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Over the past several years, rapid technological advances have allowed for a dramatic in-
crease in our knowledge and understanding of the transcriptional landscape, because of the
ability to study gene expression in greater depth and with more detail than previously pos-
sible. To this end, RNA-Seq has quickly become one of the most widely used methods for
studying transcriptomes of tissues and individual cells. Unlike previously favored analysis
methods, RNA-Seq is extremely high-throughput, and is not dependent on an annotated
transcriptome, laying the foundation for novel genetic discovery. Additionally, RNA-Seq
derived transcriptomes provide a basis for widening the scope of research to identify poten-
tial targets in the treatment of retinal disease.

The study of whole transcriptome gene ex-
pression in disease research is not a novel

concept. Early methods of gene expression anal-
ysis, such as the use of expressed sequence tags
(EST) and serial analysis of gene expression
(SAGE), have been in use since the early 1990s.
In the late 1990s, microarrays quickly became
the method of choice for the study of gene ex-
pression, owing to their higher throughput na-
ture. These methods allowed scientists to study
transcriptomes in great detail and in less time,
giving rise to large amounts of information
more quickly than previously thought possible.

Early gene expression studies using ESTanal-
ysis were first published by Adams et al. (1991),
and quickly gained popularity as a means to
identify novel alternate splice sites and examine
differential expression in data sets. This tech-

nique involves sequencing a cloned cDNA and
mapping the sequence (100–800 bp) to a ge-
nome of interest. In 1999, 83 EST clusters were
identified as potential retinal specific genes, with
14 further classified as potential disease genes
(Malone et al. 1999). By 2000, the first analysis
of the retinal transcriptome was published (Bor-
toluzzi et al. 2000). Nearly 5000 known retinal
genes were studied, levels of expression were es-
timated, and several genes were noted to be po-
tentially associated with disease. Although EST
studies laid the groundwork for analysis of the
retinal transcriptome, they are extremely low-
throughput, making whole transcriptome anal-
yses time consuming and difficult.

The use of SAGE analysis was first published
in 1995 as a means to study differences in gene
expression in patients with cancer (Velculescu
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et al. 1995). SAGE studies produce a list of short
(10–20 bp) sequences, which can then be
mapped back to a genome of interest, where-
as EST studies are based on the sequencing of
one longer sequence. In 2002, SAGE libraries
constructed from two eye tissue samples were
studied, identifying 26,355 retinal transcripts,
and 10,404 RPE (retinal pigment epithelium)
transcripts (Sharon et al. 2002). SAGE studies,
although an improvement on ESTs, are still
low-throughput, and the analysis of an entire
transcriptome is both time-consuming and
expensive, necessitating the use of more high-
throughput analysis methods to comprehen-
sively study the retinal transcriptome (Swaroop
and Zack 2002).

DNA microarrays were an answer to the call
for higher throughput methods of expression
analysis, and were first used to study a “com-
plete” genome in 1997 (Lashkari et al. 1997).
Microarrays evolved from the technique of
Southern blotting. Complementary sequence
that aligns uniquely to each gene of interest
are mapped on an array, and used to determine
the relative levels of expression of each gene in a
given sample. In 2010, microarray analysis iden-
tified 154 “signature RPE genes,” in which ex-
pression in the RPE was at least 10-fold higher
than published expression levels in other tissues
(Strunnikova et al. 2010). The high-throughput
nature of microarrays makes this method pref-
erable to EST and SAGE for whole transcrip-
tome analyses. However, microarrays only allow
for relative quantitation of transcripts com-
pared with all other transcripts on the array.
Additionally, microarrays are reliant on a prop-
erly annotated genome. It is only possible to
study previously identified transcripts, without
the ability to identify alternate splice sites or
novel exons.

RNA-Seq is the newest and most widely
used method for transcriptome analyses, com-
bining the qualitative nature of EST and SAGE
studies with the high-throughput and quan-
titative abilities of microarrays. Importantly,
RNA-Seq experiments are extremely cost-effec-
tive considering the large amount of data pro-
duced, and allow for the identification of novel
exons, splice sites, and transcripts. Whereas EST

and SAGE sequencing studies required the re-
searcher to clone a small section of a genome at
a time, RNA-Seq allows for the sequencing of an
entire transcriptome (we define the transcrip-
tome as all expressed RNAs, both coding and
noncoding). This greatly enhances the possibil-
ity of finding novel transcripts, and offers in-
creased insight into the transcriptional dynam-
ics of a particular cell.

