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The genetic and molecular events associated with changes in muscle mass and function after SCI and after the implementation of
candidate therapeutic approaches are still not completely known. The overall objective of this study was to identify key molecular
pathways activated with muscle remodeling after SCI and locomotor training. We implemented treadmill training in a well-
characterized rat model of moderate SCI and performed genome wide expression profiling on soleus muscles at multiple time
points: 3, 8, and 14 days after SCI. We found that the activity of the protein ubiquitination and mitochondrial function related
pathways was altered with SCI and corrected with treadmill training. The BMP pathway was differentially activated with early
treadmill training as shown by Ingenuity Pathway Analysis. The expression of several muscle mass regulators was modulated by
treadmill training, including Fst, Jun, Bmpr2,Actr2b, and Smad3. In addition, key players in fatty acids metabolism (Lpl and Fabp3)
responded to both SCI induced inactivity and reloading with training. The decrease in Smad3 and Fst early after the initiation of
treadmill training was confirmed by RT-PCR. Our data suggest that TGF𝛽/Smad3 signalingmay bemainly involved in the decrease
in muscle mass observed with SCI, while the BMP pathway was activated with treadmill training.

1. Introduction

Spinal cord injury (SCI) is one of the most disabling health
problems faced by adults today. One of the physiological
changes secondary to SCI is progressive muscle atrophy. The
loss of muscle mass after spinal cord injury has been well
documented, with patients with complete SCI having about
20–55% muscle atrophy [1] and patients with incomplete
SCI showing about 20–30% atrophy [2] within 6 months to
1 year after SCI. Muscle wasting does not only impact the
care and lifestyle of patients after SCI but also has significant
health implications, increasing the patients’ risk to develop
secondary complications such as bone demineralization,

diabetes, and cardiovascular disease [3, 4]. Maintenance of
muscle mass is essential to metabolic health and is necessary
to maximize functional gain from rehabilitation strategies
after SCI.

A potential rehabilitation intervention in the treatment
of individuals with SCI is the use of repetitive locomo-
tor training to promote neural plasticity. This approach
was derived from animal and human studies showing that
stepping can be generated by virtue of the neuromuscular
system’s responsiveness to phasic peripheral sensory infor-
mation associated with locomotion, in the presence of central
pattern generator (reviewed in [5]). Our group and others
have shown that locomotor training can induce substantial
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recovery inmuscle size andmuscle function in transected [6]
and moderate contusion injury animal models of SCI [7–9].
Some studies suggest that this may reflect enhanced synthesis
of growth factors within the central nervous system [10], but
other potential activity-dependentmolecular changes remain
unknown, in particular the ones occurring locally in the
muscle in parallel with atrophy and hypertrophy.

Muscle atrophy depends on the balance between pro-
tein breakdown, protein synthesis rates, and apoptosis. It
has been attributed to the activation of various protein
degradation pathways in several models of disuse, such as
denervation, unloading, cachexia, or aging [11, 12]. Pre-
vious work in animal models showed that alterations in
the protein ubiquitination and energy production related
pathways are common features of the atrophy process [13–
16]. The activation of growth factors such as insulin-like
growth factors (IGFs), myogenic regulatory factors (MRFs)
[17], transforming growth factors (TGFs) [18], and the bone
morphogenic proteins (BMPs) [19] has also been shown to
play an important role in muscle atrophy and hypertrophy.
However, the activation or predominance of the different
pathways involved can be specific to the condition inducing
atrophy [20]. To our knowledge, only one study used gene
profiling in human muscle samples to perform a general
screening of the pathways activated in skeletal muscle after
SCI [21]. However, the specific molecular signaling changes
that occur after SCI and subsequent recovery and/or rehabil-
itation intervention remain largely unknown.

Abetter understanding of themolecular events regulating
protein synthesis and degradation after SCI and locomotor
training and their temporal relationship to changes in muscle
mass is of considerable clinical importance and has far-
reaching implications for posttraumatic health care. There-
fore, the overall objective of this study was to identify key
molecular pathways activated with muscle remodeling after
SCI and during locomotor training. We implemented tread-
mill training in a well-characterized rat model of moderate
SCI [9, 22–24] and performed genome wide expression
profiling with microarray on soleus muscles at multiple time
points during the course of SCI (prior and 3, 8, and 14
days after SCI) and during the course of a treadmill training
intervention initiated 7 days after injury (8 and 14 days after
SCI). We used two different approaches for data analyses.
First, we took an unsupervised approach and identified
molecular pathways affected most at each time point. We
then targeted genes that are known to be involved in muscle
remodeling and may play important roles in the process.

2. Material and Methods

2.1. Study Design. In this cross-sectional study, six groups of
rats were studied, including a control group, three SCI groups
at three time points (days 3, 8, and 14), and 2 SCI groups
with treadmill training at two time points (days 8 and 14).
In the latter groups, the treadmill was initiated 7 days after
SCI. For the analysis of changes during the course of SCI,
comparisons were done with reference to control samples
for each time point after SCI (days 3, 8, and 14). For the

analysis of the effects of treadmill training on SCI, samples
from the treadmill trained SCI rats were compared to samples
collected from SCI rats with no training. Differences between
the trained muscles and untrained muscles at a specific time
point (day 8 or day 14) were determined.

2.2. Animals. Thirty-six adult female Sprague Dawley rats
(16 weeks of age, 260–280 g at the beginning of the study)
were obtained from Charles River Laboratories and housed
in a temperature (22 ± 1∘C) and humidity (50 ± 10%)
controlled room with 12:12 hours light:dark cycle. Animals
were provided rodent chow and water ad libitum and were
given 1 week to acclimatize to the environment. Animals
were sacrificed at one of the following time points and
conditions: 3 days after SCI (SCI3d, 𝑛 = 6), 8 days after
SCI (SCI8d, 𝑛 = 6), 14 days after SCI (SCI14d, 𝑛 = 6),
8 days after SCI and after 3 treadmill training sessions
(SCI8d + TM, 𝑛 = 6), and 14 days after SCI and after 5
days of repeated treadmill training sessions (SCI14d + TM).
Age-matched control animals (CTR, 𝑛 = 6) were used as
the baseline. Experimental animals were given access to
transgenic dough diet (Bio-Serv, NJ, product number S3472),
placed on the bottom of the cage, to ensure adequate food
intake. All procedures were performed in accordance with
the US Government Principle for the Utilization and Care of
Vertebrate Animals and were approved by the Institutional
Animal Care andUse Committee at the University of Florida.

