation. In a system with 
high loop gain, a small change in respiratory stimuli (e.g., 
hypercapnia) leads to an exaggerated ventilatory response. 
This overcorrection can lead to respiratory instability (self-
sustaining oscillations). In contrast, a system with low loop 
gain is likely to maintain respiratory stability (185,217). 
There are three major components that affect loop gain. 
The first is ‘plant gain’, or changes in the respiratory 
apparatus including the lungs and circulating blood in 
response to neuronal stimulation. The second is ‘controller 
gain’, or the sensitivity of chemoreceptors to oxygen and 
CO2 levels and the subsequent output from respiratory 
centers eliciting a response from the plant. The third is the 
circulation delay between the plant (lungs) and controller 
(chemoreceptors), which leads to a lag in response to 
changes in blood gases.

Not all OSA patients have an abnormal loop gain. 
However, in a subgroup of individuals with OSA and only 
mild airway collapsibility, loop gain was nearly 50% greater 
in comparison to controls (197). This finding suggests 
that loop gain may play a role in OSA pathophysiology 
in a subset of patients, and offers a possible therapeutic 
target. Of the three components, only controller gain has 
been shown to be elevated in OSA patients (185,217,218). 
Several therapies impacting loop gain are being evaluated 
as potential treatments for OSA. Supplemental oxygen 
decreases loop gain in patients with high baseline loop 
gain via reduction in controller gain, without significantly 
affect ing pharyngeal  col lapsibi l i ty,  upper a irway 
responsiveness, or arousal threshold (219,220). In contrast, 
the carbonic anhydrase inhibitor acetazolamide lowers loop 
gain (regardless of baseline levels) primarily via reduction in 
plant gain, likely due to a lowering of PaCO2 (221).

Conclusions

The most effective and reliable treatment for OSA today 
remains CPAP, whose main limitation is tolerability 
resulting in suboptimal patient adherence. The coming 
decades will demand new interventions to augment 
CPAP adherence and alternative therapies tailored to the 
individual patient. Even without newer options, further 

research is required to individualize treatment options 
optimally.
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