Next generation sequencing (NGS) has be-
come a ubiquitous research tool in all fields of
science, and has greatly enhanced the field of
ophthalmology. The rise of NGS was possible
because of the many advantages it offered over
previously preferred techniques. Now, with only
nanogram levels of starting material, the current
NGS technologies can create more than one
hundred million paired-end reads, covering a
large portion of the genome, or transcriptome,
while maintaining sensitivity and specificity
(Mardis 2008; Morozova 2008; Shendure 2008;
Reis-Filho 2009). The data generated is useful
in a variety of applications because of its dual
qualitative and quantitative nature (Reis-Filho
2009). This enables individual investigators
to pursue projects previously accessible only to
larger consortia, particularly because of its cost
effectiveness over Sanger sequencing (Schuster
2007; Morozova 2008; Shendure 2008).

One of the most prominent challenges of
RNA-Seq has been the bioinformatic analysis
of such large data sets. The massive amount of
data generated by each sequencing run has cre-
ated a high demand for pipelines capable of ac-
curately analyzing the data in a timely manner
(Shendure 2008). In addition, as RNA-Seq stud-
ies continue to produce more and more data,
it becomes increasingly difficult to sift through
the results to discover pertinent biological in-
sights (Reis-Filho 2009).

NEXT GENERATION SEQUENCING IN
OPHTHALMOLOGY

Since its commercial availability in 2004, NGS
has been used in a variety of cases within oph-
thalmology (Mardis 2008). Whole exome se-
quencing has identified both novel and known
mutations in DHDDS, SNRNP200, MAK,
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NMNAT1, and RPE65, in patients with Leber
congenital amuarosa (LCA) and retinitis pig-
mentosa (RP) (Benaglio 2011; Bowne 2011; Öz-
gül 2011; Tucker 2011; Wang 2012). Similarly,
NGS has been used to search for mutations in
other ocular conditions. In 2010, mutations
were discovered in TSPAN12, in patients who
exhibited familial exudative vitreoretinopathy
(Nikopoulos 2010). NGS has also been used
to investigate variants in ABCA4, which is asso-
ciated with a number of retinal dystrophies in-
cluding Stargardt disease, cone–rod dystrophy
and RP (Zernant 2011). Furthermore, this tech-
nology has aided in the discovery of mutations
in GPR179 and ATOH7, which are associated
with autosomal-recessive complete congenital
stationary night blindness and global eye de-
fects, respectively (Khan 2012).

Increasingly, NGS has been used in a clinical
setting for diagnostic purposes within ophthal-
mology. This method has the ability to aid in the
diagnosis of diseases such as RP, which has doz-
ens of causative genes associated with it (Audo
2012; Neveling 2012; Schrader 2011). NGS has
the ability to continue to shape both the future
of diagnostics and ophthalmology research as
a whole.

RNA-SEQUENCING

RNA-Seq is a powerful NGS method that allows
for the study of transcriptomes in great detail
and with a high degree of accuracy, providing
unprecedented resolution of gene expression at
the level of the transcript down to a single base
(Chepelev et al. 2009; Costa et al. 2010; Mar-
guerat and Bahler 2010). This affords the ability
to study RNA editing, alternative splicing, and
isoform quantification (Costa et al. 2010; Ozso-
lak and Milos 2011; Rosenberg et al. 2011; Dje-
bali et al. 2012). Further, the relatively unbiased
nature of the technology captures novel tran-
scriptome events including novel isoforms and
novel gene expression (Chen et al. 2011; Hal-
vardson et al. 2013; Kim et al. 2012; Mercer
et al. 2012). RNA-Seq studies provide a vast
wealth of information, and hence require so-
phisticated methodologies and bioinformatic
algorithms for data analysis. As NGS technology

continues to improve, the RNA-Seq library
preparation techniques and analysis packages
are quickly evolving as well. These innovations,
along with the development of appropriate
models, allow for RNA-Seq to be applied to vi-
sion research.