2.3. Spinal Cord Injury Procedure. All surgical procedures
were performed under aseptic conditions. Moderate con-
tusion SCI was produced using a NYU-MASCIS injury
device as previously described [25, 26]. Briefly, the animals
were deeply anesthetized with a combination of ketamine
(90mg/kg body weight) and xylazine (8mg/kg body weight)
and a dorsal laminectomy was performed at the thoracic
vertebral level T7–T9 to expose the spinal cord [27]. Clamps
attached to the spinous processes of T7 and T9 stabilized the
vertebral column. Contusion was produced by dropping a
10 g cylinder from a height of 25mm onto the T8 segment of
the spinal cord. Analgesia was given in the form of buprinex
(0.025mg/kg) and ketoprofen (22mg/kg) once daily over the
first 36 hrs after SCI. The animals were housed individually
and kept under vigilant postoperative care, including daily
examination for signs of distress, weight loss, dehydration,
and bladder dysfunction. Manual expression of bladders was
performed 2-3 times daily, as required, and animals were
monitored for the possibility of urinary tract infection.

2.4. Locomotor Training. Quadrupedal locomotor training
was initiated on postoperative day 7. Training consisted
of 20min stepping sessions on a treadmill. Training was
performed 3 times in the SCI8d + TM group (2 times on
day 7 and one time on day 8) and was repeated twice a
day for 5 days in the SCI14d − TM group. When necessary,
body weight support was manually provided by the trainer.
The level of body weight support was adjusted to make sure
that the hindlimbs of the animals did not collapse and was
gradually removed as locomotor capability improved. During
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the first day of training, assistance was provided to place the
rat hindpaws in plantar-stepping position during training.
Typically, rats started stepping when they experienced some
load on their hindlimbs.

2.5. Tissue Collection. Left soleus muscles were harvested in
all groups. In the SCI8d + TM and SCI14d + TM groups,
muscle samples were harvested 8 hours after the end of the
last treadmill training session. Briefly, rats were anesthetized
with isoflurane (3% for induction, 1-2% for maintenance),
and a small dorsal, midline incision was made to expose
the gastrocnemius-soleus complex. The soleus was carefully
separated from the gastrocnemius, harvested, and weighed.
The sample was rapidly frozen in isopentane, precooled in
liquid nitrogen, and subsequently stored at −80∘C.
𝑡-test was used to determine the statistical significance

(𝑝 < 0.05) of the changes in muscle mass.

2.6. Expression Profiling. GeneChip Rat Genome 230 2.0
Array microarrays containing approximately 30,000 tran-
scripts were used for the expression profiling experiment.
Standard procedures including total RNA isolation, cDNA
synthesis, cRNA labeling, microarray hybridization, and
image acquisition were done as described in the manu-
facturer’s protocol and our previous publications [20, 28].
Briefly, total RNA was isolated with TRIzol reagent (Invitro-
gen) and then purified with RNeasy MinElute Cleanup Kit
(Qiagen). Two hundred nanograms of total RNA from each
sample was reverse-transcribed to double-stranded cDNA
followed by in vitro cRNA synthesis using one-cycle target
labeling and control reagents and protocol (Affymetrix).
Biotin-labeled cRNAwas then purified usingGeneChip Sam-
ple Cleanup Module (Affymetrix) and fragmented randomly
prior to hybridizing to the microarrays overnight. Each
array was washed and stained using the Affymetrix Fluidics
Station 450 and then scanned using the GeneChip Scanner
3000. The quality control criteria developed at Children’s
National Medical Center Microarray Center for each array
were followed [6].

Generation of hybridization signals of the microarrays
was done using Microarray Suite 5.0 (MAS 5.0) (Affymetrix,
CA) as previously described [21, 29–32]. After the absolute
analysis, the gene expression values were imported into
GeneSpring 11.0 (Silicon Genetics) for data filtering and
statistical analysis. First, genes were filtered with numbers of
present calls across the 36 arrays analyzed. Genes with at least
4 present calls (detected bymore than 10% of the arrays) were
selected for statistical analysis. We identified 31099 probe sets
that met this filtering criterion. In GeneSpring, 𝑡-test was
performed and probe sets showing significant (𝑝 < 0.05)
expression changes were retained for pathway analysis. No
additional fold change filters were used. The comparisons
were done by comparing samples of each time point after
SCI (days 3, 8, and 14) to the control time point (day 0),
respectively. The treadmill trained samples were compared
to the SCI samples collected at the same time point to
obtain differences between the trainedmuscles and untrained
muscles at a specific time point (day 8 and day 14).

Table 1: Primer sequences used for quantitative RT-PCR.

Genes Primer Primer sequence

Gapdh Forward F-5󸀠-TCCGCCCCTTCCGCTGATG-3󸀠

Reverse R-5󸀠-CACGGAAGGCCATGCCAGTGA-3󸀠

Smad3 Forward F-5󸀠-AAGATACCCCCAGGCTGC-3󸀠

Reverse R-5󸀠-CTGTCTGTCTCCTGTACTC-3󸀠

Myf6 Forward F-5󸀠-CTAAGGAAGGAGGAGCAAG-3󸀠

Reverse R-5󸀠-TGTTCCAAATGCTGACTGAG-3󸀠

Fst Forward F-5󸀠-GTGTATCAAAGCAAAGTCTTG-3󸀠

Reverse R-5󸀠-GCTCATCGCAGAGAGCA-3󸀠

To investigate molecular networks and pathways associ-
ated with gene lists in this study, Ingenuity Pathway Analysis
(IPA) (Ingenuity Systems) was used with default settings
to identify gene interactions and to prioritize molecular
pathways differentially affected in different groups. Hierar-
chical clustering was performed using GeneSpring software
to visualize transcripts showing coordinate regulation as a
function of time.

The significance of the association between the genes in
each dataset and the canonical pathway was determined by
Fisher’s exact test. The 𝑝 values were calculated to determine
the probability of the association between the genes. All
profiles have been made publicly accessible via NCBI GEO
(number GSE45550) (http://www.ncbi.nlm.nih.gov/geo/).