NEXT GENERATION LIBRARY PREPARATION

Initially, RNA-Seq was limited by the relatively
large amount (1–10 mg) of total RNA required
for library preparation (Farkas et al. 2012; Grant
et al. 2011). This amount of RNA was needed
because of long protocols with many inefficient
purification steps that lead to significant loss of
product. Even with such large starting amounts
of RNA, the loss of sample at each step required
PCR amplification to have enough final product
for sequencing. It is important to note that
over-amplification has the potential to lead to
amplification bias and PCR artifacts (Wang et
al. 2009; Costa et al. 2010, 2012). These initial
preparations were labor-intensive, relatively low-
throughput, multi-day protocols.

Lower input, higher-throughput methods
have since been developed, which allow for start-
ing total RNA concentrations as low as 100 ng
(Brooks et al. 2011, 2012). An initial concern
with using minimal starting material was that
samples would be underrepresented when com-
pared with data produced using the earlier, high-
input protocols. Brooks et al. (2012), however,
showed in mouse retina that the two methods
are comparable (Brooks et al. 2011). Although
an improvement on the first library prepara-
tion protocols, these methods are still subject
to PCR bias because of necessary amplification
before sequencing, and require multiple days to
complete.

A newer innovation involves transposon-
mediated fragmentation and adaptor ligation,
processes originally designed for DNA sequenc-
ing that can be adapted for RNA-Seq library
preparation (Syed 2010; Gertz et al. 2012). Un-
like previous RNA-Seq preparation methods, in
which polyadenylated RNA (polyA RNA) was
selected and fragmented, then converted to
double-stranded cDNA (ds cDNA), the new
method involves a polyA RNA selection step
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during first-strand cDNA synthesis followed by
transposon-based fragmentation of ds cDNA.
This offers significant improvements to the pro-
cess, eliminating purification steps and mini-
mizing loss of product. Further, because there
are fewer purification steps in this process, the
number of amplification cycles is reduced to
only five, and PCR bias is minimized. Finally,
this newest method is higher throughput and
can be performed in hours rather than days.

BIOINFORMATIC ANALYSIS—ALIGNMENT
OF RNA-Seq DATA

One of the most critical steps in any RNA-Seq
experiment is the alignment of reads to a refer-
ence genome and/or transcriptome. This is also
one of the most challenging steps because of
splicing of exons to form transcripts. RNA-Seq
aligners are continually being developed, and
improved, to overcome this challenge. Many
of the currently available alignment algorithms
have been comprehensively characterized and
reviewed (Fonseca et al. 2012; Lindner and Frie-
del 2012). The most important factors to con-
sider when choosing an RNA-Seq aligner are its
ability to: 1) accurately align reads; 2) maximize
the number of reads aligned (sensitivity); 3)
detect splice junctions (both annotated and
novel); and 4) efficiently align reads (i.e., speed
of alignment with minimal compute resources).

Currently, no RNA-Seq alignment algo-
rithm is able to outperform the others in all
four categories. In choosing which algorithm
is most suitable for a particular RNA-Seq exper-
iment, it is important to weigh the benefits of
each. For example, of the most popular aligners,
RUM (RNA-Seq unified mapper) and GSNAP
(Genomic Short-Read Nucleotide Alignment
Program) are the most accurate, sensitive, and
capable of detecting splice junctions (Grant
et al. 2011; Dobin et al. 2013). However, they
are only able to achieve this by being compute-
intensive and having slower alignment speeds,
relative to other programs. The most recent-
ly developed algorithm, STAR, is an ultrafast
aligner that uses fewer compute resources rela-
tive to RUM and GSNAP, but does so at the cost
of sensitivity and accuracy (Dobin et al. 2013).

Even so, STAR outperforms some of the most
popular alignment algorithms such as TopHat
and MapSplice.

Although alignment speed is certainly im-
portant, with such large data sets being pro-
duced by NGS studies, it may be the least im-
portant factor, taking into account the amount
of data needed to fully cover a transcriptome.
We have reported that 100 million reads are nec-
essary to fully cover both the human and mouse
neural retina transcriptome (Grant et al. 2011;
Farkas et al. 2012, 2013). Because transcriptome
complexity varies between tissues and organ-
isms, it is necessary to independently determine
the appropriate depth of coverage for each RNA-
Seq study (Wang et al. 2008; Barbosa-Morais
et al. 2012; Gonzalez-Porta et al. 2012). With
the amount of relatively inexpensive resources
available on the cloud, if a read depth of 100
million read is considered sufficient, aligner
speed becomes less important than accuracy,
sensitivity, and junction detection (Karlsson
et al. 2012; Kienzler et al. 2012; Morgan et al.
2012; Nekrutenko and Taylor 2012; Zhang et
al. 2012).

BIOINFORMATIC ANALYSIS—
DIFFERENTIAL EXPRESSION

Although an important part of the analysis pro-
cess, sequence alignment is only the first step in
the bioinformatic processing of RNA-Seq data.
Downstream analysis algorithms are necessary
to obtain more useful information, and can ad-
dress a range of issues, from basic tasks such as
quantification of differential gene expression, to
more challenging projects such as determining
alternative splicing and RNA-editing (Peng et
al. 2012). Unfortunately, as with the alignment
algorithms, development of algorithms to per-
form such downstream analyses have lagged be-
hind the advances in sequencing technology,
and there is limited consensus as to which per-
form optimally.

Often, one of the first postalignment ques-
tions regarding sequencing data is the determi-
nation of differential expression (DE) between
conditions. This is not a new concept; analysis of
transcriptome data for DE features has been per-
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formed since the first experiments utilizing
SAGE (Lorenz and Dean 2002; Baggerly et al.
2003; Lu et al. 2005). Microarrays soon replaced
SAGE as the method of choice to study tran-
scriptomes, and a new set of DE algorithms
were developed (Cui and Churchill 2003; Smyth
2004). When RNA-Seq was developed, it was
assumed that the statistical models developed
for microarrays could be adapted for RNA-Seq
DE analyses. Indeed, some RNA-Seq DE algo-
rithms borrow statistical assumptions from
microarray packages (Oshlack et al. 2010). How-
ever, microarray quantification is based on
a continuous intensity distribution, whereas
RNA-Seq quantification is the result of a discrete
measurement (i.e., number of reads mapped to
a feature). The differences in data distribution
and the biases associated with each method
suggest that DE algorithms would not be com-
patible between the two. Microarray data is
modeled using a normal distribution, although
a Poisson distribution was initially determined
to be the most appropriate for modeling RNA-
Seq data (Marioni et al. 2008; Bullard et al.
2010). In fact, analysis of RNA-Seq experiments
in which the same sample was run over multiple
lanes of a flowcell showed that RNA-Seq datawas
Poisson distributed (Marioni et al. 2008). Pois-
son modeling of biological replicates, however,
does not account for biological variability, and is
prone to high false positive rates (Anders and
Huber 2010). Interestingly, the analysis method
that most appropriately fits RNA-Seq data was
first developed for SAGE analyses. Because these
two methods are relatively similar and mainly
differ in the amount of data generated from a
single experiment, a negative binomial distribu-
tion has been considered the most appropriate
for DE analysis of RNA-Seq data (Robinson and
Smyth 2008; Anders and Huber 2010; Hardcas-
tle 2010; Robinson et al. 2010). Two of the most
popular DE algorithms, DESeq and EdgeR, in-
corporate the negative binomial statistical ap-
proach, but differ in their normalization meth-
ods (Anders and Huber 2010; Robinson et
al. 2010). Multiple studies comparing the two
methods have been published with the consen-
sus being that DESeq is more conservative and
better limits the false positive rate, although

EdgeR is able to call more truly DE genes, but
at the expense of a higher false positive rate (Ra-
paport et al. 2013; Soneson and Delorenzi
2013). Ultimately, the best algorithm will be
the one that best fits the research design of the
end user.

In addition to quantification of gene expres-
sion, RNA-Seq can be used to study RNA splic-
ing. Detecting splice junctions is not a trivial
task, as it requires mapping reads to multiple
locations in the genome, separated by anywhere
from a few bases to as many as a few hundred
thousand bases. The ability to perform such
mapping functions are built into alignment al-
gorithms, but are performed differently by each.
RUM, for example, identifies annotated splice
junctions by using a concatenated transcrip-
tome index, which does not include introns
or intergenic regions (Grant et al. 2011). This
allows RUM to quickly align reads to anno-
tated junctions without the need for gapped
alignment. Novel splice junction detection by
RUM is more compute intensive because it is
performed using the BLAST-Like Alignment
Tool (BLAT) (Kent 2002). BLAT uses an “an-
chor-extension” strategy, in which a portion of
the read is aligned to the genome, and is con-
sidered to “anchor” the alignment. The remain-
ing read is then aligned to another region in the
genome. In contrast, TopHat uses an alternative
method for detecting splice junctions, which
relies on the aligner Bowtie, assembly algorithm
Maq, and canonical splice site information to
map reads crossing splice junctions (Li et al.
2008; Trapnell et al. 2009). TopHat splice junc-
tion mapping differs from the “anchor-exten-
sion” method in that it maps reads to build
“islands” that represent exons, using the canon-
ical splice site information to find the exon/
intron boundaries.