2.7. Reverse Transcription and Quantitative RT-PCR Analysis.
Reverse transcription and quantitative RT-PCR (qRT-PCR)
were performed as previously described [17]. Briefly, total
RNA (2 𝜇g)was reverse-transcribed to cDNAusing oligo(dT)
primer (0.5 𝜇g/𝜇L) and reagents from Invitrogen. cDNA
was amplified in triplicate in SYBR Green PCR Master
Mix (Applied Biosystems). The thermal cycling conditions
included 95∘C for 10min, followed by 40 cycles of amplifi-
cation at 95∘C for 15 s and 60∘C for 1min. Primer sequences
used for rat myogenic factor 6 (MYF6 6/MRF4), follistatin
(FST), mothers against decapentaplegic homolog 3 or SMAD
family member 3 (SMAD3), and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), which served as an internal con-
trol, are provided in Table 1. All primers were tested for
nonspecific amplicons and primer dimers by visualizing PCR
products on 2% agarose gels before performing qRT-PCR.
The ΔΔCT value method (where CT is cycle threshold) was
used to determine fold differences as described previously
[17].

3. Results

3.1. Changes in Soleus Muscle Wet Weight after SCI and
Treadmill Training. Soleus muscle wet weights are presented
in Figure 1. SCI resulted in a rapid loss in muscle weight
3 and 8 days after injury (−25%, 𝑝 = 0.0005). By day
14, muscle weight was still lower than in controls without
reaching significance (−16%, 𝑝 = 0.056). However, 5 days of
training significantly increased muscle wet weight (SCI14d +
TM, 𝑝 = 0.005).
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Table 2: Five most significantly activated pathways for each comparison of the study.

Group/comparison 3 days 8 days 14 days

No treadmill training
versus control

Protein ubiquitination pathway Mitochondrial dysfunction Mitochondrial dysfunction

Mitochondrial dysfunction Valine, leucine, and isoleucine
degradation

Synthesis and degradation of
ketone bodies

Oxidative phosphorylation Propanoate metabolism Oxidative phosphorylation
Regulation of eIF4 and p70S6K
signaling Butanoate metabolism Citrate cycle

Ubiquinone biosynthesis Pyruvate metabolism Ephrin receptor signaling

Treadmil training versus
no training

Protein ubiquitination pathway Estrogen receptor signaling
Amyloid processing EIF2 signaling

BMP signaling pathway Regulation of eIF4 and
p70S6K signaling

Role of BRCA1 in DNA damage
response Glutamate metabolism

Hereditary breast cancer signaling Granzyme B signaling

1430
0

50

100

150

200

250

8
Time (days)

 S
ol

eu
s w

et
 w

ei
gh

t (
m

g)

No TM
TM

∗∗

∗

∗

Figure 1: Muscle wet weight was significantly decreased on days
3 and 8 as compared to day 0 and significantly increased in the
treadmill training group as compared to untrained animals on day
14. ∗𝑝 < 0.05.

3.2.TheHighest Number ofDifferentially Expressed Transcripts
Was Observed 3 Days after SCI. The largest number of genes
differentially expressed compared to controls was found 3
days after SCI (Figure 2). In the treadmill trained groups,
the largest changes were found on day 14, compared to
untrained animals (Figure 2). In the untrained group, about
60% of the genes were downregulated at each time point,
which was reversed in the treadmill training group on day
8 with 63% of the genes upregulated. To identify the major
molecular pathways affected in each condition, Ingenuity
PathwayAnalysis (IPA)was performed. Table 2 shows the top
5 canonical pathways for each comparison.

3.3. Protein Ubiquitination and ATP Production Related
Genes Were Altered following SCI. At the early time point
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Figure 2: Number of probe sets differentially expressed in control
and SCI rat soleus muscles decreased 8 and 14 days after SCI.

(day 3), we found that the protein ubiquitination pathway
was largely activated. Indeed, 90% of the genes identified
by IPA showed increase in gene expression. In particular,
the expression of many proteasome subunits (PSMs) and
ubiquitin specific peptidases and enzymes was increased
(Suppl. Table 2 in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/387090). However, changes
in this pathway were no longer significant on days 8 and
14 as compared to control levels. On the other hand, the
mitochondrial dysfunction and oxidative phosphorylation
pathways were consistently ranked among the top 5 most
significant pathways at all time points of the study (days 3,
8, and 14) (Table 2). More than 95% of the genes identified
in these two pathways were downregulated 3 days after SCI
(Suppl. Tables 2, 3, and 4). In particular, the expression of the
NADHdehydrogenase subunits (NDUF) genes, the succinate
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dehydrogenase complex subunits (SDH) genes, and the ATP
synthase genes showed a decrease in gene expression.

3.4. Treadmill Training Rapidly Reversed the Changes in Pro-
tein Ubiquitination, Translation Factors, and Mitochondrial
Function Pathway. The protein ubiquitination pathway was
rapidly affected by treadmill training. While the majority of
the PSMs were upregulated on day 3, an overall significant
decrease was observed after 3 sessions of treadmill training.
In the Eif2 and the eif4/p70sk6 pathways, the expression of
the eukaryotic translation initiation factors (EIFs) subunits
and kinases underwent overall negative fold changes on
day 3 (Suppl. Table 2), which was corrected with training
(Suppl. Table 4). In addition, the expression of NDUFs ATP
synthases, Cox8A and Cox7A2L, was upregulated in trained
animals on day 14, also showing a corrective effect of TM on
muscle oxidative metabolism.

3.5. TGF-𝛽/Smad and BMP Signaling Pathways Are Involved
in theMuscle Remodeling Process during the Course of SCI and
Early Treadmill Training. Because the bone morphogenic
proteins (BMPs) signaling pathway was significantly altered
on day 8 in the trained group (ranked number 3, 𝑝 < 0.005),
we examined the changes in gene expression of some key
players in this pathway and in the TGF𝛽 pathway. To explore
possible downstream changes, we also looked into the gene
expression of the different smads associated with these path-
ways (Smad1, Smad3, Smad4, Smad5, Smad6, and Smad8), in
particular on day 3, and with acute training on day 8.