The “anchor-extension” strategy is acknowl-
edged to be an excellent method for novel splice
junction determination. Notably, using RUM,
we have identified thousands of novel splicing
events in the mouse neural retina, including
exon skipping, novel exons, and alternate 30

and 50 splicing (Grant et al. 2011). Several new
algorithms use statistical modeling methods
as an alternative approach. Most recently, Fine-
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Splice, PASTA, and TrueSight have been devel-
oped to use regression modeling to identify
splice junctions, and claim to enhance sensitiv-
ity and specificity over traditional splice junc-
tion detection methods, but have not been in-
dependently verified (Li et al. 2013; Tang and
Riva 2013; Gatto et al. 2014).

RNA-Seq STUDIES IN THE RETINA

The rapid development of bioinformatic tools
has enabled a complete genomic characteriza-
tion of the retina, which is necessary to properly
study the basic biological mechanisms that
drive cellular physiology, morphology, and de-
velopment, as well as disease. To date, only a few
RNA-Seq studies have set out to characterize the
transcriptome of the normal or diseased retina.
Original characterizations of the retina using
SAGE and microarray technology, although
useful, are antiquated and inadequate for fully
sampling the transcriptome (Mortazavi et al.
2008; Wang et al. 2009; Li et al. 2010). Microar-
rays can comprehensively sample the annotated
transcriptome, but are limited to providing in-
formation about known features (exons, genes,
etc.), and are unable to aid in the discovery of
novel features. In contrast, SAGE analyses are
able to detect novel features, but are limited by
minimal data output (Oshlack et al. 2010). Al-
though RNA-Seq does have its own biases, such
as problems caused by PCR amplification, it
addresses many issues of the earlier technolo-
gies and allows for a much more comprehensive
transcriptome analysis (Costa et al. 2012).

Given the importance of mouse models for
vision research, and the difficulty in obtain-
ing high quality human retinal samples, it is
no surprise that the first RNA-Seq retinal tran-
scriptome articles to be published examine the
mouse retina. These studies have found between
16,000–34,000 transcripts expressed in the
mouse retina, which is in line with prior SAGE
analyses of human retina, where 26,000 tran-
scripts were found to be expressed (Swaroop
and Zack 2002; Brooks et al. 2011). Analyses
regarding the overlap of transcript expression
in the retina between the two species, includ-
ing isoform abundance, has not yet been per-

formed, but would be particularly useful for
studying retinal dystrophies in mouse models.

More comprehensive RNA-Seq studies of
the mouse retina have shed light onto the overall
expression and alternative splicing of known
retinal disease genes. For example, Gamsiz et
al. (2012) noted that many of these genes are
among the most highly expressed in the retina,
with rhodopsin being at the top of the list
(Gamsiz et al. 2012). The investigators also
point out that these genes are among the largest,
and are susceptible to more alternative splicing
events. This is interesting, and confirms previ-
ous observations that the number of alternative
splicing events a transcript undergoes is propor-
tional to the number of exons in the transcript
(Pickrell et al. 2010).

Although new RNA-Seq studies are contin-
uously increasing our knowledge of the mouse
retina, alternative splicing has not yet been fully
characterized, and, in particular, novel alterna-
tive splicing events remain to be fully investigat-
ed. Grant et al. (2011) set out to identify and
validate novel alternative splicing events, in-
cluding exon skipping, alternate 30/50 splice
sites, and novel exons, concluding that tens of
thousands of novel alternative splicing events
occur in the mouse retina (Grant et al. 2011).
A majority of the novel features identified were
seen in lower abundance than their annotated
counterparts, however, there are also novel fea-
tures with expression levels suggesting they may
in fact be the major isoform of a given gene.
Further research is required to determine the
biological function of these novel features. Ad-
ditionally, the fact that the highly expressed nov-
el features have not yet been discovered in other
tissues raises the question of their specific im-
portance in the retina.

MODELS FOR STUDYING DISEASE

RNA-Seq captures a snapshot of the transcrip-
tome at a given point in time (Wang et al. 2009;
Costa et al. 2010; Marguerat and Bahler 2010).
This fact complicates studying disease in hu-
mans. In the case of inherited retinal dystro-
phies (IRDs), for example, high quality human
retinal tissue is particularly hard to obtain. In
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addition, transcriptome changes occur because
of degeneration of the retina and extended post-
mortem times to RNA isolation, further com-
plicating the issue (Koppelkamm et al. 2011). To
appropriately study the pathogenesis of an IRD,
one would need to view the transcriptome be-
fore degeneration. In light of these inherent dif-
ficulties, mouse models have been studied as an
alternative, although these models are still not a
perfect solution.

Mouse models are clearly the method of
choice for studying visual dystrophies (Buch
et al. 2008; Liu et al. 2010; Jaillard et al. 2012).
From a disease standpoint, they have played a
major role in elucidating the mechanisms of
pathogenesis for many types of blindness
(Won et al. 2011). Mouse models have helped
identify the role of oxidative damage, lipid me-
tabolism, inflammation, and immune response
in the development of age-related macular de-
generation (AMD) (Hollyfield and Kuttner-
Kondo 2010; Pennesi et al. 2012). In this last
case, however, there are obvious deficiencies in
using mice as a model for AMD. Most notably,
mice lack a macula, and hence true AMD has not
been recapitulated. Another issue arises in terms
of RNA-Seq data itself. Expression levels of gene
isoforms in the transcriptomes of mice vary rel-
ative to those expressed in humans (Matlin et al.
2005; Meena Kishore et al. 2005; Pan et al. 2005;
Konopka et al. 2009; Stahl and Wainszelbaum
2009; Nilsen and Graveley 2010). This can be
caused by variation in alternative splicing be-
tween the two species, as well as differences in
the degree of expression of each isoform in the
tissue. It is well known that splicing is not well
conserved between species, especially between
human and mouse. It is currently not well un-
derstood how these variations affect normal tis-
sue function, and it is unknown how they may
affect disease models. Despite this issue, mouse
and zebrafish models have commonly been con-
sidered the best alternative for disease research,
since obtaining retinal samples is not always
possible. In cases in which disease genes are con-
served between species, these models have prov-
en effective. In other instances, such as the study
of mutations in the RNA splicing factors, which
cause RP, animal models may not be the best

choice, because aberrant splicing is hypothe-
sized to underlie disease pathogenesis (Ivings
et al. 2008; Graziotto et al. 2011; Farkas et al.
2012; Cvačková et al. 2014).

One possible alternative to animal models is
the use of induced pluripotent stem cells (iPS);
with iPS, it is possible to derive RPE and photo-
receptor-like cells from human, or animal, fibro-
blast cells or blood (Takahashi et al. 2007; Aoi
et al. 2008; Okamoto and Takahashi 2011; Phil-
lips et al. 2012). This technology offers a lot of
promise from a research standpoint, as expres-
sion profiles closely match those found in hu-
man tissue samples, providing a more accurate
disease model. Specifically, in cases in which dif-
ferences in splicing patterns present complica-
tions, iPS cells from patients affected with RNA
splicing factor RP may provide a better alterna-
tive to understanding disease onset. Further,
since the discovery, and practicality, of genome
editing, affected patient samples are no longer
necessary because mutations can be readily in-
troduced into iPS cells. Additionally, the use of
iPS cells offers clinical promise, as functional
iPS-derived retina cells have the potential for
therapeutic use (Carr et al. 2009; Carr 2011;
Schmeer et al. 2012). Before clinical use, a thor-
ough characterization is warranted and neces-
sary, because iPS-dervived RPE have been
shown to have a short lifespan after transplanta-
tion in the rat eye (Carr et al. 2009). Currently, it
is unknown why iPS-derived RPE do not survive
in vivo, especially since functional characteriza-
tion suggests the RPE are indeed functional
(Kokkinaki et al. 2011; Westenskow et al. 2012).