On day 3 in the BMP pathway, Smad4 (+1.8, 𝑝 < 0.05),
Smad1 (+1.8, 𝑝 < 0.05), and Smad5 (+1.3, 𝑝 < 0.05) gene
expression was upregulated. Smad3 did not show any signifi-
cant changes on day 3, while the activin receptor 2B (Acvr2B)
was downregulated (−1.6, 𝑝 < 0.05). In parallel, Smad6,
inhibitor of Bmpr2 activation, was decreased (−2.3,𝑝 < 0.05).

In SCI8d, Smad1 gene expression was increased (+1.6
fold, 𝑝 < 0.05). In addition, both follistatin (Fst) and Smad3
expression were increased (+2.5 fold, 𝑝 < 0.05, +2.0 fold,
𝑝 < 0.05, resp.) as compared to controls (Figure 3).

In SCI + TM on day 8, Fst was significantly decreased
(−1.5 fold, 𝑝 < 0.05). Smad3was also found to be significantly
downregulated (−1.3 fold, 𝑝 < 0.05). The expression of the
BMP complex 3 (Bmp3) was decreased (−2.35, 𝑝 < 0.05).
Importantly, Bmpr2 was concomitantly overexpressed with
treadmill training as compared to SCI only (+1.6 fold, 𝑝 <
0.05). As part of the genes reported in the BMP pathway
activated with training on day 8, Jun followed the same large
and transient increase (+1.5, 𝑝 < 0.05) as seen in Bmpr2
(Figure 3).

3.6. Genes Involved in Myogenesis and Muscle Regeneration
Were Affected by Treadmill Training. In addition to genes
identified by IPA, we specifically studied genes involved in
myogenesis, lipid metabolism, and fiber type switches, with a
particular focus on those that were affected by 5-day treadmill
training.

Igfbp5, modulator of IGF1 function in skeletal muscle,
showed a significant decrease 3 days after SCI, followed by

a large increase on day 14.This upregulationwas not observed
in the treadmill training group.

Three days after injury, dramatic changes were observed
in myogenic regulatory factors (MRFs), including Myf6 and
myogenin (Myog) (Figure 4). The Myog expression pattern
was not affected by treadmill training. On the other hand,
treadmill training induced an additional increase (𝑝 < 0.05)
in Myf6 after the first 3 sessions as compared to untrained
animals.

3.7. Fatty Acid Metabolism and Fiber Type Switch Related
Genes Showed High Sensitivity to SCI and Treadmill Training.
Lipoprotein lipase (Lpl) and Fabp3 gene expression were
dramatically decreased 3 days after SCI as compared to
controls and maintained low expression levels on days 8 and
14 after SCI. While the first sessions of locomotor training
did not significantly affect Lpl expression, it was completely
restored on day 14 (+2.32 fold, 𝑝 < 0.005) as shown in
Figure 5.

As early as 3 days after SCI and throughout the experi-
ment, several fast-twitch fiber markers genes (Mhy1, Mybph,
and Myh4) showed large and significant changes (Figure 6).
In parallel, the expression of several slow-twitch and vas-
culature smooth muscles markers (Myh3 and Myl2) was
decreased (𝑝 < 0.04) (Figure 6). Treadmill training had a
significant reverse effect on the expression of some fiber type
related genes, such as the fast-twitchmarkersMyh1 andMyh4.

3.8. RT-qPCRValidation. To validatemicroarray findings, we
selected 3 genes (Fst, Smad3, and Myf6) that were found to
be significantly affected by SCI and showed reversed changes
after the initial treadmill training. RT-qPCR confirmed that
Fst mRNA levels were significantly higher on day 8 after SCI
compared to controls (+2.5 fold, 𝑝 < 0.05) and decreased
in the trained group compared to untrained (Figure 7).
Smad3 expression was also significantly decreased with acute
treadmill training (−1.5 fold, 𝑝 < 0.05). On the other hand,
the increase in Myf6 in SCI on day 8 was not confirmed
(Figure 7(c)).

4. Discussion

The genetic and molecular events associated with changes
in muscle mass and function after SCI and after the imple-
mentation of candidate therapeutic approaches are still not
completely known. We used a well-characterized rat model
of moderate SCI combined with treadmill training as a reha-
bilitation strategy to explore the pathways and genes involved
in these conditions. The unique design of our study and
the use of genome wide analysis allowed the identification
of several major canonical pathways involved in protein
synthesis and muscle metabolism regulation after SCI and
treadmill training. In particular, the activity of the protein
ubiquitination and mitochondrial function related pathways
was altered with SCI and corrected with treadmill training.
Of particular interest, the BMP pathway was differentially
activated with early treadmill training as shown by IPA. The
expression of several muscle mass regulators was modulated
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Figure 3: BMP/TGF𝛽 pathway related genes. Gene expression level changes in Fst (a), Smad3 (b), Acvr2b (c), Smad1 (d), Bmpr2 (e), Smad6
(f), Jun (g), and Smad4 (h) in soleus of trained and untrained SCI animals. All expression levels are referenced to a control sample’s GAPDH
levels. ∗Significantly different from controls (𝑝 < 0.05). #Significantly different from untrained animals (𝑝 < 0.05).
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Figure 4: Myogenic regulatory factors. Gene expression level changes inMyf6 (a),Myog (b), in soleus of trained and untrained SCI animals.
All expression levels are referenced to a control sample’s GAPDH levels. ∗Significantly different from controls (𝑝 < 0.05). #Significantly
different from untrained animals (𝑝 < 0.05).
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Figure 5: Fatty acids metabolism. Gene expression level changes in Lpl (a), Fabp3 (b), in soleus of trained and untrained SCI animals. All
expression levels are referenced to a control sample’s GAPDH levels. ∗Significantly different from controls (𝑝 < 0.05). #Significantly different
from untrained animals (𝑝 < 0.05).

by treadmill training including Fst, Jun, Bmpr2, Actr2b, and
Smad3. In addition, key players in fatty acids metabolism
(Lpl and Fabp3) proved to be major sensors of SCI induced
inactivity and reloading with training.The decrease in Smad3
and Fst early after the initiation of treadmill training was
confirmed by RT-PCR. Our data suggest that TGF-𝛽/Smad3
signaling may be mainly involved in the decrease in muscle
mass observed with SCI, while the BMP pathway was acti-
vated with treadmill training. We also identified changes in

fiber type markers, consistent with a switch towards type II
fibers with SCI, and a reverse effect of treadmill training at
the gene expression level as early as 1 day after initiation.