RNA-Seq STUDIES TO UNDERSTAND
DISEASE MECHANISMS

To date, many mouse models of human visual
dystrophies have been developed, but only a few
have been studied using RNA-Seq. Age-related
retinal degeneration (ARD) is the most com-
mon cause of vision loss (Mustafi et al. 2012).
It is defined as likely being caused by a myriad of
factors that are both genetic and environmental
(Donoso et al. 2010; Hong et al. 2011; Pennesi
et al. 2012; Sui et al. 2012). Little is known about
the genetic factors underlying the disease, which
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makes it an ideal candidate for RNA-Seq stud-
ies. In mice, genetic background plays a role in
the development of ARD. Mice on the A/J back-
ground are more susceptible to retinal degener-
ation than are BALB/c or B6 mice (Mustafi et al.
2012). In A/J mice, transcriptome analysis of
the whole eye, rather than a specific retinal tis-
sue, revealed an increase in proinflammatory
factors and a decrease in protective factors such
as those involved in the oxidative stress response.
These differentially expressed genes were ulti-
mately localized to the RPE, suggesting a role
for the RPE in ARD development.

Diabetic retinopathy is another leading
cause of vision loss worldwide (Klein et al.
2009; Visser 2010). The pattern of gene expres-
sion changes in mouse models of diabetic reti-
nopathy as the disease progresses, are notable
(Kandpal et al. 2012). Inflammation has been
shown to be critical to the pathogenesis of dia-
betic retinopathy. RNA-Seq studies have found
that the degree of up-regulation of inflamma-
tion related genes actually decreases over time as
disease severity progresses, while at the same
time other genes, such as those involved in the
Wnt signaling pathway, crystallins, and various
transcription factors are newly up-regulated
(Li et al. 2009; Tang and Kern 2011; Kandpal
et al. 2012). Further, these RNA-Seq studies
note that disease-specific alternative splicing
events, which were previously found to occur
in the disease state, in fact accumulate as disease
progresses. Interestingly, potential inhibitors
known to slow the progression of diabetic reti-
nopathy by targeting specific metabolic path-
ways were shown to regulate the expression of
some of the over expressed genes, most notably
the crystallins, in the disease models. Addition-
ally, these inhibitors reversed the levels of the
disease-specific alternative splicing events im-
plicated in disease progression.

Although RNA-Seq-based transcriptome
analyses of the eye are still in their infancy, it is
clear the tremendous potential this technology
provides the field. RNA-Seq will likely play an
important role in uncovering everything from
the eye’s basic transcriptional landscape to pro-
viding unprecedented insight into the mecha-
nisms underlying disease.

CONCLUDING REMARKS

RNA-Seq has proven to be a powerful, albeit
underutilized, tool for studying disease in the
eye. Studying the transcriptome of patients
with retinal disease is difficult and largely de-
pendent on mouse models. Because the tran-
scriptomes of humans and mice differ quite sig-
nificantly, these models are not always sufficient
for RNA-Seq studies. With the advancement of
iPS technology, and the ability to derive RPE
and photoreceptor progenitor cells, the technol-
ogy necessary to perform suitable human stud-
ies will now be readily available. These studies
will be essential for furthering both genetic
and clinical studies to help bring therapies to
patients.

The increase in demand for a genetic diag-
nosis by patients with ocular disease is rising
because of the recent advances in gene therapy.
In addition, the fact that many ocular diseases
present with a similar phenotype caused by a
heterogeneous group of genes (e.g., RP) neces-
sitates the need to have a genetic diagnosis before
treatment is possible. Whole-exome sequencing
(WES) provides the quickest and most practical
technologyavailable for screening and providing
a genetic diagnosis to patients with mutations in
protein coding genes. However, it has become
evident that we do not have a complete under-
standing of many diseases, as many patients with
an obvious Mendelian disease cannot be diag-
nosed using current methods. Although this
might be attributed to our incomplete under-
standing of the exome, it is highly likely that
noncoding RNAs and other unexplored regions
of the genome contribute to disease. RNA-Seq is
both more affordable and powerful to explore
these regions, compared with other NGS tech-
nologies. Future advances in whole exome se-
quencing technology, RNA-Seq, analysis, bio-
informatics, and functional models should
provide clinicians with powerful tools to diag-
nose and treat ocular disease.
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