4.1. Acute Response from the Protein Ubiquitination Pathway
to SCI and Training. The protein ubiquitination pathway is
essential to the control of protein breakdown and turnover
in the cell. It has been established that the activation of this
pathway contributes largely to muscle wasting in multiple
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Figure 6:Myosin heavy and light chain indicative of fiber type. Gene expression level changes inMyh1 (a),Myhbp (b), indicative of fast fibers,
andMyl2 andMyh3, indicative of slow fibers in soleus of trained and untrained SCI animals. All expression levels are referenced to a control
sample’s GAPDH levels. ∗Significantly different from controls (𝑝 < 0.05). #Significantly different from untrained animals (𝑝 < 0.05).

conditions [33], including denervation [34, 35], age and
sarcopenia [36], and hindlimb suspension in rats [37] and
in spinal cord injury in humans [21, 38]. In our model
of moderate SCI, the protein ubiquitination pathway was
activated as early as 3 days after injury, with the expression
of 56 genes significantly upregulated. This upregulation was
most likely responsible for the unbalance in protein synthe-
sis/degradation ratio resulting in the large muscle wasting
observed in the soleus on day 3. Conversely, the expression of
genes in the protein ubiquitination pathway was very rapidly
decreased on day 8 after only 3 sessions of treadmill training
in SCI animals and the expression of several 20S proteasome
subunits was significantly reduced. This was in accordance
with previous observations in a hindlimb suspension rat
model [39] 10 days after reloading. However, in another study
in humans, Reich et al. [38] could not detect any reverse
effect with 24 h of reloading after lower limb suspension.

Here, we were able to observe a significant and early response
within 36 h after the first training session, with a significant
decrease in the expression of the genes related to protein
ubiquitination (Suppl. Table 5).

4.2. Normalization of Mitochondrial Function Related Path-
ways with Training. Genes involved in the mitochondrial
dysfunction and oxidative phosphorylation related pathways
were also significantly changed. Together, the large number
of NUDF, SDH, and ATP synthases with changing gene
expression observed in SCI demonstrates a strong metabolic
activity disturbance associated with SCI that does not com-
pletely recover within 14 days after surgery. Mitochondrial
dysfunction after SCI was observed in vivo in several studies
performed in humans with SCI [40, 41]. Our own work using
31Pmagnetic resonance spectroscopy to assessmitochondrial
function in vivo in the same rat model of moderate SCI [24]
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Figure 7: FST (a), SMAD3 (b), andMYF6 (c) mRNA expression in the soleus muscle of controls, untrained SCI animal on day 8 after surgery
(SCI8d), and trained SCI animal on day 8 after surgery (SCI8d + TM). ∗𝑝 < 0.05.
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Figure 8: Schematic of the changes in soleus muscle gene expression within the TGF𝛽 and BMP pathways, with SCI (a) and acute response
to treadmill training (b). Panel (a) shows the combined changes observed on day 3 and 8 after SCI, where several Smads (Smads 3, 4, and 1/5)
and Fst gene expression was increased compared to control in parallel with muscle atrophy. Panel (b) summarizes the changes observed 8
days after SCI after 3 sessions of treadmill training compared to untrained animals. The changes in Smad3 and Fst were reversed, and Bmpr2
expression was increased, suggesting a role for the BMP pathway in the initiation of muscle mass recovery process observed with treadmill
training.
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showed that ATP production by mitochondria was affected 1
week after SCI and recovered in 3 weeks without training. It
should be noted that, in the present study, no acute effect of
treadmill training on mitochondrial dysfunction and oxida-
tive phosphorylation pathways related genes was detected on
day 8. However, our results suggest that treadmill training
and the concomitant muscle hypertrophy are accompanied
by partial correction of the mitochondrial function pathway
genes (NUDFs and ATP synthase) at a later time (day 14),
making mitochondria a target for early therapy in moderate
SCI.

4.3. Role of TGF-𝛽/Smad and BMP Pathways in Atrophy
following SCI. Follistatin (FST) is well known as an inhibitor
of the myostatin signaling within the TGF𝛽 pathway. It has
been shown that Fst overexpression leads to a large increase
in muscle mass in different animal models [42, 43]. Our
results showed a large significant increase of FST mRNA
levels with SCI after 8 days. It is possible that this increase
reflects a protective mechanism intended to stimulate muscle
growth. However our data showed that muscle wet weight
did not further decrease after the initial 28% loss on day
3. One possibility is that the increase in FST mRNA levels
may not have been sufficient to produce a recovery of
muscle mass. Interestingly, we also observed a concomitant
increase in Smad3 and Smad4 gene expression, downstream
the Act2b receptor, which might be responsible for atrophy.
Indeed, phosphorylated SMAD3 can mediate the activation
of ubiquitin ligases that induces proteasomal degradation
of contractile proteins [44]. More importantly, Winbanks
et al. [45] recently showed that SMAD3 protein expression
prevents skeletal muscle growth induced by follistatin and
may suppress Akt/mTOR/S6K signaling. In addition, Smad1
expression downstream the BMP pathway was increased,
potentially competing with SMAD3 for the recruitment of
SMAD4. If translated at the protein level, the balance between
FST inhibition of the TGF𝛽 signaling and increased SMAD3
and SMAD1 expression may have led to a plateau in soleus
muscle mass after the initial drop (Figure 8).

4.4. Role of TGF𝛽/Smad and BMP Pathways in Hypertrophy
following Treadmill Training. On the other hand, treadmill
training was able to restore the initial muscle mass by day 14
after SCI. Ourmain associated findings were a large and rapid
increase in the expression of Bmpr2 with treadmill training
36 hours after initiation, in parallel with the significant
decrease in FST and SMAD3 mRNA levels. The increased
Bmpr2 (BMPs receptor) levels could favor its activation by
BMPs and the subsequent phosphorylation of Smad1, Smad5,
and Smad8, which in turn bind with Smad4 leading to
hypertrophy [19]. Whereas a decrease in FST expression has
the ability to enable MSTN signaling and muscle growth,
a parallel decrease in SMAD3 protein expression could
contribute to an increase in SMAD4’s availability to other
binding proteins that can lead to hypertrophy, such as
SMADs 1, 5, and 8. A concomitant and rapid increase in
Jun was observed. It was shown that this transcription factor
acts downstream the TGF𝛽 [46] and that overexpression

of JUN results in dephosphorylation of SMAD3 [47]. This
body of observations is suggestive of a deactivation of the
TGF𝛽/Smad pathway and a larger role for the BMP axis in the
hypertrophy process following SCI and treadmill training.

4.5. Other Growth Factors (IGFs, MRFs). The IGF1-Akt-
mTOR pathway is known as a positive regulator of muscle
mass [18, 48–50]. This pathway was not highly ranked by the
present microarray analysis. However, the group previously
demonstrated the impact of moderate SCI and treadmill
training on several IGF proteins and binding proteins, but
not on MYF5 in skeletal muscle [23]. Consistently with these
previous results, here we observed that Igbp5 andMyog were
overexpressed after SCI and that Igbp5 expression levels were
corrected with treadmill training. In addition, we explored
the possible impact of treadmill training on MRF4/MYF6 as
indicated by the microarray results and found no significant
increase in mRNA levels. This discrepancy may be due
to experimental variations or slight biological differences
between the batches of muscle samples used for microarray
and RT-qPCR validation.

4.6. Fatty Acid Metabolism and Fiber Type Related Genes as
a Sensor of Muscle Activity in SCI and Treadmill Training.
Lipoprotein lipase (LPL) is a major enzyme involved in fatty
acid (FA) metabolism and transport. After transport into
the cytoplasm, FA binds to the fatty acid binding protein 3
(FABP3). Both LPL and FABP3 have been shown to be highly
sensitive to contractile activity in muscle [51, 52]. Here, both
Lpl and Fabp3 genes showed high sensitivity to SCI induced
disuse and to locomotor training. The downregulation of
these fatty acid transporters in SCI rats was consistent with
the recent observation by Long et al. [53] in muscle biopsies
obtained from human subjects with SCI. On the other hand,
we measured a large positive change in Lpl and Fabp3
gene expression in response to locomotor training, with
expression levels nearly corrected (92% of control levels) by
day 14. Upregulation of LPL and FABP3 has been previously
demonstrated in conjunction with increased muscle activity,
such as muscle endurance training in humans [54], reloading
after hindlimb suspension [28], and electrostimulation in
denervatedmuscles [55] in rats.We established that treadmill
training, as performed in our study, was sufficient to restore
control levels of gene expression within 5 days. Our results
further demonstrated the high sensitivity of Lpl and Fabp3
gene expression to muscle activity and reloading achieved by
treadmill training leading tomuscle hypertrophy inmoderate
SCI rats.

Fiber type related genes also showed a great sensitivity
to SCI induced disuse. It has been well established in the
literature that muscle fibers distribution undergoes a shift
towards fast fibers with disuse after SCI [56]. Consistent with
this, we observed a fast change in the expression of myosin
heavy and light chains genes, with an increase in some of the
fast type (Myh1,Myhbp) and a decrease in the slow type (Myl2
and Myh3). Interestingly, the expression level of Myh1 was
corrected in response to treadmill training on day 14, showing
the effect of training on SCI muscles.
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In summary, using genome wide analysis, we were able
to identify some of the main pathways responsible for muscle
wasting following moderate SCI and more importantly the
corrective effect of treadmill training on these pathways.
Here, we chose to focus on the BMP and TGF𝛽 signaling
and established a key role for some of the genes within these
pathways. Our observations suggest that Smad3, Bmpr2, and
Fst are genes of interest in the study of moderate SCI. Protein
expression and phosphorylation need to be investigated to
allow further interpretation, although beyond the scope of
this study. It wouldmake it possible to test the hypotheses that
Fst overexpression in SCI competes with Smad3 regulation
and that this effect is reversed by treadmill training leading to
musclemass recovery.More importantly, this would elucidate
whether or not treadmill training activates the BMP/Smad
pathway contributing to hypertrophy. This would establish
the effect of BMP signaling activation and TGF𝛽 signaling on
muscle regeneration with treadmill training in SCI via Smad3
downregulation proving early indicators of efficient reloading
in SCI rat and as a promising therapeutic approach.The body
of data presented in this study constitutes a comprehensive
guide to future studies targeting muscle mass preservation or
recovery in moderate SCI.

Disclaimer

Thecontent is solely the responsibility of the authors and does
not necessarily represent the official views of the National
Institutes of Health.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was funded by the Paralyzed Veterans
Administration-2347, NIH/NICHD RO1HD048051, and
1R24HD050846. Yi-Wen Chen and Sachchida Nand Pandey
were partially supported by NIH/NIAMS under Award
number 1R01AR052027 and FSHD Society under Award
number FSHS-82013-01.

References

[1] M. J. Castro, D. F. Apple Jr., E. A. Hillegass, and G. A. Dudley,
“Influence of complete spinal cord injury on skeletal muscle
cross-sectional area within the first 6 months of injury,” Euro-
pean Journal of Applied Physiology and Occupational Physiology,
vol. 80, no. 4, pp. 373–378, 1999.

[2] P. K. Shah, J. E. Stevens, C. M. Gregory et al., “Lower-extremity
muscle cross-sectional area after incomplete spinal cord injury,”
Archives of Physical Medicine and Rehabilitation, vol. 87, no. 6,
pp. 772–778, 2006.

[3] R. Banerjea, U. Sambamoorthi, F. Weaver, M. Maney, L. M.
Pogach, and T. Findley, “Risk of stroke, heart attack, and
diabetes complications among veterans with spinal cord injury,”

Archives of Physical Medicine and Rehabilitation, vol. 89, no. 8,
pp. 1448–1453, 2008.

[4] C. P. Elder, D. F. Apple, C. S. Bickel, R. A. Meyer, and G. A.
Dudley, “Intramuscular fat and glucose tolerance after spinal
cord injury—a cross-sectional study,” Spinal Cord, vol. 42, no.
12, pp. 711–716, 2004.

[5] S. Rossignol andA. Frigon, “Recovery of locomotion after spinal
cord injury: some facts and mechanisms,” Annual Review of
Neuroscience, vol. 34, pp. 413–440, 2011.

[6] R. D. de Leon, J. A. Hodgson, R. R. Roy, and V. R. Edgerton,
“Locomotor capacity attributable to step training versus spon-
taneous recovery after spinalization in adult cats,” Journal of
Neurophysiology, vol. 79, no. 3, pp. 1329–1340, 1998.

[7] K. L. Caudle, E.H. Brown,A. Shum-Siu et al., “Hindlimb immo-
bilization in a wheelchair alters functional recovery following
contusive spinal cord injury in the adult rat,”Neurorehabilitation
and Neural Repair, vol. 25, no. 8, pp. 729–739, 2011.

[8] K. Fouad, G. A. S. Metz, D.Merkler, V. Dietz, andM. E. Schwab,
“Treadmill training in incomplete spinal cord injured rats,”
Behavioural Brain Research, vol. 115, no. 1, pp. 107–113, 2000.

[9] M. Liu, P. Bose, G. A. Walter, F. J. Thompson, and K. Vanden-
borne, “A longitudinal study of skeletal muscle following spinal
cord injury and locomotor training,” Spinal Cord, vol. 46, no. 7,
pp. 488–493, 2008.

[10] J. Frystyk, “Exercise and the growth hormone-insulin-like
growth factor axis,”Medicine and Science in Sports and Exercise,
vol. 42, no. 1, pp. 58–66, 2010.

[11] S. H. Lecker, V. Solomon, W. E. Mitch, and A. L. Gold-
berg, “Muscle protein breakdown and the critical role of the
ubiquitin-proteasome pathway in normal and disease states,”
The Journal of Nutrition, vol. 129, no. 1, pp. 227S–237S, 1999.

[12] W. E. Mitch and A. L. Goldberg, “Mechanisms of disease:
mechanisms of muscle wasting: the role of the ubiquitin-
proteasome pathway,”TheNewEngland Journal ofMedicine, vol.
335, no. 25, pp. 1897–1905, 1996.

[13] J. Batt, J. Bain, J. Goncalves et al., “Differential gene expression
profiling of short and long term denervatedmuscle,”TheFASEB
Journal, vol. 20, no. 1, pp. 115–117, 2006.

[14] S. H. Lecker, R. T. Jagoe, A. Gilbert et al., “Multiple types of
skeletal muscle atrophy involve a common program of changes
in gene expression,”The FASEB Journal, vol. 18, no. 1, pp. 39–51,
2004.

[15] A. Raffaello, P. Laveder, C. Romualdi et al., “Denervation in
murine fast-twitch muscle: short-term physiological changes
and temporal expression profiling,” Physiological Genomics, vol.
25, no. 1, pp. 60–74, 2006.

[16] H. Tang, W. M. W. Cheung, F. C. F. Ip, and N. Y. Ip, “Identifi-
cation and characterization of differentially expressed genes in
denervated muscle,” Molecular and Cellular Neurosciences, vol.
16, no. 2, pp. 127–140, 2000.

[17] Y.-W. Chen, M. J. Hubal, E. P. Hoffman, P. D. Thompson, and
P. M. Clarkson, “Molecular responses of human muscle to
eccentric exercise,” Journal of Applied Physiology, vol. 95, no. 6,
pp. 2485–2494, 2003.

[18] S. Schiaffino, K. A. Dyar, S. Ciciliot, B. Blaauw, and M. Sandri,
“Mechanisms regulating skeletal muscle growth and atrophy,”
The FEBS Journal, vol. 280, no. 17, pp. 4294–4314, 2013.

[19] R. Sartori, E. Schirwis, B. Blaauw et al., “BMP signaling controls
muscle mass,” Nature Genetics, vol. 45, no. 11, pp. 1309–1321,
2013.



12 BioMed Research International

[20] P. Bialek, C. Morris, J. Parkington et al., “Distinct protein
degradation profiles are induced by different disuse models of
skeletal muscle atrophy,” Physiological Genomics, vol. 43, no. 19,
pp. 1075–1085, 2011.

[21] M. L. Urso, Y.-W. Chen, A. G. Scrimgeour, P. C. Lee, K. F.
Lee, and P. M. Clarkson, “Alterations in mRNA expression and
protein products following spinal cord injury in humans,” The
Journal of Physiology, vol. 579, no. 3, pp. 877–892, 2007.

[22] D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Graded
histological and locomotor outcomes after spinal cord contu-
sion using the NYU weight-drop device versus transection,”
Experimental Neurology, vol. 139, no. 2, pp. 244–256, 1996.

[23] M. Liu, J. E. Stevens-Lapsley, A. Jayaraman et al., “Impact of
treadmill locomotor training on skeletal muscle IGF1 and myo-
genic regulatory factors in spinal cord injured rats,” European
Journal of Applied Physiology, vol. 109, no. 4, pp. 709–720, 2010.

[24] P. K. Shah, F. Ye, M. Liu et al., “In vivo 31P NMR spectroscopy
assessment of skeletal muscle bioenergetics after spinal cord
contusion in rats,” European Journal of Applied Physiology, vol.
114, no. 4, pp. 847–858, 2014.

[25] D. M. Basso, M. S. Beattie, J. C. Bresnahan et al., “MASCIS
evaluation of open field locomotor scores: effects of experience
and teamwork on reliability. Multicenter Animal Spinal Cord
Injury Study,” Journal of Neurotrauma, vol. 13, no. 7, pp. 343–
359, 1996.

[26] M. Liu, P. Bose, G. A. Walter, D. K. Anderson, F. J. Thomp-
son, and K. Vandenborne, “Changes in muscle T2 relaxation
properties following spinal cord injury and locomotor training,”
European Journal of Applied Physiology, vol. 97, no. 3, pp. 355–
361, 2006.

[27] F. J. Thompson, P. J. Reier, C. C. Lucas, and R. Parmer, “Altered
patterns of reflex excitability subsequent to contusion injury of
the rat spinal cord,” Journal of Neurophysiology, vol. 68, no. 5,
pp. 1473–1486, 1992.

[28] L. Bey and M. T. Hamilton, “Suppression of skeletal muscle
lipoprotein lipase activity during physical inactivity: a molecu-
lar reason to maintain daily low-intensity activity,” The Journal
of Physiology, vol. 551, no. 2, pp. 673–682, 2003.

[29] J. G. Burniston, T.H.Meek, S. N. Pandey et al., “Gene expression
profiling of gastrocnemius of ‘minimuscle’ mice,” Physiological
Genomics, vol. 45, no. 6, pp. 228–236, 2013.

[30] Y.-W. Chen, K. Nagaraju, M. Bakay et al., “Early onset of
inflammation and later involvement of TGF𝛽 in Duchenne
muscular dystrophy,” Neurology, vol. 65, no. 6, pp. 826–834,
2005.

[31] Y.-W. Chen, P. Zhao, R. Borup, and E. P. Hoffman, “Expression
profiling in the muscular dystrophies: identification of novel
aspects of molecular pathophysiology,” Journal of Cell Biology,
vol. 151, no. 6, pp. 1321–1336, 2000.

[32] M. Dixit, E. Ansseau, A. Tassin et al., “DUX4, a candidate
gene of facioscapulohumeral muscular dystrophy, encodes a
transcriptional activator of PITX1,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 104, no.
46, pp. 18157–18162, 2007.

[33] R. T. Jagoe and A. L. Goldberg, “What do we really know about
the ubiquitin-proteasome pathway inmuscle atrophy?”Current
Opinion in Clinical Nutrition and Metabolic Care, vol. 4, no. 3,
pp. 183–190, 2001.

[34] H. M. Argadine, N. J. Hellyer, C. B. Mantilla, W.-Z. Zhan, and
G. C. Sieck, “The effect of denervation on protein synthesis and
degradation in adult rat diaphragm muscle,” Journal of Applied
Physiology, vol. 107, no. 2, pp. 438–444, 2009.

[35] R. Medina, S. S. Wing, A. Haas, and A. L. Goldberg, “Activation
of the ubiquitin-ATP-dependent proteolytic system in skeletal
muscle during fasting and denervation atrophy,” Biomedica
Biochimica Acta, vol. 50, no. 4–6, pp. 347–356, 1991.

[36] M. Altun, H. C. Besche, H. S. Overkleeft et al., “Muscle wasting
in aged, sarcopenic rats is associated with enhanced activity
of the ubiquitin proteasome pathway,”The Journal of Biological
Chemistry, vol. 285, no. 51, pp. 39597–39608, 2010.

[37] D. Taillandier, E. Aurousseau, D. Meynial-Denis et al., “Coor-
dinate activation of lysosomal, Ca2+-activated and ATP-
ubiquitin-dependent proteinases in the unweighted rat soleus
muscle,” Biochemical Journal, vol. 316, no. 1, pp. 65–72, 1996.

[38] K. A. Reich, Y.-W. Chen, P. D. Thompson, E. P. Hoffman, and
P. M. Clarkson, “Forty-eight hours of unloading and 24 h of
reloading lead to changes in global gene expression patterns
related to ubiquitination and oxidative stress in humans,”
Journal of Applied Physiology, vol. 109, no. 5, pp. 1404–1415, 2010.

[39] E. Vazeille, A. Codran, A. Claustre et al., “The ubiquitin-
proteasome and the mitochondria-associated apoptotic path-
ways are sequentially downregulated during recovery after
immobilization-inducedmuscle atrophy,”TheAmerican Journal
of Physiology: Endocrinology andMetabolism, vol. 295, no. 5, pp.
E1181–E1190, 2008.

[40] K. K. McCully, T. K. Mulcahy, T. E. Ryan, and Q. Zhao, “Skeletal
muscle metabolism in individuals with spinal cord injury,”
Journal of Applied Physiology, vol. 111, no. 1, pp. 143–148, 2011.

[41] J. L. Olive, J. M. Slade, G. A. Dudley, and K. K. McCully, “Blood
flow and muscle fatigue in SCI individuals during electrical
stimulation,” Journal of Applied Physiology, vol. 94, no. 2, pp.
701–708, 2003.

[42] A.M.Haidet, L. Rizo, C.Handy et al., “Long-term enhancement
of skeletal muscle mass and strength by single gene admin-
istration of myostatin inhibitors,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 105, no.
11, pp. 4318–4322, 2008.

[43] S.-J. Lee andA. C.McPherron, “Regulation ofmyostatin activity
and muscle growth,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 98, no. 16, pp. 9306–
9311, 2001.

[44] S. Lokireddy, C. McFarlane, X. Ge et al., “Myostatin induces
degradation of sarcomeric proteins through a Smad3 signal-
ing mechanism during skeletal muscle wasting,” Molecular
Endocrinology, vol. 25, no. 11, pp. 1936–1949, 2011.

[45] C. E. Winbanks, J. L. Chen, H. Qian et al., “The bone morpho-
genetic protein axis is a positive regulator of skeletal muscle
mass,” The Journal of Cell Biology, vol. 203, no. 2, pp. 345–357,
2013.

[46] L. Li, J.-S. Hu, and E. N. Olson, “Different members of the jun
proto-oncogene family exhibit distinct patterns of expression in
response to type beta transforming growth factor,” The Journal
of Biological Chemistry, vol. 265, no. 3, pp. 1556–1562, 1990.

[47] A. Raffaello, G.Milan, E.Masiero et al., “JunB transcription fac-
tor maintains skeletal muscle mass and promotes hypertrophy,”
The Journal of Cell Biology, vol. 191, no. 1, pp. 101–113, 2010.

[48] D. J. Glass, “PI3 kinase regulation of skeletal muscle hypertro-
phy and atrophy,” Current Topics in Microbiology and Immunol-
ogy, vol. 346, no. 1, pp. 267–278, 2010.

[49] E. Latres, A. R. Amini, A. A. Amini et al., “Insulin-like
growth factor-1 (IGF-1) inversely regulates atrophy-induced
genes via the phosphatidylinositol 3-kinase/Akt/mammalian
target of rapamycin (PI3K/Akt/mTOR) pathway,” The Journal
of Biological Chemistry, vol. 280, no. 4, pp. 2737–2744, 2005.



BioMed Research International 13

[50] J. M. Sacheck, A. Ohtsuka, S. C. McLary, and A. L. Gold-
berg, “IGF-I stimulates muscle growth by suppressing protein
breakdown and expression of atrophy-related ubiquitin lig-
ases, atrogin-1 and MuRF1,” American Journal of Physiology:
Endocrinology and Metabolism, vol. 287, no. 4, pp. E591–E601,
2004.

[51] R. B. Simsolo, J. M. Ong, and P. A. Kern, “The regulation
of adipose tissue and muscle lipoprotein lipase in runners by
detraining,” The Journal of Clinical Investigation, vol. 92, no. 5,
pp. 2124–2130, 1993.

[52] E. Ernicka, E. Smol, J. Langfort, and M. Górecka, “Time
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